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Abstract
In this study, the Bitsadze-Samarskii type nonlocal boundary-value problem with
integral condition for an elliptic differential equation in a Hilbert space H with
self-adjoint positive definite operator A is considered. The second order of the
accuracy difference scheme for the approximate solutions of this nonlocal
boundary-value problem is presented. The well-posedness of this difference scheme
in Hölder spaces with a weight is proved. The theoretical statements for the solution
of this difference scheme are supported by the results of numerical example.
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1 Introduction
In  Bitsadze and Samarskii [] stated and studied a new problem in which a nonlocal
condition is related to the values of the solution on parts of the boundary and on an inte-
rior curve for a uniformly elliptic equation. Furthermore, in [–] the Bitsadze-Samarskii
type nonlocal boundary-value problems were investigated for the various differential and
difference equations of elliptic type. The role played by coercive inequalities in the study of
local boundary-value problems for elliptic differential equations is well known []. Meth-
ods of solutions of elliptic differential and difference equations have been studied exten-
sively by many researchers (see [–] and the references therein). In the present paper
we consider the Bitsadze-Samarskii type nonlocal boundary-value problem with integral
condition,{

– du(t)
dt +Au(t) = f (t),  < t < ,

u() = ϕ, u() =
∫ 
 ρ(λ)u(λ)dλ +ψ

()

for the differential equation of elliptic type in a Hilbert space H with the self-adjoint pos-
itive definite operator A with a closed domain D(A) ⊂H . Here, let f (t) be a given abstract
continuous function defined on [, ] with values inH , ϕ, and ψ are elements of D(A) and
ρ(t) is a scalar function. A function u(t) is called a solution of problem () if the following
conditions are satisfied:

i. u(t) is a twice continuously differentiable on the segment [, ].
ii. The element u(t) belongs to D(A) for all t ∈ [, ], and the function Au(t) is

continuous on the segment [, ].
iii. u(t) satisfies the equation and nonlocal boundary conditions ().
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The paper is organized as follows. In Section  the second order of the accuracy differ-
ence scheme for the approximate solution () is presented. The stability, the almost coer-
cive stability, and the coercive stability estimates for the solution of the difference scheme
for an approximate solution of the nonlocal boundary-value problem with integral condi-
tion for elliptic equations are obtained. Section  contains the applications of Section .
The final section is devoted to the numerical result. Theoretical statements for the solu-
tion of the second order of the accuracy difference scheme is supported by a numerical
experiment.

2 The second order of the accuracy difference scheme
Let us associate the nonlocal boundary-value problem () with the corresponding differ-
ence problem,

⎧⎪⎨⎪⎩
– 

τ
[uk+ – uk + uk–] +Auk = ϕk ,

ϕk = f (tk), tk = kτ , ≤ k ≤N – ,Nτ = ,
u = ϕ, uN =

∑N
j= ρ(tj –

τ
 )(

uj+uj–
 )τ +ψ .

()

We will study the problem () under the following assumption:

N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ < . ()

It is well known [] that for a self-adjoint positive definite operator A it follows that B =

 (τA +

√
A + τ A) is self-adjoint positive definite and R = (I + τB)–, which is defined

on the whole spaceH is a bounded operator. Here, I is the unit operator. Furthermore, we
have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖(I – RN )–‖H→H ≤M(δ),
‖Rk‖H→H ≤M(δ)( + δτ )–k ,
kτ‖BRk‖H→H ≤M(δ), k ≥ , δ > ,
‖Bβ (Rk+r – Rk)‖H→H ≤M(δ) (rτ )α

(kτ )α+β , ≤ k < k + r ≤N , ≤ α,β ≤ .

()

In this paper, positive constants, which can differ in time (hence they are not a subject of
precision considerations) will be indicated withM. On the other handM(α,β , . . .) is used
to focus on the fact that the constant depends only on α,β , . . . .

Lemma  The operator

I –
N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(RN–j – RN+j + RN–j+ – RN+j–)

has an inverse

Sτ =

(
I –

N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(RN–j – RN+j + RN–j+ – RN+j–))–
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and the following estimate is satisfied:

‖Sτ‖H→H ≤M(δ)τ , ()

where M does not depend on τ .

The proof of the estimate () is based on the estimate

〈
(I – L)u,u

〉 ≥ (
 –

N∑
j=

ρ

(
tj –

τ



)
τ

)
〈u,u〉. ()

Here

L =
N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(RN–j – RN+j + RN–j+ – RN+j–).

The estimate () follows from the spectral representation ofA and theCauchy inequality.

