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Models of O3 distribution in two mountain ranges, the Carpathians in Central 
Europe and the Sierra Nevada in California were constructed using ArcGIS 
Geostatistical Analyst extension (ESRI, Redlands, CA) using kriging and cokriging 
methods. The adequacy of the spatially interpolated ozone (O3) concentrations 
and sample size requirements for ozone passive samplers was also examined. In 
case of the Carpathian Mountains, only a general surface of O3 distribution could 
be obtained, partially due to a weak correlation between O3 concentration and 
elevation, and partially due to small numbers of unevenly distributed sample sites. 
In the Sierra Nevada Mountains, the O3 monitoring network was much denser and 
more evenly distributed, and additional climatologic information was available. As 
a result the estimated surfaces were more precise and reliable than those created 
for the Carpathians. The final maps of O3 concentrations for Sierra Nevada were 
derived from cokriging algorithm based on two secondary variables — elevation 
and maximum temperature as well as the determined geographic trend. Evenly 
distributed and sufficient numbers of sample points are a key factor for model 
accuracy and reliability. 
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INTRODUCTION 
 
The purpose of Geographic Information System (GIS) is to provide a spatial framework to 
support decisions for the intelligent use of earth�s resources and to manage the man-made 
environment[1]. Biologists, botanists, planners, petroleum engineers, foresters, and corporate 
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executives are increasingly relying on GIS to help them make critical decisions. By putting 
spatial data in an integrated system where it can be organized, analyzed, and mapped, patterns 
and relationships that were previously unrecognized may emerge. In the U.S. numerous agencies 
and companies apply GIS in studies of air pollution. The air pollution continues to be a 
significant environmental problem in many areas of the country[2].  

Geostatistical analysis methods have been available for several decades, but were not 
integrated into any GIS modeling environments. A newly released software package, 
Geostatistical Analyst[3] links GIS and geostatistical analysis methods. With Geostatistical 
Analyst (an extension of the ArcGIS Version 8.1), a continuous surface (a map or a distribution 
model) can be created from measured sample points. Data collection usually can only be 
conducted at a limited number of point locations due to logistical and financial limitations, 
however scientists and managers are increasingly interested in continuous surface estimates. In 
order to generate such a surface some type of interpolation method must be used to estimate data 
values for those locations where no samples were taken.  

Geostatistical methods, such as kriging apply regionalized variables and describe spatial 
dependencies between the instances of random variables by using variograms. A variogram is a 
graphical display of a variance of measurements over the distance between the measurement sites. 
If there are spatial dependencies the variance between the observations on two points normally 
increases with increasing distance until at a specific range a maximum value is reached. Kriging 
is considered to be the most sophisticated geostatistical method as it can potentially provide the 
most accurate results. Importantly, however, applying kriging is not always straightforward, thus 
the method must be utilized appropriately and consciously to generate correct outputs. 

Although models of O3 distribution have been developed for some areas in the eastern 
U.S.[4] and Europe[5], no such models based on ground-level monitoring of the pollutant had 
been developed. Recent development of low-cost passive ozone monitors in recent years[6] have 
made it practical to develop networks of monitors in remote locations. 

In this work an application of the Geostatistical Analyst for development of O3 
distribution models will be discussed using two different data sets. In the first data set ozone (O3) 
concentrations were measured during the 1997-1999 growing seasons in the Carpathian 
Mountains in Central Europe[7], and in the second data set ozone concentrations were measured 
during the 1999 growing season in the Sierra Nevada Mountains of California. In both studies 
concentrations of O3 were measured with passive samplers. In the Carpathian Mountains the 
monitoring network was relatively sparse, while the network in the Sierra Nevada was much 
denser. 

