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Abstract

The outsourcing of genomic data into public cloud computing settings raises concerns over privacy and security.
Significant advancements in secure computation methods have emerged over the past several years, but such
techniques need to be rigorously evaluated for their ability to support the analysis of human genomic data in an
efficient and cost-effective manner. With respect to public cloud environments, there are concerns about the
inadvertent exposure of human genomic data to unauthorized users. In analyses involving multiple institutions,
there is additional concern about data being used beyond agreed research scope and being prcoessed in untrused
computational environments, which may not satisfy institutional policies. To systematically investigate these issues, the
NIH-funded National Center for Biomedical Computing iDASH (integrating Data for Analysis, ‘anonymization’ and
SHaring) hosted the second Critical Assessment of Data Privacy and Protection competition to assess the capacity
of cryptographic technologies for protecting computation over human genomes in the cloud and promoting
cross-institutional collaboration. Data scientists were challenged to design and engineer practical algorithms for secure
outsourcing of genome computation tasks in working software, whereby analyses are performed only on encrypted
data. They were also challenged to develop approaches to enable secure collaboration on data from genomic studies
generated by multiple organizations (e.g., medical centers) to jointly compute aggregate statistics without sharing
individual-level records. The results of the competition indicated that secure computation techniques can enable
comparative analysis of human genomes, but greater efficiency (in terms of compute time and memory utilization)
are needed before they are sufficiently practical for real world environments.

Author summary
Advancement of technology significantly reduces the price
of obtaining whole genome sequencing (WGS) data and
makes personalized genome analysis more affordable. The
increasing availability of human genomic data is accom-
panied with increasing privacy concerns, such that the
inappropriate disclosure of such data might put individ-
uals at risk. In this paper, we present the recent findings of
novel genomic data protection methods through a
community-wide open competition to address the emer-
ging privacy challenges. The goal of the competition is to
bridge the gap between the biomedical informatics, data
privacy, and security communities.

Introduction
Advances in high throughput technologies have made it
increasingly affordable to sequence the human genome
in various settings, ranging from biomedical research
and healthcare. Massive collection of human genomic
data [1], together with the advancement of analysis tech-
niques, may enable more effective clinical diagnosis, as
well as the discovery of new treatments. Given such
potential, there are numerous initiatives that have been
established, the most recent of which is the Precision
Medicine Initiative, which will aim at studying the com-
bined genotypes and phenotypes of at least one million
volunteers [2].
At the same time, the collection of such a large quan-

tity of data leads to new challenges. The latest version of
the NIH Genome Data Sharing (GDS) policy (http://
grants.nih.gov/grants/guide/notice-files/NOT-OD-15-08
6.html) allows users to store and analyze human
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genomic data downloaded from NIH repositories in
cloud environments, as they provide solutions to the
storage and computation limitations researchers often
face when handling large genomic datasets. However, to
take advantage of such environments, it was stated in
the NIH Security Best Practices for Controlled-Access
Data Subject to the NIH Genomic Data Sharing (GDS)
Policy (http://grants.nih.gov/grants/guide/notice-files/
NOT-OD-15-086.html) that the scientists and their
institutions are responsible for ensuring the security of
human genomic data (i.e., it is not a responsibility of the
cloud service provider). Whatever care biomedical
researchers might afford to potentially sensitive health
information cannot replace the formal procedures
required to secure such data and keep it protected.
In the United States, research use of human genomic

data will likely soon be governed by the so-called
Common Rule, if it wasn’t already. That Rule does not
(for now) expressly define human genomic data. But
revisions to that federal policy due out later this year are
expected to include genomic data within its human
subjects protections. The NIH GDS operates to protect
research subjects’ personal information by recoding or
removing 18 explicit identifiers (e.g., personal names or
study IDs). The GDS adopts these criteria for defining
de-identified data in clinical settings from the safe har-
bor model provided by the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) [3]. Human
genomic data, linked or otherwise, could accordingly be
considered “de-identified” for research uses.
Additionally, there is concern because genomic data,