Theorem  For any ϕk ,  ≤ k ≤ N – , the solution of the problem () exists and the fol-
lowing formula holds:

uk =
(
I – RN)–{(Rk – RN–k)ϕ +

(
RN–k – RN+k)uN

–
(
RN–k – RN+k)(I + τB)(I + τB)–B–

N–∑
i=

(
RN––i – RN–+i)ϕiτ

}

+ (I + τB)(I + τB)–B–
N–∑
i=

(
R|k–i|– – Rk+i–)ϕiτ ()

for k = , . . . ,N – ,

uN = Sτ

( N∑
j=

ρ

(
tj –

τ



)
τ



[{(
I – RN)–(Rj – RN–j + Rj– – RN–j+)ϕ

–
(
RN–j – RN+j + RN–j+ – RN+j–)(I + τB)(I + τB)–

×
N–∑
i=

B–(RN––i – RN–+i)ϕiτ

}
+ (I + τB)(I + τB)–B–

×
N–∑
i=

(
R|j–i|– – Rj+i– + R|j––i|– – Rj+i–)ϕiτ

]
+ψ

)

for k =N .

Proof{
– 

τ
[uk+ – uk + uk–] +Auk = ϕk , ≤ k ≤N – ,Nτ = ,

u = ϕ,uN are given
()
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has a solution and the following formula holds []:

uk =
(
I – RN)–{(Rk – RN–k)ϕ +

(
RN–k – RN+k)uN

–
(
RN–k – RN+k)(I + τB)(I + τB)–B–

N–∑
i=

(
RN––i – RN–+i)ϕiτ

}

+ (I + τB)(I + τB)–B–
N–∑
i=

(
R|k–i|– – Rk+i–)ϕiτ . ()

Applying formula () and the nonlocal boundary condition

uN =
N∑
j=

ρ

(
tj –

τ



)(
uj + uj–



)
τ +ψ ,

we obtain

uN =

(
I –

N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(RN–j – RN+j + RN–j+ – RN+j–))–

×
( N∑

j=

ρ

(
tj –

τ



)
τ



[(
I – RN)–{(Rj – RN–j + Rj– – RN–j+)ϕ

–
(
RN–j – RN+j + RN–j+ – RN+j–)

× (I + τB)(I + τB)–B–
N–∑
i=

(
RN––i – RN–+i)ϕiτ

}
+ (I + τB)(I + τB)–B–

×
N–∑
i=

(
R|j–i|– – Rj+i– + R|j––i|– – Rj+i–)ϕiτ

]
+ψ

)
.

Since the operator

I –
N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(RN–j – RN+j + RN–j+ – RN+j–)

has an inverse Sτ , it follows that

uN = Sτ

( N∑
j=

ρ

(
tj –

τ



)
τ



[(
I – RN)–{(Rj – RN–j + Rj– – RN–j+)ϕ

–
(
RN–j – RN+j + RN–j+ – RN+j–)

× (I + τB)(I + τB)–B–
N–∑
i=

(
RN––i – RN–+i)ϕiτ

}
+ (I + τB)(I + τB)–B–

×
N–∑
i=

(
R|j–i|– – Rj+i– + R|j––i|– – Rj+i–)ϕiτ

]
+ψ

)
.

Theorem  is proved. �
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LetF ([, ]τ ,H) be the linear space of themesh functions ϕτ = {ϕk}N–
 with values in the

Hilbert space H . We denote by C([, ]τ ,H) and Cα
([, ]τ ,H),  < α < , Banach spaces

with the norms

∥∥ϕτ
∥∥
C([,]τ ,H) = max

≤k≤N–
‖ϕk‖H ,∥∥ϕτ

∥∥
Cα
([,]τ ,H) =

∥∥ϕτ
∥∥
C([,]τ ,H)

+ sup
≤k≤k+r≤N–

((N – k)τ )α((k + r)τ )α

(rτ )α
‖ϕk+r – ϕk‖H .

The nonlocal boundary-value problem () is said to be stable in F ([, ]τ ,H) if we have
the inequality

∥∥uτ
∥∥
F ([,]τ ,H) ≤M(δ)

[∥∥ϕτ
∥∥
F ([,]τ ,H) + ‖ϕ‖H + ‖ψ‖H

]
.

