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Abstract

The aim of this research is the thermostructural study of Cu-Ti, Cu-Ti 1 vol% multiwall carbon nanotubes (MWCNTs) and
Cu-Ti 3 vol% MWCNTs. Several investigation techniques were used to achieve this objective. Dilatometric data show that
the coefficient of thermal expansion of the nanocomposite containing less multiwall carbon nanotubes is linear and
small. The same nanocomposite exhibits regular heat transfer and weak mass exchange with the environment. Raman
spectroscopy shows that the nanocomposite with more MWCNTs contains more defects. This implies that the carbon
nanotubes have better dispersion in Cu-Ti 1 vol% MWCNTs. Infrared spectroscopy reveals that Cu-Ti 1 vol% MWCNTs has
better crystallinity than Cu-Ti 3 vol% MWCNTs.
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Background
Modern life and industry increasing needs require materials
and investigation techniques that offer better performance
and cost-effectiveness. The emerging technologies compel
scientists to relentlessly seek innovation in designing new
processes and new techniques that are more efficient, more
practical, offering longer lifetime or suitable for use in ad-
verse conditions, with higher constraints or in corrosive set-
tings where temperature gradients are extreme. Nowadays,
climatic disturbances which may repeatedly result in nat-
ural disasters must be taken into account more seriously.
Advances in mastery of new techniques, allowing the

design of new products showing exceptional physical
properties, made it possible to substitute heavy alloys,
expensive and environmentally unfriendly, with nano-
composites containing carbon nanotubes (CNTs). The
published literature about nanomaterials is unanimous
in hailing the performance and the positive role of CNTs
in polymer or metallic matrices [1, 2].
Since their discovery, CNTs became the first choice in

many applications [3, 4]. They exhibit great potential, and
their possible uses are constantly expanding due to their
very large aspect ratio, high rigidity, high resistance to
traction, virtual absence of thermal expansion, excellent
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electrical conductivity and good thermal conductivity.
These characteristics make them compellingly useful in
the preparation of nanocomposites [5].
Many articles have been published about aluminium-

based nanocomposites. Their authors unanimously point
out an improvement of the mechanical, thermal and
electrical properties and a significant decrease in the co-
efficient of thermal expansion of the material through
the incorporation of CNTs. Similarly, the incorporation
of CNTs into polymer matrices improves the percolation
threshold and the electrical and tribological properties of
the material. Recent studies in Refs. [1, 2] have demon-
strated that the introduction of CNTs into polymer or
metal matrices causes a decrease in thermal expansion
and anisotropy.
Several studies have been devoted to copper-based

composites for their interesting physical properties: a
small coefficient of thermal expansion and high electrical
and thermal conductivities [6]. They are competitively
energy-wise, and their use in various applications is
expanding. Strengthening these matrices with nanotubes
has become very attractive to respond to different de-
mands, e.g. producing cleaner energy, reducing pollu-
tion, improving the value-for-money ratio.
Interest in the class of copper-based nanocomposites is

increasing [7]. Addition of CNTs results in excellent char-
acteristics, notably, high electrical conductivity and Young
modulus [8]. CNTs should allow the improvement of
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mechanical and electrical properties through their hom-
ogeny distribution in the matrix.
Research has shown that heat flow in Cu-CNTs is lim-

ited by the weak bonds across the Cu-CNT interfaces
and that its thermal conductivity is significantly lower
than the estimated value for the intrinsic thermal con-
ductivity of the CNTs.
These shortcomings are probably due to the discrep-

ancy between the coefficient of thermal expansion of the
CNTs and that of copper and the weak bond between
the NTCs and Cu. Some authors have shown that the
insertion of carbide-forming elements, such as Ti, Cr or
Zr, improves the mechanical and thermal characteristics
of Cu-CNT nanocomposites as well as the interfacial
bond between Cu and the CNTs [9].
In this study, titanium was inserted into a Cu-CNT

nanocomposite. Titanium has been chosen because
microstructural analysis has shown that the formation of
TiC layers considerably improves the interfacial bond
between the CNTs and the copper matrix [9]. The ther-
mal conductivity of Cu-Ti-CNTs is significantly higher
than that of Cu-CNTs [10]. The authors [11, 12] con-
firmed the positive role of carbides.
The published literature deals mainly with the elec-

trical and mechanical properties of Cu-Ti-CNTs. It has
shown that addition of Ti improves the electrical con-
ductivity [10]. Authors of Ref. [10] have confirmed the
increase in the elastic limit, improving the Cu limit by
115% and the Cu-CNT limit by 88%. In Ref. [13], the au-
thors observed that the mechanical properties of Cu-Ti-
CNT nanocomposites improved. Microhardness tripled
and the elastic limit doubled their values compared to
copper. This improvement has attributed to the use of a
very-high-energy planetary ball mill, which induced a
change in the grain size that resulted in a higher density
of grain boundaries and thus a more effective block
against the movement of dislocations.
This study aims at contributing in closing the gap in re-

search on the thermal expansion and structural characteris-
tics of Cu-Ti-CNT nanocomposites, as well as the influence
of the CNTconcentration on these characteristics.
This research is a thermostructural study of the Cu-

Ti-CNT nanocomposites with different concentrations
of multiwall CNTs. The objective is to analyse the cor-
relation between the structural and thermodynamic
properties.

