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Abstract

We consider the existence of single and multiple positive solutions for fourth-order
Sturm-Liouville boundary value problem in Banach space. The sufficient condition for
the existence of single and multiple positive solutions is obtained by fixed theorem
of strict set contraction operator in the frame of the ODE technique. Our results
significantly extend and improve many known results including singular and
nonsingular cases.

1 Introduction
The boundary value problems (BVPs) for ordinary differential equations play a very

important role in both theory and application. They are used to describe a large num-

ber of physical, biological, and chemical phenomena. In this article, we will study the

existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville

BVP in a real Banach space E

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
p(t)

(p(t)u′′′(t))′ = f (u(t)), 0 < t < 1,

α1u(0) − β1u′(0) = 0, γ1u(1) + δ1u′(1) = 0,
α2u′′(0) − β2 lim

t→0+
p(t)u′′′(t) = 0,

γ2u′′(1) + δ2 lim
t→1−

p(t)u′′′(t) = 0,

(1:1)

where ai, bi, δi, gi ≥ 0 (i = 1, 2) are constants such that r1 = b1g1 + a1g1 + a1δ1 > 0,

B(t, s) =
∫ s
t

dτ
p(τ )

, r2 = b2g2 + a2g2 B(0, 1) + a2δ2 > 0, and p Î C1((0, 1), (0, +∞)).

Moreover p may be singular at t = 0 and/or 1. BVP (1.1) is often referred to as the

deformation of an elastic beam under a variety of boundary conditions, for detail, see

[1-17]. For example, BVP (1.1) subject to Lidstone boundary value conditions u(0) = u

(1) = u″(0) = u″ (1) = 0 are used to model such phenomena as the deflection of elastic

beam simply supported at the endpoints, see [1,3,5,7-11,13,14]. We notice that the

above articles use the completely continuous operator and require f satisfies some

growth condition or assumptions of monotonicity which are essential for the technique

used.

The aim of this article is to consider the existence of positive solutions for the more

general Sturm-Liouville BVP by using the properties of strict set contraction operator.

Here, we allow p have singularity at t = 0, 1, as far as we know, there were fewer

works to be done. This article attempts to fill part of this gap in the literature.
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This article is organized as follows. In Section 2, we first present some properties of

the Green functions that are used to define a positive operator. Next we approximate

the singular fourth-order BVP to singular second-order BVP by constructing an inte-

gral operator. In Section 3, the sufficient condition for the existence of single and mul-

tiple positive solutions for BVP (1.1) will be established. In Section 4, we give one

example as the application.

2 Preliminaries and lemmas
In this article, we all suppose that (E, || · ||1) is a real Banach space. A nonempty

closed convex subset P in E is said to be a cone if lP Î P for l ≥ 0 and P ∩ {-P} = {θ},

where θ denotes the zero element of E. The cone P defines a partial ordering in E by x

≤ y iff y - x Î P. Recall the cone P is said to be normal if there exists a positive con-

stant N such that 0 ≤ x ≤ y implies ||x||1 ≤ N||y||1. The cone P is normal if every

order interval [x, y] = {z Î E|x ≤ z ≤ y} is bounded in norm.

In this article, we assume that P ⊆ E is normal, and without loss of generality, we

may assume that the normality of P is 1. Let J = [0,1], and

C(J, E) = {u : J → E|u(t) continuous},
Ci(J, E) = {u : J → E|u(t) is i - order continuously differentiable} , i = 1, 2, . . . .

For u = u(t) Î C(J, E), let ||u|| = max
t∈J

||u(t)||1 , then C(J, E) is a Banach space with the

norm || · ||.

Definition 2.1 A function u(t) is said to be a positive solution of the BVP (1.1), if u

Î C2([0,1], E) ⋂ C3((0, 1), E) satisfies u(t) ≥ 0, t Î (0, 1], pu″’ Î C1((0, 1), E) and the

BVP (1.1), i.e., u Î C2([0,1], P) ⋂ C3((0, 1), P) and u(t) �≡ θ , t Î J.