Theorem  The solutions of the difference scheme () under the assumption () satisfy the
stability estimate

∥∥uτ
∥∥
C([,]τ ,H) ≤M(δ)

[∥∥ϕτ
∥∥
C([,]τ ,H) + ‖ϕ‖H + ‖ψ‖H

]
. ()

Proof By [],

∥∥uτ
∥∥
C([,]τ ,H) ≤M(δ)

[∥∥ϕτ
∥∥
C([,]τ ,H) + ‖ϕ‖H + ‖uN‖H

]
()

is proved for the solution of difference scheme (). Then the proof of () is based on ()
and on the estimate

‖uN‖H ≤M(δ)
[∥∥ϕτ

∥∥
C([,]τ ,H) + ‖ϕ‖H + ‖ψ‖H

]
.

Using the formula () and the estimates (), (), we get

‖uN‖H ≤ ‖Sτ‖H→H

( N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
[∥∥(I – RN)–∥∥

H→H

{(∥∥Rj∥∥
H→H

+
∥∥RN–j∥∥

H→H +
∥∥Rj–∥∥

H→H +
∥∥RN–j+∥∥

H→H

)‖ϕ‖H +
(∥∥RN–j∥∥

H→H

+
∥∥RN+j∥∥

H→H +
∥∥RN–j+∥∥

H→H +
∥∥RN+j–∥∥

H→H

)∥∥(I + τB)(I + τB)–
∥∥
H→H

× ∥∥B–∥∥
H→H

N–∑
i=

τ
(∥∥RN–i–∥∥

H→H +
∥∥RN+i–∥∥

H→H

)‖ϕi‖H
}

+
∥∥(I + τB)(I + τB)–

∥∥
H→H

∥∥B–∥∥
H→H

×
( j–∑

i=

τ
∥∥Rj–i–∥∥

H→H‖ϕi‖H +
j–∑
i=

τ
∥∥Rj–i–∥∥

H→H‖ϕi‖H

+
N–∑
i=j

τ
∥∥Ri–j–∥∥

H→H‖ϕi‖H +
N–∑
i=j

τ
∥∥Ri–j–∥∥

H→H‖ϕi‖H
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+
N–∑
i=

τ
∥∥Rj+i–∥∥

H→H‖ϕi‖H +
N–∑
i=

τ
∥∥Rj+i–∥∥

H→H‖ϕi‖H
)]

+ ‖ψ‖H
)

≤ M(δ)
[∥∥ϕτ

∥∥
C([,]τ ,H) + ‖ϕ‖H + ‖ψ‖H

]
.

Theorem  is proved. �

Theorem  The solutions of the difference problem () in C([, ]τ ,H) under the assump-
tion () obey the almost coercive inequality

∥∥{τ–(uk+ – uk + uk–)
}N–


∥∥
C([,]τ ,H) +

∥∥{Auk}N ∥∥C([,]τ ,H)

≤M(δ)
[
min

{
ln


τ
,  +

∣∣ln‖B‖H→H
∣∣}∥∥ϕτ

∥∥
C([,]τ ,H) + ‖Aϕ‖H + ‖Aψ‖H

]
.

Proof By [],

∥∥{τ–(uk+ – uk + uk–)
}N–


∥∥
C([,]τ ,H) +

∥∥{Auk}N ∥∥C([,]τ ,H)

≤M(δ)
[
min

{
ln


τ
,  +

∣∣ln‖B‖H→H
∣∣}∥∥ϕτ

∥∥
C([,]τ ,H) + ‖Aϕ‖H + ‖AuN‖H

]

is proved for the solution of the boundary-value problem (). Using the estimates (), ()
and the formula (), we obtain

‖AuN‖H

≤M(δ)
(
min

{
ln


τ
,  +

∣∣ln‖B‖H→H
∣∣}∥∥ϕτ

∥∥
C([,]τ ,H) + ‖Aϕ‖H + ‖Aψ‖H

)
()

for the solution of difference scheme (). Applying formula () and A = BR, we get

AuN = J + J,

where

J = Sτ

( N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(Rj – RN–j + Rj– – RN–j+)Aϕ +Aψ

)
, ()

J = Sτ

( N∑
j=

ρ

(
tj –

τ



)
τ



[(
I – RN)–{–(RN–j – RN+j + RN–j+ – RN+j–)(I + τB)

× (I + τB)–
N–∑
i=

B
(
RN–i – RN+i)ϕiτ

}
+ (I + τB)(I + τB)–

×
j–∑
i=

B
(
Rj–i – Rj+i + Rj–i– – Rj+i–)ϕiτ + (I + τB)(I + τB)–

×
(N–∑

i=j

B
(
Ri–j – Rj+i + Ri–j– – Rj+i–)ϕiτ

)])
. ()

http://www.boundaryvalueproblems.com/content/2014/1/14
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To this end it suffices to show that