even when devoid of other explicit identifiers, can, at
times, be re-identified by invoking various methods (e.g.,
side-channel leaks [4], completion attacks [5], and
genealogical triangulation [6]). As recent studies have
demonstrated, the human genome can, at times, com-
municate information about an individual’s appearance
and/or heritage, as well as their predisposition to disease
[5–10]. The human genome may even provide evidence
of criminal culpability, such as being present at a crime
scene [11], which makes the responsible use of such infor-
mation especially important in certain legal situations.
Even more concerning is that, though the privacy risk due
to the known re-identification techniques is largely
limited, the privacy risk may increase over time with the
further accumulation of knowledge about human genetics
and the development of new re-identification techniques.
Once genomic data is made public, it remains perman-
ently public. Finally, genomic data communicates infor-
mation about people beyond the individual from whom
the data was collected (e.g., parents, siblings, children, and
cousins), and thus contributes to the risks for others.
In the past few years, there has been a growing interest

in developing effective, secure and privacy-preserving

methodologies to analyze sensitive genomic data. Recent
reviews [5, 12] have discussed relevant techniques. These
solutions seek to make data usable for medical research
(and clinical applications) while effectively preventing
the disclosure of private information. However, it re-
mains unclear how well these techniques perform when
applied to large quantities of genomic data. This is prob-
lematic because most cryptographic protocols are beset
by limited scalability when they are applied to whole
genome association studies, and cryptography solutions
have yet to completely solve the problem of how to se-
cure data-sharing for analysis. There has been no direct
comparison of the range of methods in practical scenar-
ios (e.g., using common benchmarks). As a result, it is
difficult for biomedical researchers to understand what
has been achieved and what remains to be done given
the status of current technology.
To better understand the limits of the state-of-the-art in

protecting computation over genomic data with crypto-
graphic techniques, we organized the second Critical As-
sessment of Data Privacy and Protection (CADPP)
workshop as a community effort to evaluate the effective-
ness of relevant methodologies. To set the competition in
a realisitic context of collaborations, we focus on an hon-
est but curious adversary model, in which a semi-honest
cloud server corrupted by an adversary returns the ex-
pected result following the computational task but keeps
exploring the data (as well as the computation process) in
an attempt to infer sensitive information. Our goal is to
mitigate the privacy risk of using a public commercial
cloud, especially in the cases where the security of the
cloud is achieved at a high cost.
The findings of the competition (summarized in

Table 1) are significant, providing insights into where
the technologies stand and what needs to be accom-
plished to move them closer to serving the biomedical
researchers and clinical practitioners. In particular, the
competition was designed to focus on two practical ap-
plications: (1) secure outsourcing and (2) secure collabor-
ation. For the first application, we assume that the data
owner has limited resources and wants to securely out-
source data storage and computation to a third-party
cloud service. For the second application, multiple data
owners (e.g., two or more medical institutions) want to
analyze genomic data jointly without disclosing their
own data. Based on these application scenarios, we de-
vised two tasks including both genome-wide association
studies (GWAS) and whole genome sequence compari-
son for each challenge, based on publicly available
human genomic data from the International HapMap
project [13] and the Personal Genome Project (PGP)
[14]. The workshop for the competition was attended by
a broad community, with 11 participating teams
(Additional file 1: Figure S1).
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Material and methods
Secure computation technologies
For the first application, secure outsourcing of computation,
we challenged participating teams to safeguard genomic
data storage and computation by using homomorphic en-
cryption (HME) techniques [15]. Homomorphic encryption
allows computation to be carried out on ciphertexts, thus
generating an encrypted result, which, when decrypted,
matches the result of operations performed on the plaintext
[16]. This is a general technique, which allows data owners
to encrypt their data and analyze it using a cloud comput-
ing service anytime in the future.
In detail, there are three types of homomorphic en-

cryption techniques: (1) partial HME is specialized on a
single operation (either addition or multiplication) [17],
(2) full HME that allows both operations but less effi-
ciently [18–21], and (3) levelled HME that allows both
operations for a limited number of iterations [22]. Partial
HME techniques, such as unpadded RSA: E xð Þ ¼ xemod
m (modulus m and exponent e as the public key), are very
efficient: E x1ð ÞE x2ð Þ ¼ xe1x