We notice that if u(t) is a positive solution of the BVP (1.1) and p Î C1(0, 1), then u

Î C4 (0, 1).

Now we denote that H(t, s) and G(t, s) are the Green functions for the following

boundary value problem
{−u′′ = 0, 0 < t < 1,

α1u(0) − β1u′(0) = 0, γ1u(1) + δ1u′(1) = 0

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
p(t)

(p(t)v′(t))′ = 0, 0 < t < 1,

α2v(0) − lim
t→0+

β2p(t)v′(t) = 0,

γ2v(1) + lim
t→1−

δ2p(t)v′(t) = 0,

respectively. It is well known that H(t, s) and G(t, s) can be written by

H(t, s) =
1
ρ1

{
(β1 + α1s)(δ1 + γ1(1 − t)), 0 ≤ s ≤ t ≤ 1,
(β1 + α1t)(δ1 + γ1(1 − s)), 0 ≤ t ≤ s ≤ 1

(2:1)

and

G(t, s) =
1
ρ2

{
(β2 + α2B(0, s))(δ2 + γ2B(t, 1)), 0 ≤ s ≤ t ≤ 1,
(β2 + α2B(0, t))(δ2 + γ2B(s, 1)), 0 ≤ t ≤ s ≤ 1,

(2:2)
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where r1 = g1b1 + a1g1 + a1δ1 > 0, B(t, s) =
∫ s
t

dτ

p(τ )
, r2 = a2δ2 + a2g2B(0, 1) + b2g2

> 0.

It is easy to verify the following properties of H(t, s) and G(t, s)

(I) G(t, s) ≤ G(s, s) < +∞, H(t, s) ≤ H(s, s) < +∞;

(II) G(t, s) ≥ rG(s, s), H(t, s) ≥ ξH(s, s), for any t Î [a, b] ⊂ (0, 1), s Î [0,1], where

ρ = min
{

δ2 + γ2B(b, 1)
δ2 + γ2B(0, 1)

,
β2 + α2B(0, a)
β2 + α2B(0, 1)

}
,

ξ = min
{

δ1 + γ1(1 − b)
δ1 + γ1

,
β1 + α1a
β1 + α1

}
.

Throughout this article, we adopt the following assumptions

(H1) p Î C1((0, 1), (0,+∞)) and satisfies

0 <

1∫
0

ds
p(s)

< +∞, 0 < λ =

1∫
0

G(s, s)p(s)ds < +∞.

(H2) f(u) Î C(P \ {θ}, P) and there exists M > 0 such that for any bounded set B ⊂ C

(J, E), we have

α(f (B(t))) ≤ Mα(B(t)), 2Mλ < 1. (2:3)

where a( ) denote the Kuratowski measure of noncompactness in C(J, E).

The following lemmas play an important role in this article.

Lemma 2.1 [17]. Let B ⊂ C[J, E] be bounded and equicontinuous on J, then

α(B) = sup
t∈J

α(B(t)) .

Lemma 2.2 [16]. Let B ⊂ C(J, E) be bounded and equicontinuous on J, let a(B) is
continuous on J and

α

⎛
⎝

⎧⎨
⎩

∫
J

u(t)dt : u ∈ B

⎫⎬
⎭

⎞
⎠ ≤

∫
J

α(B(t))dt.

Lemma 2.3 [16]. Let B ⊂ C(J, E) be a bounded set on J. Then a(B(t)) ≤ 2a(B).
Now we define an integral operator S : C(J, E) ® C(J, E) by

Sv(t) =

1∫
0

H(t, τ )v(τ )dτ . (2:4)

Then, S is linear continuous operator and by the expressed of H(t, s), we have
⎧⎨
⎩
(Sv)′′(t) = −v(t), 0 < t < 1,
α1(Sv)(0) − β1(Sv)′(0) = 0,
γ1(Sv)(1) + δ1(Sv)′(1) = 0.