‖J‖H ≤M(δ)
[‖Aϕ‖H + ‖Aψ‖H

]
()

and

‖J‖H ≤M(δ)min

{
ln


τ
,  +

∣∣ln‖B‖H→H
∣∣}∥∥ϕτ

∥∥
C([,]τ ,H). ()

The estimate () follows from formula () and the estimates (), (). Using formula ()
and the estimates (), (), we obtain

‖J‖H ≤ ‖Sτ‖H→H

( N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
×

[∥∥(I – RN)–∥∥
H→H

{(∥∥RN–j∥∥
H→H +

∥∥RN+j∥∥
H→H

+
∥∥RN–j+∥∥

H→H +
∥∥RN+j–∥∥

H→H

)∥∥(I + τB)(I + τB)–
∥∥
H→H

×
N–∑
i=

(∥∥(I – R)RN–i–∥∥
H→H +

∥∥(I – R)RN+i–∥∥
H→H

)‖ϕi‖H
}

+
∥∥(I + τB)(I + τB)–

∥∥
H→H

×
( j∑

i=

∥∥(I – R)Rj–i–∥∥
H→H‖ϕi‖H +

j∑
i=

∥∥(I – R)Ri+j–∥∥
H→H‖ϕi‖H

+
j∑

i=

∥∥(I – R)Rj–i–∥∥
H→H‖ϕi‖H +

j∑
i=

∥∥(I – R)Ri+j–∥∥
H→H‖ϕi‖H

)
+
∥∥(I + τB)(I + τB)–

∥∥
H→H

×
(N–∑
i=j+

∥∥(I – R)Ri–j–∥∥
H→H‖ϕi‖H +

N–∑
i=j+

∥∥(I – R)Ri+j–∥∥
H→H‖ϕi‖H

+
N–∑
i=j+

∥∥(I – R)Ri–j–∥∥
H→H‖ϕi‖H +

N–∑
i=j+

∥∥(I – R)Ri+j–∥∥
H→H‖ϕi‖H

)])

≤ M(δ)min

{
ln


τ
,  +

∣∣ln‖B‖H→H
∣∣}∥∥ϕτ

∥∥
C([,]τ ,H).

From the last estimate and the estimate () follows the estimate (). Theorem  is
proved. �

Theorem  The difference problem () is well posed in the Hölder spaces Cα
([, ]τ ,H)

under the assumption () and the following coercivity inequality holds:

∥∥{τ–(uk+ – uk + uk–)
}N–


∥∥
Cα
([,]τ ,H) +

∥∥{Auk}N ∥∥Cα
([,]τ ,H)

≤M(δ)
[


α( – α)

∥∥ϕτ
∥∥
Cα
([,]τ ,H) + ‖Aϕ‖H + ‖Aψ‖H

]
. ()

http://www.boundaryvalueproblems.com/content/2014/1/14
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Proof By [],

∥∥{τ–(uk+ – uk + uk–)
}N–


∥∥
Cα
([,]τ ,H) +

∥∥{Auk}N–


∥∥
Cα
([,]τ ,H)

≤M(δ)


α( – α)
∥∥ϕτ

∥∥
Cα
([,]τ ,H) +M(δ)

[‖Aϕ‖H + ‖AuN‖H
]

()

is proved for the solution of difference scheme (). Then the proof of () is based on ()
and on the estimate

‖AuN‖H ≤M(δ)


α( – α)
∥∥ϕτ

∥∥
Cα
([,]τ ,H) +M(δ)

[‖Aϕ‖H + ‖Aψ‖H
]
.

Applying the triangle inequality, formula () and the estimate (), we get

‖AuN‖H ≤ ‖J‖H + ‖J‖H ≤ ‖J‖H +M(δ)
[‖Aϕ‖H + ‖Aψ‖H

]
.

To this end it suffices to show that

‖J‖H ≤M(δ)


α( – α)
∥∥ϕτ

∥∥
Cα
([,]τ ,H). ()

Applying formula (), we get

J = Sτ

N∑
j=

ρ

(
tj –

τ



)
τ



× (
I – RN)–{–(RN–j – RN+j + RN–j+ – RN+j–)τ–(I – R)

×
j–∑
i=

τ (RN–i – RN+i)(I – R)–(ϕi – ϕj)

+
(
–
(
RN–j – RN+j + RN–j+ – RN+j–))

× τ–(I – R)
N–∑
i=j+

τ (RN–i – RN+i)(I – R)–(ϕi – ϕj)