e
2modm ¼ x1x2ð Þe modm ¼ E

x1x2ð Þ; but they cannot be combined with another oper-
ation, such as addition. Since more complex primitives
(e.g., those used in human genome computation) involve
multiple operations, partial HME has limitations. A full
HME system can conduct both operations and can imple-
ment any function in theory; however, it is very com-
putation and storage intensive. Levelled HME requires a
pre-specification of the number of operations: it is a com-
promise between the above two techniques and it offers
reasonable efficiency. There have been considerable ad-
vances in using HME to protect genome privacy [23, 24].

For the second application, secure collaboration, we
challenged participating teams to implement secure
multiparty computation (SMC) solutions that are cus-
tomized for data analysis tasks [25]. In this competition,
we focused on a two-party scenario, where two partici-
pating parties (e.g., medical institutions) aim to jointly
compute a function over their inputs, while keeping
these inputs private. Each party can perform a certain
computation locally on the controlled-access (private)
data and exchanges only intermediate results to
synthesize a global output that can be shared by both
parties. There should be no additional information
leakage during the computation. SMC protocols often
require synchronization and involve a large amount of
peer-to-peer communication.
In the past few years, secure protocols have been devel-

oped for various genomic applications. HME based GWAS,
risk prediction, and sequence comparison have been ex-
plored by Wang et al. [26, 27], Lauter et al. [28, 29], Cheon
et al. [30], and Ayday et al. [31, 32]. Danezis and Cristofaro
[33], Djamiko et al. [34], Verle et al. [35], and Lu et al. [35]
developed SMC-based approach for secure function evalu-
tion and statistical tests. Kantarcioglu et al. [36] and
Mohammed et al. developed cryptographic approaches to
share and query genomic sequences [36]. Huang et al. de-
veloped a new tool GenoGuard based on honey encryption,
which produces a plausible-looking yet incorrect plaintext
to protect against brute-force attacks [37]. However, there
has been no systematic comparison of different methods on
a common human genome benchmark dataset.

Challenge design
We organized the competition as two applications: (1)
secure outsourcing of human genome computation
using HME techniques (Application 1), and (2) secure
collaboration on human genome computation by using
SMC techniques (Application 2). For each challenge, we
devised two tasks: (1) secure GWAS, and (2) secure gen-
ome sequence comparison. To evaluate the performance
of the submitted algorithms, we provided template vir-
tual machines (VMs) for the participating teams to train
and configure their algorithms. The same machines were
subsequently relied upon after submission in the final
evaluation step. For the secure collaboration challenge,
two VMs were provided and were hosted at UC San
Diego and Indiana University, respectively.
In the GWAS task, we created case and control

groups, using their real genotypes in the challenge. The
200 cases were acquired from the PGP with missing
genotype values filled by using fastPHASE [38]. Another
200 controls were simulated based on the haplotypes of
174 individuals from the HapMap Project. Each partici-
pating team (for both applications) was given the geno-
types of the case and control groups over 311 SNP sites

Table 1 Significant findings of the second Critical Assessment
of Data Privacy and Protection (CADDP) competition

1. Certain important genome analysis tasks can already be protected on a
large scale. As a prominent example, it was found that the state-of-the-art
privacy-enhancing technologies (PET) can already support the calculation of
Hamming distance (a widely used distance measure for genomic sequences)
across genomes with 100,000 bases in a few minutes, even when the
genomic data are fully encrypted or the computation is performed across
two geographically distributed institutions. These indicate that it is realistic
to use cloud or secure multiparty computation for certain genomic data
analysis tasks, even when the cloud or each party are not fully trusted, while
still maintaining sufficient protection of patient privacy and scalability of the
computation.

2. Gaps remain for certain classes of biomedical computations. When it
comes to more complicated computations (e.g., association tests for a
GWAS), analyzing encrypted data on a commercial cloud involves a
large computational and communication burden.