(2:5)

Lemma 2.4. The Sturm-Liouville BVP (1.1) has a positive solution if and only if the

following integral-differential boundary value problem has a positive solution of
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
p(t)

(p(t)v′(t))′ + f (Sv(t)) = 0, 0 < t < 1,

α2v(0) − lim
t→0+

β2p(t)v′(t) = 0,

γ2v(1) + lim
t→1−

δ2p(t)v′(t) = 0,

(2:6)

where S is given in (2.4).

Proof In fact, if u is a positive solution of (1.1), let u = Sv, then v = -u″. This implies

u″ = -v is a solution of (2.6). Conversely, if v is a positive solution of (2.6). Let u = Sv,

by (2.5), u″ = (Sv)″ = -v. Thus, u = Sv is a positive solution of (1.1). This completes the

proof of Lemma 2.1.

So, we only need to concentrate our study on (2.6). Now, for the given [a, b] ⊂ (0,

1), r as above in (II), we introduce

K = {u ∈ C(J, P) : u(t) ≥ ρu(s), t ∈ [a, b], s ∈ [0, 1]}.

It is easy to check that K is a cone in C[0,1]. Further, for u(t) Î K, t Î [a, b], we

have by normality of cone P with normal constant 1 that ||u(t)||1 ≥ r||u||.
Next, we define an operator T given by

Tv(t) =

1∫
0

G(t, s)p(s)f (Sv(s))ds, t ∈ [0, 1], (2:7)

Clearly, v is a solution of the BVP (2.6) if and only if v is a fixed point of the opera-

tor T.

Through direct calculation, by (II) and for v Î K, t Î [a, b], s Î J, we have

Tv(t) =

1∫
0

G(t, s)p(s)f (Sv(s))ds

≥ ρ

1∫
0

G(s, s)p(s)f (Sv(s))ds = ρTv(s).

So, this implies that T K ⊂ K.

Lemma 2.5. Assume that (H1), (H2) hold. Then T : K ® K is strict set contraction.

Proof Firstly, The continuity of T is easily obtained. In fact, if vn, v Î K and vn ® v

in the sup norm, then for any t Î J, we get

||Tvn(t) − Tv(t)||1 ≤ ||f (Svn(t)) − f (Sv(t))||1
1∫

0

G(s, s)p(s)ds,

so, by the continuity of f, S, we have

||Tvn − Tv|| = sup
t∈J

||Tvn(t) − Tv(t)||1 → 0.

This implies that Tvn ® Tv in the sup norm, i.e., T is continuous.

Now, let B ⊂ K is a bounded set. It follows from the the continuity of S and (H2)

that there exists a positive number L such that || f(Sv(t)) ||1 ≤ L for any v Î B. Then,

we can get
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||Tv(t)||1 ≤ Lλ < 1, ∀t ∈ J, v ∈ B.

So, T (B) ⊂ K is a bounded set in K.

For any ε > 0, by (H1), there exists a δ ’ > 0 such that

δ′∫
0

G(s, s)p(s) ≤ ε

6L
,

1∫
1−δ′

G(s, s)p(s) ≤ ε

6L
.

Let P = max
t∈[δ′ ,1−δ′]

p(t) . It follows from the continuity of G(t, s) on [0,1] × [0,1] that

there exists δ > 0 such that

|G(t, s) − G(t′, s)| ≤ ε

3PL
, |t − t′| < δ, t, t′ ∈ [0, 1].

Consequently, when |t - t’| <δ, t, t’ Î [0,1], v Î B, we have

||Tv(t) − Tv(t′)||1 =

∥∥∥∥∥∥
1∫

0

(G(t, s) − G(t′, s))p(s)f (Sv(s))ds

∥∥∥∥∥∥
1

≤
δ′∫

0

|G(t, s) − G(t′, s)|p(s)||f (Sv(s))||1ds

+

1−δ′∫
δ1

|G(t, s) − G(t′, s)|p(s)||f (Sv(s)||1ds

+

1∫
1−δ′

|G(t, s) − G(t′, s)|p(s)||f (Sv(s))||1ds

≤ 2L

δ′∫
0

G(s, s)p(s)ds + 2L

1∫
1−δ′

G(s, s)p(s)ds

+PL

1∫
0

|G(t, s) − G(t′, s)|ds

≤ ε.