  
METHODOLOGY 
 
Ozone Monitoring 
 
Passive samplers (Ogawa, Pompano Beach, FL) were used for monitoring ozone concen-
trations[6]. The samplers were exposed for 2-week long periods during the growing season (May 
1 through September 30) and were located in well-exposed forest clearings at about 2�3 m above 
the ground level. A rate of NO3

- formation (amount of NO3
- formed on a filter over time of 

exposure) served as a measure of O3 concentration. Rates of NO3
- formation on passive sampler 

monitors were compared with real-time O3 concentration measurements with the UV absorption 
Thermo Environmental Model 49 monitors at two sites in the Carpathians and 9 sites in the Sierra 
Nevada. Empirically derived coefficients from comparison of results from the collocated active 
and passive monitors were used for calculating O3 concentrations for all passive sampler sites. 
Ozone concentrations are expressed as ppb (1 ppb O3 at 25oC and 760 mm Hg = 1.96 µg/m3). 
Precision of the O3 passive samplers was in general less than 5% of the estimate. Four replicate 
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samples were collected for every monitoring period at each location in the Carpathian study and 
two replicates in the Sierra Nevada study. In the Carpathians the samplers were exposed for 2-
week long periods between May 1 and September 30 during the 1997, 1998, and 1999 seasons at 
32 monitoring sites. In the Sierra Nevada Mountains, 93 monitoring sites were established and 
samples were collected from 2-week long exposures between May 1 and September 30, 1999.  

In the Sierra Nevada, meteorological data from a network of 63 weather stations, 
including measurements of maximum daily temperature over the sampling period was used for 
development of O3 concentration models.  
 
Geostatistical Analysis 
Maps showing spatial distribution of O3 concentration were created with the Geostatistical 
Analyst extension to ArcGIS 8.1 software produced by Environmental Systems Research Institute 
(ESRI), Redlands, California[3]. The Geostatistical Analyst uses sample points at different 
locations in a landscape and interpolates the values measured at these sites into a continuous 
surface. Using this approach, spatial models of prediction or estimation of O3 concentrations were 
derived. The Geostatistical Analyst provides a comprehensive set of tools for data exploration and 
for creating surfaces that can be used to visualize, analyze, and understand the geographic 
phenomena of interest.  
 

RESULTS AND DISCUSSION 
 
Carpathians – The Foundation for Further Research 
Study Location and the Data Sources 
General location of the Carpathian Mountains in Europe is shown in Fig. 1. For this study, the 
delineation of the Carpathian Mountains study area was based on landscape elevation above sea 
level, geology of the outcrop formations, and land use pattern, especially the lower extent of 
mountain forests. A final determination of the Carpathians outline was driven by a principle of 
including all of the major mountain forest stands. As a result, the entire study area was 158,000 
km2 and included 107,740 km2 (68.2% of the area) of coniferous, mixed and deciduous forests. 

The distribution of 32 monitoring sites in the Carpathian Mountains was uneven (Fig. 2) 
due to various reasons (mainly available funding). The density of points was much higher in the 
Western Carpathians than in the Southern Carpathians. However, an effort was made to generate 
continuous surfaces of O3 concentration for each semi-monthly measurement period as well as for 
each averaged year for the Carpathian Mountains area. Because the beginning of the monitoring 
season varied between the sites (partly due to the fact that some locations were not accessible 
early in a season), the average values of O3 concentrations were calculated for measurements 
starting on June 15 and ending on September 15. During that time all monitoring sites were fully 
operational. In order to evaluate an effect of elevation on ozone concentrations, two transects 
were established along elevational gradients through Lysa Hora in the Morava-Silesian Beskid 
Mountains near the Czech-Slovak border (Fig. 3). Although no relationship between elevation 
and O3 concentrations was seen on the NW-SE transect, an increase of O3 concentrations with 
elevation was clear on the SE-NW transect; for the 1997 and 1998 seasons an increase was 
logarithmic, and for the 1999 season linear. On the basis of this evidence, we decided that 
elevation would be used as a covariate for estimation of O3 concentration distribution with the 
Geostatistical Analyst using the geostatistical method of cokriging.  
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FIGURE 1.  Location of the Carpathian Mountains in Europe. 
 