3. Narrowing the gap between data usefulness and privacy protection
requires a joint effort from the biomedical and security communities.
Cryptographers and computer scientists need to collaborate with
biomedical researchers to move PET techniques closer to practice.
We found that an approximation of the Edit distance computation on
human genomes is very effective, significantly simplifying computation
and allowing it to be calculated, securely, on a large scale.
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(for training purposes). They were then asked to imple-
ment an algorithm to conduct a case-control association
test by using χ2 -test statistics on these SNP sites. The
submitted algorithms were also evaluated on another
genomic dataset (on the same case/control genomes)
over 610 additional SNP sites.
For the secure outsourcing application, each partici-

pating team was required to develop an HME-based
protocol to encrypt the input datasets and calculate
minor allele frequencies (MAFs) and χ2 -test statistics
on a semi-honest server. The protocol should return the
encrypted results and only the data owner with the pri-
vate key could decrypt the result. The data owner could
be involved in the final calculation (e.g., compare the AF
and calculate the χ2 -test statistics from intermediary re-
sults), but the goal was to maximize the computational
outsourcing and minimize the interaction and communi-
cation. For the secure collaboration application, the in-
put case and control dataset was horizontally partitioned
into two sub-datasets (100 cases and controls in each
sub-dataset) distributed to two institutions (i.e., the two
VMs at UC San Diego and Indiana University), where
each institution hosted a single sub-dataset that could
not be exchanged. Each participating team was required
to develop a distributed cryptographic protocol to se-
curely compute MAFs and χ2 -test statistics for each
given SNP site in a two-party scenario.
For the sequence comparison task, two individual

genomes (i.e., hu604D39 with 4,542,542 variations and
hu661AD0 with 4,368,847 variations compared to the ref-
erence human genome) were taken from PGP. Given the
genome sequences (in variant call format, or VCF) from
these two PGP individuals, a subset of variation sites were
randomly selected to form the input data of different sizes
(5 K and 100 K) for training, whereas distinct subsets of
variation sites (of size 5 K, 10 K, and 100 K) were used for
evaluation. For the secure outsourcing application, each
team was provided the two genome sequences (in VCF)
and asked to develop a HME-based cryptographic proto-
col to outsource the storage and computation for calculat-
ing Hamming distance and edit (Levenshtein) distance
between the two genome sequences. For the secure col-
laboration application, the two genome sequences (in
VCF) were distributed to two institutions (i.e., the VMs at
UCSD and Indiana), where each institution hosted a single
genome and could not exchange genomes. Each team was
required to develop a distributed cryptographic protocol
to securely compute the Hamming distance and edit dis-
tance between two human genomes across institutions.

Approximate edit distance calculation
The edit distance computation (i.e., following the dynamic
programming algorithm) is known to be expensive when

using secure computation protocols. State-of-the-art algo-
rithms compute the distance between two sequences of
lengths only 2 K and 10 K, at a cost of more than 3.5 h
and 38 GB of network traffic [39]. To address this issue,
we devised an approximation algorithm to compute the
edit distance between two human genomic sequences.
Briefly, given two human genome sequences represented
by their variations from the reference genome sequences
in the variant call format (VCF), their edit distance is ap-
proximated by the size of the set difference between these
two variation sets. Note that the VCF representation of
each individual genome can be computed privately at each
institution without collaborating with the other party; this
can be achieved by variation calling algorithms such as
GATK [40].
We applied the algorithm to the comparison of 20

pairs of human genomic segments of about 5000 nucleo-
tides and found that it performed well in practice. For
18 of the cases, it reported the exact true edit distance,
in 1 case, it reported an approximate distance 1 (3.7 %)
higher than the true distance (28 vs. 27), and in the final
case, the approximate distance significantly (6.0 %) devi-
ated from the true distance (48 vs. 51). This algorithm
was recommended to all participating teams for the
genome comparison tasks of computing edit distance
between two human genome sequences. We refer the
reader to the competition website (http://www.human-
genomeprivacy.org/2015/competition-tasks.html) or a
recent paper [41] for further details about the approxi-
mation algorithm.