This implies that T(B) is equicontinuous set on J. Therefore, by Lemma 2.1, we have

α(T(B)) = sup
t∈J

α(T(B)(t)).

Without loss of generality, by condition (H1), we may assume that p(t) is singular at t

= 0, 1. So, There exists {ani} , {bni } ⊂ (0, 1), {ni} ⊂ N with {ni} is a strict increasing

sequence and lim
i→+1

ni = +1 such that

0 < · · · < ani < · · · < an1 < bn1 < · · · < bni < · · · < 1;

p(t) ≥ ni, t ∈ (0, ani ] ∪ [bni , 1), p(ani) = p(bni) = ni;

lim
i→+1

ani = 0, lim
i→+1

bni = 1.
(2:9)
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Next, we let

pni(t) =
{
ni, t ∈ (0, ani] ∪ [bni , 1);
p(t), t ∈ [ani , bni ].

Then, from the above discussion we know that (p)ni is continuous on J for every i Î
N and

pni(t) ≤ p(t); pni(t) → p(t), ∀t ∈ (0, 1) as i → +1.

For any ε > 0, by (2.9) and (H1), there exists a i0 such that for any i >i0, we have that

2L

ani∫
0

G(s, s)p(s)ds <
ε

2
, 2L

1∫
bni

G(s, s)p(s)ds <
ε

2
. (2:10)

Therefore, for any bounded set B ⊂ C[J, E], by (2.4), we have S(B) ⊂ B. In fact, if v Î
B, there exists D > 0 such that ||v|| ≤ D, t Î J. Then by the properties of H(t, s), we

can have

||Sv(t)||1 ≤
1∫

0

H(t, τ )||v(τ )||1dτ ≤ D

1∫
0

H(t, τ )dτ ≤ D,

i.e., S(B) ⊂ B.

Then, by Lemmas 2.2 and 2.3, (H2), the above discussion and note that pni(t) ≤ p(t) ,

t Î (0, 1), as t Î J, i >i0, we know that

α(T(B)(t)) = α

⎛
⎝

⎧⎨
⎩

1∫
0

G(t, s)p(s)f (Sv(s))ds ∈ B

⎫⎬
⎭

⎞
⎠

≤ α

⎛
⎝

⎧⎨
⎩

1∫
0

G(t, s)[p(s) − pni(s)]f (Sv(s))ds ∈ B

⎫⎬
⎭

⎞
⎠

+ α

⎛
⎝

⎧⎨
⎩

1∫
0

G(t, s)pni(s)f (Sv(s))ds ∈ B

⎫⎬
⎭

⎞
⎠

≤ 2L

ani∫
0

G(s, s)p(s)ds + 2L

1∫
bni

G(s, s)p(s)ds

+

1∫
0

α(G(t, s)pni(s)f (Sv(s)) ∈ B)ds

≤ ε +
∫ 1

0
G(s, s)p(s)α(f (Sv(s)) ∈ B)ds

≤ ε + 2Mλα(B).

Since the randomness of ε, we get

α(T(B)(t)) ≤ 2Mλα(B), t ∈ J. (2:11)
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So, it follows from (2.8) (2.11) that for any bounded set B ⊂ C[J, E], we have

α(T(B)) ≤ 2Mλα(B).

And note that 2Ml < 1, we have T : K ® K is a strict set contraction. The proof is

completed.

Remark 1. When E = R, (2.3) naturally hold. In this case, we may take M as 0,

consequently,

T : K ® K is a completely continuous operator. So, our condition (H1) is weaker

than those of the above mention articles.

Our main tool of this article is the following fixed point theorem of cone.