 
 

FIGURE 2. Location of monitoring sites in the Carpathian Mountains: 1*. Borova; 1*. Ostra; 1*. Luksiniec; 1*. Lysa Hora; 1*. Bili 
Kriz; 2. Javorina; 3. Male Karpaty; 4*. Riecky; 4*. Turkov; 5. Mala Fatra; 6. Kremnicke Vrchy; 7. Polana; 8. Vychodna; 9. 
Novoveska Huta; 10. Morske Oko; 11. Brenna; 12. Babia Gora; 13. Tatra; 14. Pieniny; 15. Magura; 16, Bieszczady; 17. Uzhoksky 
Pass; 18. Synevir ; 19. Kuzij; 20. Yablunitsa; 21. Kryvopilja; 22. Vizhnitsa; 23. Obcina Mare; 24. Rarau; 25. Magura O.; 26. Fundata; 
27. Retezat; 28. Stana de Vale. 
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FIGURE 3.  Elevational transects in the Morava-Silesian Beskid Mointains. 
 

 
Origin of DEM Data 
The Digital Elevation Model (DEM) used for this study had a spatial resolution of 200 m, and 
was generated by mosaicing five individual DEMs, one part obtained from each Carpathian 
country. The final shape of the DEM is an effect of clipping of a much larger DEM data set to the 
outline of the Carpathian Mountains described in this study. The highest elevation point on the 
data was 2,532 m and the lowest point 55 m. All digital data sets were transformed to the same 
cartographic projection. An equal area projection of Albers had been selected with the central 
meridian of 22°E, and standard parallels of 45.5 and 48.5° N. These projection parameters 
ensured the most accurate measurements of area. The non-raster datasets including ozone 
measurement sites and weather stations as well as supporting data were converted into an ESRI 
Geodatabase format.  
 
Origin of Land Use Data 
The digital land use data applied in this project was adapted from the CORINE Landcover Project 
of the European Union completed in 1998. The aim of the CORINE Program was to map the land 
use of Europe based on computer-assisted photo interpretation of satellite images by using 
ancillary data. The resulting land use data consists of 44 different land use types. The surface area 
of the smallest mapped unit is 25 ha (an area of 500 × 500 m). The interpretation results were 
scanned and integrated into a Geographical Information System (GIS) to create a map 
comparable in terms of its spatial accuracy with a topographic map of 1:100,000. For the purpose 
of this project focusing mostly on the main forest stands the land use classification was rasterized 
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into 100 m resolution and reclassified into 2 categories � forest and no forest. The forest category 
consisted of the merge of all coniferous, deciduous and mixed forest initial classes. 
 

Testing of Geostatistical Analysts 
A preliminary evaluation of Geostatistical Analyst was performed to decide which modeling 
deterministic methods (e.g., inverse distance weighting [IDW], Spline) or geostatistical methods 
(kriging, cokriging) along with their geostatistical algorithms (e.g., ordinary kriging, simple 
kriging, universal kriging, disjunctive kriging) and semivariogram models (e.g., spherical, 
exponential, Gaussian, J-Bessel) would provide the most accurate estimation of O3 concentration 
surface. A total of 28 methods of data interpolation were applied and compared. The geostatistical 
interpolation algorithm that was selected to generate maps of ozone concentration distribution 
was based on statistical characteristics of each output surface based on comparison of cross-
validation measures. Six cross-validation prediction error parameters were taken into account: 
mean, root-mean-square, root-mean-square standardized, average standard, mean standardized, 
and a difference between root-mean-square standardized and average standard errors for 
geostatistical algorithms. Only the first two statistical characteristics could be calculated for the 
IDW and spline methods.  

Comparison of various parameters describing the quality of prediction did not provide a 
clear, univocal answer on what method most accurately estimated ozone spatial distribution. 
Based on the lowest prediction parameters error criteria, the best eight outputs were: spherical 
and K-Bessel models of cokriging with elevation as supplementary data set; best fitted 
representatives of spherical, exponential, Gaussian, and circular models of kriging; IDW with 15 
neighbors; and spline with tension. Statistical prediction errors were similar for all final eight 
season average O3 prediction candidate maps for the 1999 season. Due to a low-density sampling 
network, it was reasonable to adopt the most general (smooth) geostatistical approach. For that 
reason, as well as because of the generally very good rating of all the parameters of prediction 
error, the algorithm selected in spherical model of cokriging with the elevation as a secondary 
variable was recognized as the overall best and was utilized in this study to generate all maps of 
ozone predictions (Table 1).  