Methods
The nanocomposites were obtained using PMS-1 copper
[14] and VT1-0 titanium [15] powders. Multiwall carbon
nanotubes [16] (MWCNTs) were prepared in a rotating
disk CVD reactor [17]. The catalyst used to produce the
MWCNTs was an oxide mixture containing Al2O3,
MoO3 and Fe2O3. The carbon source was propylene.
The average diameter of the CNTs is comprised between
10 and 20 nm. The specific area, determined through Ar
desorption, is of the order of 200 to 400 m2/g. The ap-
parent volumetric mass density is 20 to 40 g/dm3.
The nanocomposites were elaborated in a planetary

ball mill with an acceleration of 50 g, for 20 min, then
annealed three times at 950 °C for 30 min, pressed three
times by 40% and rolled one time by 80% [13].
Three materials are the object of this study. They all

contain the same concentration of titanium (1 wt%). The
first is a pure copper matrix with titanium additions
(1 wt%). The second, Cu-Ti 1 vol% MWCNTs, is Cu
1 wt% Ti to which 1 vol% of multiwall carbon nanotubes
were added. The third material, Cu-Ti 3 vol% MWCNTs,
has a higher concentration of MWCNTs (3 vol%) [13, 18].
The following characterization techniques have been

used:

– Thermal expansion was measured with a Netsch
402C dilatometer. α(T) was measured along the
direction perpendicular to the rolling plane of each
film. The heating rate is invariably 10 °C/min. The
temperature range considered is 25–750 °C.

– Differential scanning calorimetry (DSC) and
thermogravimetric (TG) tests were conducted in a
Jupiter STA 449F3 calorimeter manufactured by
Netsch. The heating rate is identical with that used
for dilatometric tests, namely, 10 °C/min.

– Spectra were obtained with a Jasco FT/IR-6300, for
infrared spectroscopy, and a Bruker Senterra, for
Raman spectroscopy.

Results and Discussion
The relative variation in length, ΔL/L, in the three mate-
rials are clearly distinct (Fig. 1).
The MWCNTs do not have the same effect on the ex-

pansion behaviour of the samples. The amount of
MWCNTs in each nanocomposite reveals its specificity.
The shapes of ΔL/L for Cu-Ti and Cu-Ti 3 vol% MWCNTs
are similar. The two curves exhibit an extended minimum
around 400 °C. This peak is 20 times more intense in Cu-Ti
3 vol% MWCNTs than it is in Cu-Ti.
The ΔL/L of Cu-Ti 3 vol% MWCNTs is lower than

those of the two other materials over the whole
temperature range. At 500 °C, ΔL1/L is six times higher
than ΔL3/L while ΔL0/L is only four times higher (the
superscripts indicate the concentration of MWCNTs, in
vol%). Around 600 °C, ΔL1/L and ΔL0/L intersect. We
observe that ΔL0/L is very intense while ΔL1/L varies
monotonously over the whole temperature interval with
a very weak slope compared to those of the two other
materials.
Figure 2 shows the variation with temperature of the

coefficient of thermal expansion measured in the



Fig. 1 The relative variation in length, ΔL/L, with temperature of the
three materials: Cu-Ti (1), Cu-Ti 1 vol% MWCNTs (2) and Cu-Ti 3 vol%
MWCNTs (3)
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direction perpendicular to the deposition plane for the
three materials.
The shapes of the three curves are similar. The variation

of α(T) can be divided into three distinct regions. From
room temperature to 400 °C, α0(T) is between α1(T) and
α3(T) and α3(T) is smaller than the two other coefficients.
Starting from 400 °C, the trend is reversed. α0(T) increases
considerably and becomes larger than both α1(T) and
α3(T). α3(T) increases a little, but α1(T) remains virtually
unchanged. Beyond 650 °C, the intensities of the αi(T) be-
come very significant. Oxidation probably affects the sam-
ples. At lower temperatures, α3(T) is slightly negative.
This behaviour may be related to the significant concen-
tration of MWCNTs in the material.
We observe that the incorporation of 1% of CNTs into

the Cu-Ti matrix results in a nanocomposite with a
Fig. 2 Variation with temperature of the coefficient of thermal
expansion measured in the direction perpendicular to the rolling
plane of Cu-Ti (1), Cu-Ti 1 vol% MWCNTs (2) and Cu-Ti 3 vol%
MWCNTs (3)
constant expansion over a large (~500 °C) temperature
interval. The mean value of the coefficient of thermal
expansion over this temperature interval is 4 × 10−6 °C−1.
This value is of the same order of magnitude as the α(T)
of the CNTs [19]. This stability in the thermal expansion
means that the interactions in the nanocomposite are
virtually the same.
Figure 3 shows the DSC curves for the three materials.
The shape of the calorimetric curves depends on the