+
(
I – RN)τ–(I – R)

j–∑
i=

τ (Rj–i – Rj+i + Rj–i– – Rj+i–)
× (

I – R)–(ϕi – ϕj) +
(
I – RN)τ–(I – R)

×
N–∑
i=j+

τ (Ri–j – Rj+i + Rj–i– – Rj+i–)(I – R)–(ϕi – ϕj)

–
(
RN–j – RN+j + RN–j+ – RN+j–)τ–(I – R)

×
j–∑
i=

τ (RN–i – RN+i)(I – R)–ϕj – τ–(I – R)

× (
RN–j – RN+j + RN–j+ – RN+j–) N–∑

i=j+

τ (RN–i – RN+i)(I – R)–ϕj

http://www.boundaryvalueproblems.com/content/2014/1/14
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+
(
I – RN)τ–(I – R)

j–∑
i=

τ (Rj–i – Rj+i + Rj–i– – Rj+i–)(I – R)–ϕj

+
(
I – RN)τ–(I – R)

N–∑
i=j+

τ (Ri–j – Rj+i + Rj–i– – Rj+i–)(I – R)–ϕj

}

=
∑
z=

Jz, ()

where

J = Sτ

N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)–

× (
(I + R)

(
RN–j– + RN+j– – RN+j – RN–j + Rj – Rj–) – RN+j–)ϕj,

J = Sτ

N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)R–(I – RN–j+)

×
j–∑
i=

Rj–i(I – Ri)(I + R)–(ϕi – ϕj) = J, + J, ,

J, = Sτ

[N ]∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)R–(I – RN–j+)

×
j–∑
i=

Rj–i(I – Ri)(I + R)–(ϕi – ϕj),

J, = Sτ

N∑
j=[N ]+

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)R–(I – RN–j+)

×
j–∑
i=

Rj–i(I – Ri)(I + R)–(ϕi – ϕj),

J = Sτ

N∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)

(
I – Rj–)

×
N–∑
i=j+

Ri–j(I – RN–i)(I + R)–(ϕi – ϕj) = J, + J, ,

J, = Sτ

[N ]∑
j=

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)

(
I – Rj–)

×
N–∑
i=j+

Ri–j(I – RN–i)(I + R)–(ϕi – ϕj),

J, = Sτ

N∑
j=[N ]+

ρ

(
tj –

τ



)
τ


(
I – RN)–(I – R)(I + R)

(
I – Rj–)

×
N–∑
i=j+

Ri–j(I – RN–i)(I + R)–(ϕi – ϕj).
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Second, let us estimate Jm for anym = , . . . ,  separately.We start with J . Using estimates
(), () and the definition of the norm of the space Cα

([, ]τ ,H), we get

∥∥J∥∥H ≤ ‖Sτ‖H→H

N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥(I – RN)–∥∥
H→H

× ‖I – R‖H→H
∥∥(I + R)–

∥∥
H→H

(‖I + R‖H→H
(∥∥RN–j–∥∥

H→H

+
∥∥RN+j–∥∥

H→H +
∥∥RN+j∥∥

H→H +
∥∥RN–j∥∥

H→H +
∥∥Rj∥∥

H→H +
∥∥Rj–∥∥

H→H

)
+
∥∥RN+j–∥∥

H→H

)‖ϕj‖H

≤ M(δ)
N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ max
≤j≤N

‖ϕj‖H

≤ M(δ)
N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

From () it follows that∥∥J∥∥H ≤M(δ)
∥∥ϕτ

∥∥
Cα
([,]τ ,H).

Now, let us estimate J, . Using estimates (), () and the definition of the norm of the
space Cα

([, ]τ ,H), we obtain

∥∥J,
∥∥
H ≤ ‖Sτ‖H→H

[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥(I – RN)–∥∥
H→H

×
j–∑
i=

∥∥Rj–i(I – RN–j+)(I – R)
∥∥
H→H

∥∥I – Ri∥∥
H→H

∥∥R–∥∥
H→H‖ϕi – ϕj‖H

≤ M(δ)
[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
j–∑
i=

τ ((j – i)τ )α

(j – i)τ ((N – i)τ )α(jτ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H)

≤ M(δ)
[N ]∑
j=

|ρ(tj – τ
 )|τ

(jτ )α((N – j)τ )α

j–∑
i=

τ

((j – i)τ )–α

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

The sum

j–∑
i=

τ

((j – i)τ )–α

is the lower Darboux integral sum for the integral∫ jτ



ds
(jτ – s)–α

.