A minimum of five nearest measurement points were used for calculating predicted 
values at any given location. Although the cross-correlation between ozone concentrations and 
elevation change did not appear strong and the monitoring network low sample site density, it 
provided a valid input for interpolation of O3 results in some areas. A DEM for the Carpathian 
Mountains with 2 km resolution was applied for all semi-monthly measurement periods and 
annual average O3 concentrations for the 1997 through 1999 for the summer seasons, and 
provided a second variable for the applied model. Interestingly, a DEM with a resolution of 200 
m was available, but provided too much detail for models of ozone distribution. The DEM was 
resampled and several coarser resolutions were tested for their applicability as a cokriging 
covariant with the ozone data.  
 

Spatial and Temporal Distribution of Ozone Concentrations 
The highest variability for annual O3 average concentrations between the three years of study was 
detected in the vicinity of three Slovak sites (Vychodna, Polana and Novoveska Huta) and east of 
the Uzhoksky Pass in the Ukraine. Other Carpathian sites showed little variation in average O3 
concentrations between individual years (Fig. 4). The analysis of variance indicated significant 
differences between the sites, with the highest concentrations recorded for the Novoveska Huta 
and Polana sites (Slovakia), followed by Babia Gora (Poland). The lowest O3 concentrations were 
recorded in Retezat (Romania) and Vychodna (Slovakia). 
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TABLE 1 
Evaluation of Various Modeling Approaches Tested within Geostatistical Analyst for the Carpathian 

Mountains 
 

Selected geostatistical 
input parameters1 

Parameters characterizing errors of estimation Geostatist
ical 

Interpolat
or 

Model Reso-
lution 

of 
DEM 
(km) 

Range 
(km) 

Par-
tial 
Sill 

Nug-
get 

Lag 
(km) 

Mean RMS Avg. 
Std 

Mean 
Std 

RMS 
Std 

RMS  
Avg.
Std 

 *Kriging Spherical  320 200 70 55 -0.072 15.97 13.53 -0.001 1.150 2.44 
Kriging Spherical  200 80 132 60 -0.001 16.42 13.87 -0.001 1.144 2.55 
Kriging Spherical  65 207 0 60 -1.521 16.75 13.06 -0.089 1.173 3.69 
Kriging Spherical  69 205 0 35 -1.235 17.32 12.98 -0.067 1.208 4.34 
Kriging Spherical  55 200 4.3 45 -1.339 16.89 13.51 -0.077 1.135 3.38 

 *Kriging Exponential  168 182 37 60 -0.354 17.02 12.65 -0.017 1.241 4.37 
Kriging Exponential  60 196 10 45 -1.120 17.02 13.81 -0.067 1.137 3.21 
Kriging Exponential  55 205 0 40 -1.140 16.99 13.77 -0.067 1.137 3.22 
Kriging Gaussian  50 200 5 30 -1.401 16.96 12.71 -0.079 1.209 4.25 
Kriging Gaussian  40 200 0.2 35 -1.627 17.12 13.14 -0.048 1.533 2.98 
Kriging Gaussian  40 200 5 40 -1.417 16.76 13.39 -0.080 1.141 3.37 

 *Kriging Gaussian  30 200 10 45 -0.339 16.36 14.47 -0.021 1.107 1.89 
Kriging K-Bessel  570 190 54 60 -0.287 16.10 13.17 -0.018 1.150 2.97 
Kriging K-Bessel  55 208 10 45 -1.307 17.07 13.04 -0.073 1.176 4.03 
Kriging J-Bessel  65 204 5 50 -1.502 16.67 13.44 -0.083 1.133 3.23 
Kriging J-Bessel  75 202 5 45 -1.517 16.98 13.05 -0.082 1.190 3.93 

 *Kriging Circular  75 207 5 45 -1.166 17.92 12.62 -0.067 1.282 5.30 
 Cokriging Spherical 20 65 207 5 35 -1.496 16.79 13.09 -0.091 1.165 3.70 
 Cokriging Spherical 20 65 200 0 20 -1.491 17.22 12.99 -0.081 1.206 5.23 