Theorem 2.1 [16]. Suppose that E is a Banach space, K ⊂ E is a cone, let Ω1, Ω2 be

two bounded open sets of E such that θ Î Ω1, �̄1 ⊂ �2 . Let operator

T : K ∩ (�̄2\�1) → K be strict set contraction. Suppose that one of the following two

conditions hold,

(i) ||Tx|| ≤ ||x||, ∀ x Î K ∩ ∂Ω1, ||Tx|| ≥ ||x||, ∀ x Î K ∩ ∂Ω2;

(ii) ||Tx|| ≥ ||x||, ∀ x Î K ∩ ∂Ω1, ||Tx|| ≤ ||x||, ∀ x Î K ∩ ∂Ω2.

Then, T has at least one fixed point in K ∩ (�̄2\�1) .

Theorem 2.2 [16]. Suppose E is a real Banach space, K ⊂ E is a cone, let Ωr = {u Î
K : ||u|| ≤ r}. Let operator T : Ωr ® K be completely continuous and satisfy Tx ≠ x, ∀
x Î ∂Ωr. Then

(i) If ||Tx|| ≤ ||x||, ∀ x Î ∂Ωr, then i(T, Ωr, K) = 1;

(ii) If ||Tx|| ≥ ||x||, ∀ x Î ∂Ωr, then i(T, Ωr, K) = 0.

3 The main results
Denote

f0 = lim
||x||1→0+

||f (x)||1
||x||1 , f∞ = lim

||x||1→∞
||f (x)||1
||x||1 .

In this section, we will give our main results.

Theorem 3.1. Suppose that conditions (H1), (H2) hold. Assume that f also satisfy

(A1): f(x) ≥ ru*, ξ

∥∥∥∥∥
1∫
0
H(τ , τ )x(τ )dτ

∥∥∥∥∥
1

≤ ||x||1 ≤ r;

(A2): f(x) ≤ Ru*, 0 ≤ ||x||1 ≤ R,

where u* and u* satisfy

ρ

∥∥∥∥∥∥
b∫

a

G(s, s)p(s)u∗(s)ds

∥∥∥∥∥∥
1

≥ 1, ||u∗(s)||1
∫ 1

0
G(s, s)p(s)ds ≤ 1.

Then, the boundary value problem (1.1) has a positive solution.

Proof of Theorem 3.1. Without loss of generality, we suppose that r <R. For any u

Î K, we have

||u(t)||1 ≥ ρ||u||, t ∈ [a, b]. (3:1)

we define two open subsets Ω1 and Ω2 of E

�1 = {u ∈ K : ||u|| < r}, �2 = {u ∈ K : ||u|| < R}
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For u Î ∂Ω1, by (3.1), we have

r = ||u|| ≥ ||u(s)||1 ≥ ρ||u|| = ρr, s ∈ [a, b]. (3:2)

Then, for u Î K ∩ ∂Ω1, by (2.4), (3.2), (II), for any s Î [a, b], u Î K ∩ ∂Ω1, we have

r ≥
1∫

0

H(τ , τ )||u(τ )||1dτ ≥
∥∥∥∥∥∥

1∫
0

H(τ , τ )u(τ )dτ

∥∥∥∥∥∥
1

≥ ||Su(s)||1

=

∥∥∥∥∥∥
1∫

0

H(s, τ )u(τ )dτ

∥∥∥∥∥∥
1

≥ ξ

∥∥∥∥∥∥
1∫

0

H(τ , τ )u(τ )dτ

∥∥∥∥∥∥
1

.

So, for u Î K ∩ ∂Ω1, if (A1) holds, we have

||Tu(t)||1 =

∥∥∥∥
∫ 1

0
G(t, s)p(s)f (Su(s))ds

∥∥∥∥
1

≥ rρ

∥∥∥∥∥∥
b∫

a

G(s, s)p(s)u∗(s)rds

∥∥∥∥∥∥
1

≥ r = ||u||.