concentration of MWCNTs. The calorimetric behaviours
of Cu-Ti 3 vol% MWCNTs and Cu-Ti are similar. Both
curves show a singularity around 570 °C with a different
intensity in each curve. The ratio of the two intensities
is 0.8. As to Cu-Ti 1 vol% MWCNTs, its calorimetric be-
haviour is completely different from the other two mate-
rials. There is no singularity visible on the curve. From
room temperature to 330 °C, the curve is linear. Over
the rest of the interval, it increases slightly. The
MWCNTs are the source of a radical change in the cal-
orimetric behaviour of the material. When the amount
incorporated is high (3 vol% CNTs), the DSC signal in-
tensifies. The release of heat is significant. However, a
smaller addition (1 vol% CNTs) does not affect the signal
in any significant way. The exothermic effect is very
small. It is even less intense than in the material with no
nanotubes. At high temperatures, the DSC signal is vir-
tually constant.
In a similar fashion, the shape of the thermogravimetric

curves depends on the concentration of nanotubes (Fig. 4).
The TG curve for Cu-Ti exhibits a sharp slope. At

high temperatures, the relative mass variation for Cu-Ti
and Cu-Ti 3 vol% MWCNTs increases considerably.
Starting from 600 °C, they are superimposed and then
completely “fuse” together. This is due to the fact that
oxidation has the same effect on the two materials.
However, the TG curve for Cu-Ti 1 vol% MWCNTs is
Fig. 3 Differential scanning calorimetry curves of Cu-Ti (1), Cu-Ti
1 vol% MWCNTs (2) and Cu-Ti 3 vol% MWCNTs (3)



Fig. 4 Thermogravimetric curves of Cu-Ti (1), Cu-Ti 1 vol% MWCNTs
(2) and Cu-Ti 3 vol.% MWCNTs (3)
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essentially lower over a large interval of temperatures;
no net mass transfer occurs in the sample. Starting from
500 °C, we observe that the change in slope on the TG
curve is small if compared to the curves of the two other
materials.
Infrared spectroscopy shows that for compositions

with different concentrations of MWCNTs, spectra have
differences (Fig. 5).
For example, the spectrum of the material with higher

nanotube content shows very wide bands and intense
peaks [20–23]. However, for Cu-Ti 1 vol% MWCNTs,
the peaks are less intense and the bands tend to be
narrower while they appear at the same frequencies as in
Cu-Ti 3 vol% MWCNTs. This indicates that the incorp-
oration of 1% MWCNTs improves the crystallinity of
the material. The Cu-Ti spectrum exhibits very weak
singularities at frequencies that coincide with those in
the two nanocomposites.
Fig. 5 Infrared spectra of Cu-Ti (1), Cu-Ti 1 vol% MWCNTs (2) and
Cu-Ti 3 vol% MWCNTs (3)
Conclusions
The results obtained in this research confirm the posi-
tive role of carbon nanotubes in materials. The thermo-
structural properties of the nanocomposites studied
depend on the concentration of carbon nanotubes.
The incorporation of 1 vol% of MWCNTs in a Cu-Ti

matrix results in more interesting thermodynamic and
structural properties when compared with those of the
material containing 3 vol% MWCNTs. Cu-Ti 1 vol%
MWCNTs has a coefficient of thermal expansion that is
linear and small, a nearly constant heat capacity and
negligible mass loss over a large temperature interval.
Infrared spectroscopy shows that Cu-Ti 1 vol%

MWCNTs has better crystallinity than Cu-Ti 3 vol%
MWCNTs.
The range of intensities changes for ΔL/L = f(T), and α

= f(T) parameters (Figs. 1 and 2) can be divided into
three parts: the area T < 400 °C, where ΔL/L and α
change slightly and areas T = 400–600 and 600–700 °C,
with significant changes of mentioned parameters. A
characteristic feature is that the value of ΔL/L is sub-
stantially less for Cu-Ti and Cu-Ti—1% CNT composi-
tions than for the Cu-Ti—3% CNT composition in the
entire temperature range.
The addition of carbon nanotubes to the Cu-Ti com-

position up to 3 vol% reduces the magnitude of α(T).
For example, in the temperature range up to T = 400 °C,
it is lower for both the Cu-Ti composition without nano-
tubes and the composition with 1 vol% of carbon nano-
tubes. At T = 400–700 °C, the increasing of α(T) for all
tested samples was observed. These changes were also
lower for compositions with nanotubes than for the
samples without them. Effect of nanotubes in this case is
caused that their expansion coefficient is close to zero.
Addition of nanotubes in the studied composition

radically changes its calorimetric and thermogravimet-
ric behaviour. Changing the concentration of nanotubes
in the investigated compositions and measurement re-
sults of their behaviour allows obtaining materials with
predetermined characteristics. Aside from these fea-
tures for the compositions with nanotubes, infrared and
Raman spectra evolve.
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