**Cokriging Spherical 2 320 200 70 55 -0.033 16.04 13.52 -0.002 1.146 2.52 
 Cokriging Spherical 2 75 202 5 35 -1.419 17.58 12.89 -0.083 1.233 4.69 
 Cokriging Gaussian 2 75 215 5 35 -1.280 18.15 11.92 -0.073 1.439 6.23 

 *Cokriging K-Bessel 2 75 193 10 35 -1.280 16.91 13.06 -0.100 1.178 3.85 
 *IDW 15   220    -0.508 16.15     

IDW 10   120    -0.791 16.98     
IDW 12   95    -0.663 16.63     

 *Spline   220    -0.179 16.12     
1 Explanation of the selected geostatistical input parameters: Range - defines the diameter of neighborhood within which all 
measurements are related to each other; Sill - measures the value of spatial variation at the distance (range) where a 
maximum value is reached; Nugget - represents a sum of errors including: measurement errors, location error, uncertainty 
error, small scale irregularities; Lag Size - determines the distance up to which the correlation between sample points exists 
* Selected best 8 candidates 
**Final selection  
Note: Cross-validation technique is frequently applied to assess the quality of geostatistical prediction. Among the 
parameters describing the error of estimation the Average Standard, Mean Standardized and RMS Standardized 
measures are used. The Average Standard error is simply the square root of the sum of all the kriging standard deviations 
divided by the total number of samples. Standardization of the Mean and RMS errors is based on cross-validation of the 
fitted variogram. In the process of normalization, the values of Mean and RMS errors are divided by the standard 
deviation of the estimated values, which can be also referenced as kriging standard error[11]. 
 

The model�s ability to estimate digital GIS maps of O3 distribution for the entire range of 
the Carpathian Mountains was limited because of the relatively small number of monitoring sites 
and the complex nature of air pollution distribution in mountainous terrain. Maps for individual 
semi-monthly periods over the 3 years of the study and the maps presenting annual averages for 
three years of the study (Fig. 5) show several consistent characteristics of O3 distribution. Among 
these include a high spatial diversity of O3 concentrations, especially in the Western Carpathians. 
In that area, where the network of monitoring sites is dense, neighboring sites had wide ranges of 
concentrations. Generally, similar spatial patterns of O3 distribution occurred in the Carpathian 
Mountains during three years of the study. 

Concentration of O3 in the Carpathian Mountains may be dominated by multiple local 
sources of air pollution. No trend or anisotropy to its distribution was detected. The distribution 
of the highest and lowest O3 concentration sites appeared to be geographically random. Whether 
it was really random, or whether there is an undetected pattern is uncertain. A denser network of 
sampling points is needed to determine the answer.  
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FIGURE 4.  Year-to-year variability of O3 concentrations on the Carpathian monitoring network. 
 
 

 
 
FIGURE 5.  Model of spatial distribution of O3 concentrations (ordinary cokriging with elevation as a co-variance) for 1999 season 
for the Carpathians. 
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FIGURE 6. Confidence levels of the O3 distribution predictions in the 1999 season in the Carpathian Mountains obtained with the 
Geostatistical Analyst.  
 