It follows that

∥∥J,
∥∥
H ≤M(δ)

[N ]∑
j=

|ρ(tj – τ
 )|τ

α((N – j)τ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H).

http://www.boundaryvalueproblems.com/content/2014/1/14
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By the lower Darboux integral sum for the integral it concludes that

∥∥J,
∥∥
H ≤M(δ)

α–

α( – α)

[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

For J, , applying (), () and the definition of the norm of the space Cα
([, ]τ ,H), we get

∥∥J,
∥∥
H ≤ ‖Sτ‖H→H

N∑
j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥(I – RN)–∥∥
H→H

×
j–∑
i=

∥∥Rj–i(I – RN–j+)(I – R)
∥∥
H→H

∥∥I – Ri∥∥
H→H

∥∥R–∥∥
H→H‖ϕi – ϕj‖H

≤ M(δ)
N∑

j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
×

j–∑
i=

(τ (N – j + ))α

((j – i)τ )–α((N – j – i + )τ )α(jτ )α((N – i)τ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H)

≤ M(δ)
N∑

j=[N ]+

|ρ(tj – τ
 )|τα((N – j + )τ )α

((N – j)τ )α(jτ )α

×
j–∑
i=

τ

((j – i)τ )–α((N – j – i +N + )τ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H).

The sum

j–∑
i=

τ

((j – i)τ )–α((N – j – i +N + )τ )α

is the lower Darboux integral sum for the integral

∫ jτ



ds
(jτ – s)–α(Nτ – jτ – s + τ +Nτ )α

.

Since

∫ jτ



ds
(jτ – s)–α(Nτ – jτ – s +Nτ + τ )α

≤ 
(Nτ – jτ + τ )α

∫ jτ



ds
(jτ – s)–α

≤ M
α(jτ )α

,

it follows that

∥∥J,
∥∥
H ≤M(δ)

N∑
j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ α

(jτ )α(Nτ – jτ + τ )αα(jτ )–α

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

http://www.boundaryvalueproblems.com/content/2014/1/14
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By the lower Darboux integral sum for the integral it follows that

∥∥J,
∥∥
H ≤ M(δ)α–

α( – α)

N∑
j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

Combining J, and J, , we get

∥∥J∥∥H ≤ M(δ)
α( – α)

N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

From () it follows that

∥∥J∥∥H ≤ M(δ)
α( – α)

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

Next, let us estimate J, . Using the estimates (), (), and the definition of the norm space
Cα
([, ]τ ,H), we obtain

∥∥J,
∥∥
H ≤ ‖Sτ‖H→H

[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥(I – RN)–∥∥
H→H

∥∥I – Rj–∥∥
H→H

×
N–∑
i=j+

∥∥Ri–j(I – RN–i)(I – R)
∥∥
H→H‖ϕi – ϕj‖H

≤ M(δ)
[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
×

N–∑
i=j+

α((i – j)τ )α(Nτ – iτ )α

((i – j)τ )((N – j)τ )α(iτ )α((N – j – i)τ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H)

≤ M(δ)
[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ (Nτ – jτ )α

(Nτ – jτ )α(jτ )α

×
N–∑
i=j+

τ

((i – j)τ )–α((N – j – i +N)τ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H).

The sum

N–∑
i=j+

τ

((i – j)τ )–α

is the lower Darboux integral sum for the integral

∫ 

jτ

ds
(s – jτ )–α

.

http://www.boundaryvalueproblems.com/content/2014/1/14
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Since∫ 

jτ

ds
(s – jτ )–α(Nτ – jτ – s)α

≤ 
(Nτ – jτ )α

∫ 

jτ

ds
(s – jτ )–α

≤ (Nτ – jτ )α

α(Nτ – jτ )α
,

it follows that

∥∥J,
∥∥
H ≤M(δ)

[N ]∑
j=

|ρ(tj – τ
 )|τ

(jτ )αα

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

By the lower Darboux integral sum for the integral it follows that

∥∥J,
∥∥
H ≤ M(δ)α–

α( – α)

[N ]∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

Finally, let us estimate J, . Using the estimates (), (), and the definition of the norm
space Cα

([, ]τ ,H), we get

∥∥J,
∥∥
H ≤ ‖Sτ‖H→H

N∑
j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥(I – RN)–∥∥
H→H

∥∥I – Rj–∥∥
H→H

×
N–∑
i=j+

∥∥Ri–j(I – RN–i)(I – R)
∥∥
H→H‖ϕi – ϕj‖H

≤ M(δ)
N∑

j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ
×

N–∑
i=j+

τ ((i – j)τ )α

((i – j)τ )((N – i)τ )α(iτ )α
∥∥ϕτ

∥∥
Cα
([,]τ ,H)

≤ M(δ)
N∑

j=[N ]+

|ρ(tj – τ
 )|τ

((N – j)τ )α(jτ )α

N–∑
i=j+

τ

((i – j)τ )–α

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

The sum

N–∑
i=j+

τ

((i – j)τ )–α

is the lower Darboux integral sum for the integral

∫ 

jτ

ds
(s – jτ )–α

.