Submission and evaluation
Each participating team was asked to submit a suite of
software programs with an implementation of their
algorithms (either binary executable files or source code),
precompiled on supplied preset VMs. The performance of
the algorithms was evaluated by the organizers on holdout
test datasets (as described above). The following criteria
were considered in ranking the participating teams.

� Accuracy: Each solution should achieve the
minimum required accuracy.

� Security: Each solution should fulfill the minimum-
security protection standard (i.e., under the semi-
honest attack model with at least 80-bit security level).
80-bit security level indicates that it requires a
computer to perform, on average, approximately 280

operations to break the encryption. A semi-honest
attack model was defined by the assumption that each
party followed the protocol while they could use any
observed (including intermediate) computation to try
and discern sensitive information about the data.

� Complexity: The execution time of each solution
was measured under the same or comparable
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software and hardware setups. The evaluation
included 1) the running time for encryption, 2) the
computation over encrypted data, and 2) and
decryption of the solution.

� Storage: Since data encryption increases the size of
the data, we measured the storage efficiency of each
solution after applying the proposed cryptographic
protocols.

� Communication Cost: Cryptographic protocols
involve the communication of encrypted data
between computational nodes. We measured the
communication cost in terms of network bandwidth
consumption.

Results
A total of 11 teams participated in the competition (5 for
the first application and 7 for the second application with
one team participating in both). Based on the perform-
ance, we awarded six winners, three for each application
based on different tasks in Table 2. Tasks 1.1 and 2.1 were
designed for computing MAF and χ2 -test statistics for se-
cure outsourcing and collaboration, respectively. Tasks 1.2
and 2.2 address whole genome comparison for secure out-
sourcing and collaboration, respectively.
The details of performance are summarized in Tables 3

and 4 for each task. For the first application, secure out-
sourcing, we compared accuracy, time, and memory. All
participating teams achieved accurate results for MAF
and χ2 -test statistics, such that we only compared time
and memory in Task 1.1. For Task 1.2, we separated the
comparison for Hamming distance and approximate edit
distance. Among teams that participated in the HME
application, IBM Research, Microsoft Research, and
University of Tsukuba used HELib (https://github.com/
shaih/HElib), which is an open source library for full
HME developed by the IBM team. UCI and Standford/
MIT used a partial HME scheme, Paillier encryption, to
encode and compute MAF and χ2 -test statistics.
The algorithms developed in this competition dem-

onstrate the feasibility of conducting common genome
data analysis tasks in a secure and privacy-preserving

manner. With 80 bits of security, it is possible to transfer
and analyze personal genome data, e.g., on Amazon
Web Service (AWS), in less than 15 s for calculating
minor allele frequency and chi-squared statistics of 611
SNPs). Larger scale genome similarity is also feasible
(less than 8 min for calculating Hamming distance for
100 k SNPs and about 3 min for calculating the Edit
distance for 10 k SNPs). For the SMC, the best solution
needs 20 s for computing χ2 statistics of 610 SNPs. The
best solutions for calculating Hamming and edit
distances over 100 K SNPs are about 10 and 17 min,
respectively.
In addition, five teams extended their work and pub-

lished them in a special issue.1 Three of them are about
secure outsourcing using homomorphic encryption. Lu
et al. [42] showed that genome wide association test
(GWAS) on 1 million SNPs can be computed in less
than 11 h. Kim and Lauter [43] demonstrated that the
Hamming and Edit distances for sequences of 10 k
length can be computed in less than 60 and 120 s, re-
spectively. Zhang et al. [44] demonstrated comparable
results. Two other articles are about secure multiparty
computation, which supports decentralized data ana-
lysis without the need of a coordinator. Constable et al.
[45] described a solution for two parties to securely
compute minor allele frequency (MAF) and χ2 statistics
for 9330 SNPs in 9.4 and 22.22 min, respectively. Zhang
et al. [46] showed a secret sharing model (slightly utiliz-
ing a third party) has very good efficiency (MAF and
Chi-squared statistics are calculated in 2.5 and 77 s,
respectively).
Despite these encouraging results, the competition

also revealed a number of limitations of current
techniques. For example, existing cryptographic tech-
niques showed huge overhead in storage and commu-
nication: HME used up to several gigabyte of memory,
while SMC needed to transmit multi-gigabytes of data
across the Internet, for analyzing genomic sequences
of length 100 K, posing challenges for their scalability.
There is room for improvement, but we also need to
apply the right technology to the right problem (e.g.,
SMC would be more appropriate than HME for