 
Reliability of Ozone Concentration Estimates 
Since the number of monitoring sites was not sufficient to provide reliable results of estimation of 
O3 concentration for the entire Carpathian Mountains area, an exercise was performed to indicate 
areas where additional O3 measurement points should be located. The Geostatistical Analyst 
provides an algorithm that calculates standard error of a prediction. That allowed creating maps 
of prediction standard error of O3 concentrations using the same interpolation algorithm and 
parameters that were used to generate the O3 concentration maps. A range, or a threshold distance 
from monitoring sites up to which the estimated values were spatially autocorrelated to the 
measured values was set. That distance was used to delineate areas of estimated O3 
concentrations with sufficient confidence. The observed threshold was about 17 km. In other 
words, typically only within such a radius from an O3 measurement site, a value of O3 
concentration could be confidently estimated. At such a distance from monitoring sites a 
prediction standard error was 4.25 ppb. Consequently, only the areas with a prediction standard 
error less than 4.25 ppb were considered to have satisfactory level of prediction confidence. The 
continuous reliability surface of the entire study area was then classified into four cartographical 
categories of potential error of prediction. The zones closest to the areas of the highest density of 
monitoring sites were considered satisfactory in terms of the density of the sites and 
consequently, the accuracy of prediction of O3 concentrations. However, it has to be noted that 
even these areas have an inherited error of estimation ≥ ± 1.5 ppb. This might be attributed to 
measurement errors and/or the effect of the microscale variation. Areas with a prediction standard 
error exceeding this observed threshold of 4.25 ppb covered about 80% of the entire study area. 
Forested areas outside of the prediction confidence limits constituted a large portion of the study 
area (Fig. 6). These are the target areas to locate the new monitoring sites in the future. 
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FIGURE 7. Approximate zones of reliability of O3 predictions with the gradually increased density of monitoring sites in the Carpathians.  
 

A simulation exercise was performed to determine the number of points needed to 
provide satisfactory predictions of ozone distribution for the entire area of the Carpathian 
Mountains (Fig. 7). The number of the original 32 sample points was doubled, tripled, and 
quadrupled. Locations of new sites were digitally placed in the forested areas characterized by the 
following features: (1) where the current study showed the highest level of O3 concentration; (2) 
where variability of measurements was highest; and (3) where spatial gaps in the existing network 
of measurement points were present. The results indicated that as the number of monitoring sites 
for the Carpathian Mountains range increased to 140, confidence in predicting O3 concentrations 
would cover about 99% of the entire forested area increased (Table 2). The efficiency of sampling 
for reliable estimates of ozone concentration reached an optimum with 64 sites, then gradually 
decreased with the increasing numbers of sites (Table 2). The decreasing efficiency beyond 64 
sites was the result additional sites covering relatively small patches of unmonitored forests. Thus 
the most efficient sample design may not provide complete spatial coverage of the study area. 

 The network of measurement points could also be reduced if clear spatial trends or 
strong correlation with explanatory variables, e.g., elevation, are present. Strong relationships 
within the model reduce the number of points needed to separate spatial patterns from random or 
local variations in ozone concentrations.  
 
Evaluation of Monitoring Network and Performance of the Geostatistical 
Model 
Surfaces of O3 distribution for the Carpathian Mountains were calculated using passive ozone data and 
DEM (elevation used as a co-variant). Correlations between ozone and temperature were generally 
strongest, followed closely by a high negative correlation between ozone concentrations and relative 
humidity. High concentrations of ozone are likely to occur with high temperatures and low 
humidity[8,9]. It is possible that more reliable maps of the pollutant distribution could be generated if 
additional information on factors affecting ozone formation and transport were known. 
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TABLE 2 
Relationship between Number of Monitoring Sites in a Network and the Reliable Predicting 

Capability of Geostatistics for the Carpathian Mountains 
 
Number of  
points in a 
network 

Area of  
trustworthy  
prediction (km2) 

Average area of 
trustworthy prediction 
by each point (km2) 

% of the  
study area 
covered 

% of the  
forested area 
covered 

% of the forest  
covered by each  
sample point 

 32  31,132  972  19.7  20.6  0.64 
 64  74,104  1158  46.9  51.0  0.80 

 96 108,356  1128  66.0  72.6  0.75 
128 140,144  1094  88.7  92.0  0.72 
140 152,203  1087  96.3  98.9  0.70 

 
 

The number of monitoring sites established in the Carpathian Mountains was not 
adequate for developing reliable spatial estimates of O3 concentrations over the entire mountain 
range. As the above simulation exercise (see Fig. 7 and Table 2) indicated, the number of 
monitoring sites for the Carpathian Mountains range would need to increase 4-fold before 
satisfactory confidence in predicting O3 concentrations would be achieved for 92% of the entire 
forested area. Reliable estimates of the pollutant concentration distribution of all the forested 
areas in the Carpathian Mountains would require increasing the number of monitoring sites to 
about 140. In general a network of randomly distributed monitoring sites (1 site per 1,000 km2) 
would provide reliable estimates of spatial distribution of ozone concentrations.  