Thus, we show that

∥∥J,
∥∥
H ≤M(δ)

N∑
j=[N ]+

|ρ(tj – τ
 )|τ

(jτ )αα

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

http://www.boundaryvalueproblems.com/content/2014/1/14
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By the lower Darboux integral sum for the integral it follows that

∥∥J,
∥∥
H ≤M(δ)

α–

α( – α)

N∑
j=[N ]+

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

Combining J, and J, , we get

∥∥J∥∥H ≤M(δ)
(

α–

α( – α)
+

α–

α( – α)

) N∑
j=

∣∣∣∣ρ(tj – τ



)∣∣∣∣τ∥∥ϕτ
∥∥
Cα
([,]τ ,H).

From () it follows that

∥∥J∥∥H ≤ M(δ)
α( – α)

∥∥ϕτ
∥∥
Cα
([,]τ ,H).

Combining estimates for Jm , m = , . . . ,  we get the estimate (). Theorem  is proved.
�

3 Applications
Now, the application of Theorems - will be given. First, we consider the mixed
boundary-value problem for elliptic equation

⎧⎪⎨⎪⎩
–utt – (a(x)ux)x + δu = f (t,x),  < t < ,  < x < ,
u(t, ) = u(t, ), ux(t, ) = ux(t, ),  ≤ t ≤ ,
u(,x) = ϕ(x), u(,x) =

∫ 
 ρ(λ)u(λ,x)dλ +ψ(x),  ≤ x ≤ ,

()

where a(x), ϕ(x), ψ(x) and f (t,x) are given sufficiently smooth functions and a(x)≥ a > ,
a() = a(), δ = const > . The discretization of problem () is carried out in two steps. In
the first step, let us define the grid space

[, ]h = {x : xn = nh,  ≤ n≤M,Mh = }.

We introduce the Hilbert space Lh = L([, ]h) of the grid functions ϕh(x) = {ϕn}M–
n= de-

fined on [, ]h, equipped with the norms

∥∥ϕh∥∥
Lh

=
( ∑
x∈[,]h

∣∣ϕh(x)
∣∣h) 


,

∥∥ϕh∥∥
W

h
=
∥∥ϕh∥∥

Lh
+
( ∑
x∈[,]h

∣∣(ϕh(x)
)
x

∣∣h)/

+
( ∑
x∈[,]h

∣∣(ϕh(x)
)
x,x

∣∣h)/

.

To the differential operator A generated by the problem () we assign the difference op-
erator Ax

h by the formula

Ax
hϕ

h(x) =
{
–
(
a(x)ϕx

)
x,n + δϕn

}M–
 , ()

http://www.boundaryvalueproblems.com/content/2014/1/14
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acting in the space of the grid functions ϕh(x) = {ϕn}M–
 satisfying the conditions ϕ = ϕM ,

ϕ – ϕ = ϕM – ϕM–. It is know that Ax
h is a self-adjoint positive definite operator in Lh.

With the help of Ax
h , we arrive at the nonlocal boundary-value problem{

– duh(t,x)
dt +Ax

huh(t,x) = f h(t,x),  < t < ,x ∈ [, ]h,
uh(,x) = ϕh(x); uh(,x) =

∫ 
 ρ(t)uh(t,x)dt +ψh(x), x ∈ [, ]h

()

for an infinite system of ordinary differential equations. Therefore, in the second step,
equation () is replaced by the difference scheme (), and we get the following difference
scheme:⎧⎪⎪⎨⎪⎪⎩

– uhk+(x)–u
h
k (x)+u

h
k–(x)

τ
+Ax

hu
h
k(x) = ϕh

k (x),
ϕh
k (x) = f h(tk ,x), tk = kτ , ≤ k ≤N – ,Nτ = ,x ∈ [, ]h,

uh(x) = ϕh(x); uhN (x) =
∑N

j= ρ(tj –
τ
 )τ (

uhj (x)+u
h
j–(x)

 ) +ψh(x), x ∈ [, ]h

()

for the numerical solution of ().