Table 2 A summary of tasks, participating teams, and winners of the challenge

GWAS Whole genome comparison

Application 1: Secure outsourcing Task 1.1 – MAF & χ2 (Winner: Stanford/MIT) Task 1.2 (a) – Hamming distance (Winner: IBM)

Task 1.2 (b) – Approximate Edit distance (Winner: Microsoft)

Participating teams: IBM; Stanford/MIT; Microsoft;
UC Irvine (UCI); University of Tsukuba

Application 2: Secure collaboration Task 2.1– MAF & χ2 (Winner: U of Maryland) Task 2.2 (a) – Hamming distance (Winner: University of Virginia)

Task 2.2 (b) – Approximate Edit distance (Winner: UC Irvine)

Participating teams: Syracuse University (SU); University of Maryland (UMD); University of Notre Dame (UND);
University of Virginia (UV); UC Irvine (UCI); Cybernetica AS (CAS); The Alexandra Institute (AI)
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Table 3 A summary of the results for the secure outsourcing tasks

Task 1.1 MAF χ2

311 SNPs 610 SNPs 311 SNPs 610 SNPs

Time Memory Time Memory Time Memory Time Memory

Microsoft 17.44 s 130.48 MB 26.31 s 247.30 MB 16.88 s 118.08 MB 27.11 s 234.73 MB

UCIa 0.589 s 3.320 MB 0.886 s 3.320 MB 0.659 s 3.320 MB 0.871 s 3.320 MB

Stanford/MIT 1.069 s 8.0 MB 1.847 s 13.0 MB 1.069 s 8.0 MB 1.847 s 13.0 MB

U of Tsukuba 55.20s 31.81 MB 112.32 s 32.67 MB 55.21 s 31.81 MB 112.32 s 32.67 MB

Task 1.2 (a) 5 k 10 k 100 k

Accuracy Time Memory Accuracy Time Memory Accuracy Time Memory

Plaintext data 3099 0.076 s 1.64 MB 3306 0.118 s 2.43 MB 134252 134252 13.52 MB

IBM 3099 79.4 s 1.416 GB 3306 86.8 s 1.419 GB 134260 134260 2.168 G

Microsoft 3099 44.664 s 513.7 MB 3306 80.031 s 720.5 MB

Stanford/MIT 3082 20m37s 2.77 GB 3275 36m27s 4.03 GB 132703 132703 7.50 GB

Task 1.2 (b) 5 k 10 k 100 k

Accuracy Time Memory Accuracy Time Memory Accuracy Time Memory

Plaintext data 9089 0.106 s 2.45 MB 16667 0.144 s 2.53 MB 191986 1.528 s 25.8 MB

IBMb 5328 91.7 s 1.42 GB 8318 106.3 s 1.45 GB 153266 555.2 s 2.29 GB

Microsoft 9089 91.09 s 701 MB 16665 181.92 s 1.29 GB
aThe algorithm encrypts local counts instead of input data for secure data outsourcing, and was disqualified in the competition
bAn approximate algorithm (with about 22 % error), which was not considered in the competition
Winners are in boldface

Table 4 A summary of the results for the secure collaboration tasks\

Task 2.1 311 SNPs χ2 -statistics 610 SNPs χ2 -statistics

Time (s) Memory (KB) Communication (MB) Time (s) Memory (KB) Communication (MB)

VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3

Baseline 92 1.2 1.4 0.7 35.0 187 1.2 1.4 1.4 70.0

UV 32 3.3 5.3 1.9 163.0 59 6.9 9.7 3.6 309.3

UND 15 25.1 25.1 25.0 4.0 3.8 3.8 23 36.2 49.8 36.0 7.9 7.4 7.2

SU 14 173 162 4942 45.6 54 187 175 9645.7 93.0

UMD 13 63.5 58.1 0.8 46.2 20 71.3 64.6 1.6 90.7

CAS 60 0.1 0.1 0.1 0.007 0.007 0.007 57 0.1 0.1 0.1 0.007 0.007 0.007

Task 2.2 Hamming distance (~100 K) Approximate Edit distance (~100 K)

Time (s) Memory (KB) Communication (MB) Time (s) Memory (KB) Communication (MB)

VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3

Baseline 254 290 292 92.0 5595.0

UMD 604 1260 1252 63.4 2973.3 >20 h

UMD (BF)a 83 0.1 0.1 19.8 150.8 233 145 125 50.2 424.5

UCI 788 0.4 0.4 28.8 24.4 998 434 398 39.1 32.7

CASb 128 0.4 0.4 0.4 0.1 0.1 0.1

UV 553 0.3 0.3 156.5 9672.9

UND 5077 3044 3048 3048 4118.5 3361.7 3167.3

AI >20 h
aAn approximate algorithm (with about 0.8 % error) based on Bloom filters, which was not considered in the competition
bThe algorithm involves intensive computation on the third server, and thus was not considered in the competition
Winners are in boldface

Tang et al. BMC Medical Genomics  (2016) 9:63 Page 6 of 9



researchers who want to compare small regions across
a large number of genomes).

Discussion
The outcomes of the competition highlighted progress
made in cryptographic technologies: we can already pro-
tect important computations such as edit distance and
Hamming distance calculations on encrypted genomic
data and across organizations at a scale close to practical
use. This indicates that it is possible to move genomic data
analysis to the cloud, even when the cloud is not fully
trusted, while still maintaining sufficient protection of
patient privacy and scalability of the computation. The
findings further demonstrate that cryptographic techini-
ques can offer the biomedical communities powerful tools
to safeguard data while utilizing the computing power
provided by modern cloud computing platforms.
At the same time, we show that complicated analyses

(e.g., association tests) call for new technologies to
achieve efficient secure computation on cloud platforms.
Potential ways to move forward include the better design
of cryptographic primitives, which the security commu-
nity is aggressively pushing forward (e.g., the perform-
ance of full HME has been improved by several orders
of magnitude in the past few years), as well as tailoring
the primitives to the unique features of genomic data. A
notable example is a computation partition [29], which
offloads some computation to the local system of the
data owner to simplify the work that needs to be
performed in the public cloud.
Most importantly, the competition shows that the pro-

tection of genome privacy is truly an interdisciplinary
area: progress is being made on both security and
genomic fronts. In particular, secure computation of edit
distance had been studied in the security community
[27, 30], but state-of-the-art techniques remain insuffi-
cient for supporting the analysis on a scale practical for
biomedical research. Yet by leveraging characteristics of
the human genome, we found that an approximation of
the computation on human genomes is very effective,
which significantly simplifies computation and allows
the edit distance to be calculated securely and on a large
scale. We believe that similar efforts can be successful
for other genomic data analysis algorithms. More
importantly, these observations point to the need for
closer collaborations between biomedical and security
researchers and for fostering this emerging interdiscip-
linary research area.
Mounting risks to human genome privacy motivate the

development of efficient and scalable cryptographic
techniques, which should be customized for practical data
analysis applications. The 2015 CADPP workshop brought
together the security and biomedical informatics commu-
nities to join forces in closing the gaps, and proposing

novel and practical solutions. We learned the capacity and
limitation of state-of-the-art algorithms and discovered
that a careful tweaking of hard problems into approxima-
tions with simpler primitives can be an effective tool to
enable their use in practice. We plan to continue this
challenge series that addresses critical challenges in
human genome privacy protection.

Endnote
1http://bmcmedinformdecismak.biomedcentral.com/

articles/supplements/volume-15-supplement-5.
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