This sample density should not be automatically applied to other mountain ranges. In 
conditions of more predictable wind patters, such as during the summer conditions in the 
Californian Sierra Nevada Mountains, a less dense network could be adequate. In addition, if a 
clear correlation between elevation and O3 concentrations was determined, the density of 
monitoring sites on a network could be significantly reduced. In general the more information 
regarding dynamics of air pollution transport in complex mountain terrain, such as transport 
patterns, re-circulation of air masses, etc., is available the fewer monitoring sites would be needed 
for the same reliability spatial estimates.  

The simulated networks in our exercise were constructed without considering any 
particular sampling limitations such as proximity of roads, labor costs, safety of monitoring 
devices, etc. The final simulated network as well as the intermediate steps during the process of 
densification was not based on a regular grid for geometric optimization. Thus additional sample 
locations may be included for constructing an actual monitoring network.  
 

Sierra Nevada Mountains – Preliminary Analysis 
Study Location and the Data Sources 
Sierra Nevada Mountains are located in California, the U.S. (Fig. 8), and are the most elevated 
mountain range in the 48 contiguous states. This mountain range contains extremely valuable 
natural and recreational resources. The Sierra Nevada contains only about half the land area as the 
Carpathians, but rise almost twice as high as mountains in the Carpathians. Consequently, the 
relief of the Sierra Nevada is much more dramatic and complex than that of the Carpathian 
Mountains.  

Spatial surface estimation of the distribution of O3 concentrations in the Sierra Nevada 
Mountains was conducted using the approach discussed for the Carpathians. Passive samplers 
were used to sample O3 concentrations for 2-week periods between the beginning of May and the 
end of September in 1999. A major difference between the two studies was the much larger 
number of samplers used in the Sierra Nevada Mountains. Three times the number of air pollution 
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FIGURE 8.  Location of the Sierra Nevada Mountains in the western U.S. 

 
 

measurement sites (93) and weather data from 62 meteorological stations located in the study area 
were available for the analysis of the Sierra Nevada. The difference between the density of the 
monitoring networks for Carpathians and Sierra Nevada is illustrated on Fig. 9 which shows both 
study areas with their relevant O3 measurement sites transformed to the same projection, scale 
and overimposed for the visual comparison.  

All the air pollution measurement stations in the Sierra Nevada ranged in elevation from 
223 to 2,796 m above sea level and were established and maintained by the USDA Forest 
Service. Meteorological data from 62 weather stations[10] provided information critical for this 
study. The meteorological monitoring stations also were located across a wide variety of 
elevations (52 to 2,551 m). These two data sets originated from two different sources and thus 
were independent of each other. This lack of spatial linkage did not reduce the ability of the 
Geostatistical Analyst to develop models describing O3 concentration distribution. The majority 
of monitoring sites of both networks appear to be located near roads (Fig. 10), however all the 
measurement sites were situated at least 200 m away from a road to comply with the general 
principles of ambient air pollution sampling.  

A DEM (elevation ranging from 19 to 4,415 m) was used as a collateral data to enhance 
the quality of the geostatistical estimation of the primary variable � O3. The relevant, fine 
resolution elevation data for many topographic quadrangles was downloaded from the USGS web 
site http://edcwww.cr.usgs.gov/webglis/, resampled to a coarser resolution and merged into a 
single map. An effort was made to determine the optimal resolution of the DEM for this study. 
Depending on the purpose of the analysis, the capacity of a computer disk, and the speed of its 
processing unit, the resolutions from 30 to 2 km were found to be valuable for spatial surface 
estimation.  
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FIGURE 9. Comparison of sizes of the study areas and the density of measurement networks between the Carpathians and Sierra 
Nevada Mountains. 
 
Concentration of Ozone in the Sierra Nevada Mountains 
There was a strong correlation between O3 concentration and maximum temperatures in the 
Sierra Nevada. The Geostatistical Analyst also confirmed a strong correlation between 
temperature and elevation above sea level. Consequently, both the maximum temperature and the 
elevation were utilized as secondary and tertiary variables for the applied ordinary cokriging 
model. This discussion will be limited to the technical approach and preliminary results for the 
selected month of July 1999. 