Therefore, we have

||Tu|| ≥ ||u||, ∀u ∈ ∂�1. (3:3)

On the other hand, as u Î K ∩ ∂Ω2, by (2.4), (3.2), (II), for any s Î [a, b], u Î K ∩
∂Ω2, we have

R ≥
1∫

0

H(τ , τ )||u(τ )||1dτ ≥
∥∥∥∥∥∥

1∫
0

H(τ , τ )u(τ )dτ

∥∥∥∥∥∥
1

≥ ||Su(s)|| ≥ 0.

For u Î K ∩ ∂Ω2, if (A2) holds, we know

||Tu(t)||1 =

∥∥∥∥∥∥
1∫

0

G(t, s)p(s)f (Su(s))ds

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥

1∫
0

G(t, s)p(s)u∗(s)ds

∥∥∥∥∥∥
1

R

≤
1∫

0

G(t, s)p(s)||u∗(s)||1dsR ≤
1∫

0

G(s, s)p(s)ds||u∗(s)||1R ≤ R = ||u||.

Thus

||T(u)|| ≤ ||u||, ∀u ∈ ∂�2. (3:4)

Therefore, by (3.2), (3.3), Lemma 2.5 and r <R, we have that T has a fixed point

v ∈ (�2\�̄1) . Obviously, v is positive solution of problem (2.6).

Now, by Lemma 2.4 we see that u = Sv is a position solution of BVP (1.1). The proof

of Theorem 3.1 is complete.

Theorem 3.2. Suppose that conditions (H1), (H2) and (A1) in Theorem 3.1 hold.

Assume that f also satisfy

(A3): f0 = 0;

(A4): f∞ = 0.

Then, the boundary value problem (1.1) have at least two solutions.
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Proof of Theorem 3.2. First, by condition (A3), (2.4) and the property of limits, we

can have

lim
||u||1→0+

|f (Su)||1/||u||1 = 0 . Then, for any m > 0 such that m
∫ b
a G(s, s)p(s)ds ≤ 1 ,

there exists a constant r* Î (0, r) such that

||f (Su)||1 ≤ m||u||1, 0 < ||u||1 ≤ ρ∗, u �= 0. (3:5)

Set Ωr* = {u Î K : ||u|| <r*}, for any u Î K ∩ ∂Ωr*, by (3.4), we have

||f (Su)||1 ≤ m||u||1 ≤ mρ∗.

For u Î K ∩ ∂Ω r*, we have

||Tu(t)||1 =

∥∥∥∥∥∥
1∫

0

G(t, s)p(s)f (Su(s))ds

∥∥∥∥∥∥
1

≤
1∫

0

G(t, s)p(s)||f (Su(s))||1ds

≤
b∫

a

G(t, s)p(s)mρ∗ds ≤ ρ∗m

b∫
a

G(s, s)p(s)ds ≤ ρ∗ = ||u||.

Therefore, we can have

||Tu|| ≤ ||u||, ∀u ∈ ∂�ρ∗ .

Then by Theorem 2.2, we have

i(T,�ρ∗ ,K) = 1. (3:6)

Next, by condition (A4), (2.4) and the property of limits, we can have

lim
||u||1→1

||f (Su)||1/||u||1 = 0 . Then, for any m̄ > 0 such that m̄
∫ b
a G(s, s)p(s)ds ≤ 1 ,

there exists a constant r0 > 0 such that

||f (Su)||1 ≤ m̄||u||1, ||u||1 > ρ0. (3:7)

We choose a constant r* > max {r, r0}, obviously, r* < r <r*. Set

�ρ∗ = {u ∈ K : ||u|| < ρ∗} , for any u Î K ∩ ∂Ω r*, by (3.6), we have

||f (Su)||1 ≤ m̄||u||1 ≤ m̄ρ∗.

For u Î K ∩ ∂Ω r*, we have

||Tu(t)||1 =

∥∥∥∥∥∥
1∫

0

G(t, s)p(s)g(s)f (Su(s))ds

∥∥∥∥∥∥
1

≤
1∫

0

G(t, s)p(s)g(s)||f (Su(s))||1ds

≤
b∫

a

G(t, s)p(s)m̄ρ∗ds ≤ ρ∗m̄
∫ b

a
G(s, s)p(s)ds ≤ ρ∗ = ||u||.

Therefore, we can have

||Tu|| ≤ ||u||, ∀u ∈ ∂�ρ ∗ .

Then by Theorem 2.2, we have

i(T,�ρ∗,K) = 1. (3:8)
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Finally, set Ωr = {u Î K : ||u|| < r}, For any u Î ∂Ωr, by (A2), Lemma 2.2 and also

similar to the latter proof of Theorem 3.1, we can also have

||Tu|| ≥ ||u||, ∀u ∈ ∂�r .

Then by Theorem 2.2, we have

i(T,�r ,K) = 0. (3:9)

Therefore, by (3.5), (3.7), (3.8), and r* <r <r*, we have

i(T,�r\�ρ∗ , k) = −1, i(T,�ρ∗\�r , k) = 1.

Then T have fixed point v1 ∈ �r\�̄ρ∗ , and fixed point v2 ∈ �ρ∗\�̄r . Obviously, v1,

v2 are all positive solutions of problem (2.6).

Now, by Lemma 2.4 we see that u1 = Sv1, u2 = Sv2 are two position solutions of BVP

(1.1). The proof of Theorem 3.2 is complete.

4 Application
In this section, in order to illustrate our results, we consider some examples.

Now, we consider the following concrete second-order singular BVP (SBVP)

Example 4.1. Consider the following SBVP
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3
3
√
t

(
1
3

3
√
tu′′′(t)

)′
+ 160

[
u
1
2 + u

1
3

]
= θ , 0 < t < 1,

u(0) − 3u′(0) = θ , u(1) + 2u′(1) = θ ,

3u′′(0) − lim
t→0+

1
3

3
√
tu′′′(t) = θ , u′′(1) + lim

t→1−

1
3

3
√
tu′′′(t) = θ ,

(4:1)

where

α1 = γ1 = 1,β1 = 3, δ1 = 2,β2 = γ2 = δ2 = 1,α2 = 3,

p(t) =
1
3

3
√
t, f (u) = 160(u

1
2 + u

1
3 ).

Then obviously,

1∫
0

1
p(t)

dt =
3
2
, f∞ = 0, f0 = 0,

By computing, we know that the Green’s function are

H(t, s) =
1
6

{
(3 + s)(3 − t), 0 ≤ s ≤ t ≤ 1,
(3 + t)(3 − s), 0 ≤ t ≤ s ≤ 1.

G(t, s) =
1
7

{
(1 + 3s)(2 − t), 0 ≤ s ≤ t ≤ 1,
(1 + 3t)(2 − s), 0 ≤ t ≤ s ≤ 1.

It is easy to note that 0 ≤ G(s, s) ≤ 1 and conditions (H1), (H2), (A3), (A4) hold.

Next, by computing, we know that r = 0.44, ξ = 0.8. We choose r = 3, u* = 104, as

1.05 = rξr ≤ ||u|| = max{u(t), t Î J} ≤ 3 and ρ

∥∥∥∥∥
b∫
a
G(s, s)p(s)u∗(s)ds

∥∥∥∥∥ = 1.3 > 1 ,

because of the monotone increasing of f(u) on [0, ∞), then
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f (u) ≥ f (1.05) = 326.4, 1.05 ≤ ||u|| ≤ 3.

Therefore, as

ρξ r = ρξ ||
1∫

0

H(τ , τ )||u||dτ || ≤ ξ ||
1∫

0

H(τ , τ )u(τ )dτ ||,

so we have

f (u) ≥ ru∗, ξ ||
1∫

0

H(τ , τ )u(τ )dτ || ≤ ||u|| ≤ r,

then conditions (A1) holds. Then by Theorem 3.2, SBVP (4.1) has at least two posi-

tive solutions u1, u2 and 0 < ||u1|| < 3 < ||u2||.
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