In order to assure that a dependable surface of maximum temperatures could be used for 
the model of the O3 distribution, a temperature surface was generated using cokriging. The map 
of estimated maximum temperatures was based on the measurements from the weather stations 
cokrigged with the elevation data (DEM) applied as the secondary variable (Fig. 11). This map 
was very similar to the elevation map because of the strong obvious correlation between elevation 
and temperature that was taken into account by the cokriging method. 

The model of O3 concentrations for the month of July 1999 was estimated using the same 
approach. Data from the air pollution measurement sites was used as the primary variable while 
the previously created model of maximum temperatures was utilized as the secondary variable. 
Similarly to the O3 study in the Carpathians, the ordinary cokriging method was applied to 
generate the output surface (Fig. 12) but additional information was used in the Sierra Nevada 
analysis that was not available for the Carpathian analysis. Thus, the resulting model of O3 
concentration distribution used all available O3, temperature and elevation data.  

Areas near Auburn and Placerville on the western side of the Sierras and around 
Mammoth Lakes and Bishop on the eastern side had the highest concentration of O3 (exceeding 
100 ppb) for the month of July. The lowest values of O3 concentrations, around 30 ppb, were 
observed in the Lassen National Park and in the northern section of the Tahoe National Forest.  

The estimated spatial surface of ozone concentrations (Fig. 12) is detailed and convincing 
for the study area, but reliability of prediction in the northeastern and southeastern parts of the 
map is questionable. This is due to a lack of measurement sites in these remote areas. Using 
similar methods as for the Carpathian ozone study (described above), the prediction standard 
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FIGURE 10. Networks of ozone and temperature measurement stations in Sierra Nevada Mountains. 
 

error map was generated (Fig. 13).The lightest areas on the map represent the highest confidence 
of prediction of O3 concentration. The dark areas represent areas with the low confidence. The 
estimated standard error of prediction was considered to be continuous over the entire study area. 
 Using the same methodology as described for the Carpathians and based upon the 
semivariogram analysis, it was found that those O3 concentrations could be confidently estimated 
within a radius of about 19 km from the nearest measurement site toward the direction where the 
extrapolation techniques would be required. The value of prediction standard error at that distance 
was about ±12 ppb. This value was used to establish the final area of confident prediction. A 
rough outline of this area shows that most of the study area of the Sierra Nevada is adequately 
covered (Fig. 14).  
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FIGURE 11. Maximum temperatures in July 1999 based on cokriging with elevation as the secondary variable. 
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FIGURE 12.  Prediction of ozone concentration based on cokriging of ozone, maximum temperature and elevation. 
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FIGURE 13.  Potential standard error of estimation of ozone concentration in Sierra Nevada Mountains. 

 
CONCLUSIONS 
 
The results of these parallel studies suggest that the density of the measurement sites network in 
the Carpathians was inadequate. Conversely almost 94% of the study area was reliably estimated 
for the Sierra Nevada, although the distribution of the measurement sites could still be improved 
(there was clearly insufficient number of sites on the eastern side of the mountain range). The esti- 
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FIGURE 14. Approximate zone of reliable prediction of ozone concentration in July 1999 overimposed on National Parks and Forests 
in Sierra Nevada Mountains. 
 
mated area of the reliable prediction covered by each sample point in the Sierra Nevada was on 
average 488 km2, while the actual average area covered by each sampling point was 514 km2, a very 
close match. Similar estimates for the Carpathian study were 973 km2 and 4,937 km2, indicating a 
great disparity between the sample size needed and that obtained. Increasing the number of 
monitoring sites in the Carpathian study to 140 would change the relevant values to 1087 and 1128 
km2. The availability of the weather data and presence of strong correlations between maximum 
temperatures and elevation with O3 contributed to much lower sampling site densities being needed to 
obtain reliable spatial surface estimates in the Sierra Nevada compared with the Carpathian 
Mountains. 
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