Theorem Let τ and h be sufficiently small positive numbers.Then under the assumption
(), the solution of the difference scheme () satisfies the following stability and almost
coercivity estimates:

max
≤k≤N–

∥∥uhk∥∥Lh ≤M(δ)
[

max
≤k≤N–

∥∥ϕh
k
∥∥
Lh

+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

Lh

]
,

max
≤k≤N–

∥∥τ–(uhk+ – uhk + uhk–
)∥∥

Lh
+ max

≤k≤N–

∥∥(uhk)∥∥
W
h

≤M(δ)
[
ln


τ + |h| max

≤k≤N–

∥∥ϕh
k
∥∥
Lh

+
∥∥ϕh∥∥

W
h
+
∥∥ψh∥∥

W
h

]
.

The proof of Theorem  is based on Theorems  and , on the estimate

min

{
ln


τ
,  +

∣∣ln∥∥Bx
h
∥∥
Lh→Lh

∣∣} ≤M ln


τ + |h| , ()

and on the symmetry properties of the difference operator Ax
h defined by the formula ()

in Lh.

Theorem  Let τ and |h| be sufficiently small positive numbers. Then under the assump-
tion (), the solution of the difference scheme () satisfies the following coercivity estimate:

∥∥{τ–(uhk+ – uhk + uhk–
)}N–



∥∥
Cα
([,]τ ,Lh)

+
∥∥{uhk}N–



∥∥
Cα
([,]τ ,W


h)

≤M(δ)
[∥∥ϕh∥∥

W
h
+
∥∥ψh∥∥

W
h
+


α( – α)

∥∥{ϕh
k
}N–


∥∥
Cα
([,]τ ,Lh)

]
.

The proof of Theorem  is based on Theorem  and the symmetry properties of the
difference operator Ax

h defined by formula ().
Second, let 
 be the unit open cube in R

n(x = (x, . . . ,xn) :  < xk < ,  ≤ k ≤ n)
with boundary S, 
 = 
 ∪ S. In [, ] × 
, the Dirichlet-Bitsadze-Samarskii type mixed
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Ashyralyev and Ozturk Boundary Value Problems 2014, 2014:14 Page 16 of 19
http://www.boundaryvalueproblems.com/content/2014/1/14

boundary-value problem for the multidimensional elliptic equation⎧⎪⎨⎪⎩
–utt –

∑n
r=(ar(x)uxr )xr = f (t,x),  < t < ,x = (x, . . . ,xn) ∈ 
,

u(,x) = ϕ(x), u(,x) =
∫ 
 ρ(λ)u(λ,x)dλ +ψ(x), x ∈ 
,

u(t,x)|x∈S = , x ∈ 


()

is considered. We will study the problem () under the assumption (). Here, ar(x) (x ∈

), ψ(x), ϕ(x) (x ∈ 
) and f (t,x) (t ∈ (, ), x ∈ 
) are smooth functions and ar(x)≥ a > .
The discretization of problem () is carried out in two steps. In the first step let us define
the grid sets


h =
{
x = xm = (hm, . . . ,hmmm),m = (m, . . . ,mm),  ≤mr ≤Nr ,

hrNr = , r = , . . . ,m
}
, 
h = 
̃h ∩ 
, Sh = 
̃h ∩ S.

We introduce the Hilbert space Lh = L(
̃h) of the grid functions ϕh(x) = {ϕ(hm, . . . ,
hmmm)} defined on 
̃h, equipped with the norms

∥∥ϕh∥∥
Lh

=
(∑
x∈
h

∣∣ϕh(x)
∣∣h · · · hm

)/

,

∥∥ϕh∥∥
W

h
=
∥∥ϕh∥∥

Lh
+

(∑
x∈
̃h

m∑
r=

∣∣(ϕh(x)
)
xr

∣∣h · · ·hm)/

+

(∑
x∈
̃h

m∑
r=

∣∣(ϕh(x)
)
xrxr ,mr

∣∣h · · ·hm
)/

.

To the differential operator A generated by the problem (), we assign the difference
operator Ax

h by the formula

Ax
hu

h(x) = –
m∑
r=

(
ar(x)uhxr

)
xr ,jr

, ()

acting in the space of the grid functions uh(x), satisfying the conditions uh(x) =  for all
x ∈ Sh. It is known that Ax

h is a self-adjoint positive definite operator in Lh. With the help
of Ax

h, we arrive at the nonlocal boundary-value problem for an infinite system of ordinary
differential equations{

– duh(t,x)
dt +Ax

huh(t,x) = f h(t,x),  < t < ,x ∈ 
̃h,
uh(,x) = ϕh(x); uh(,x) =

∫ 
 ρ(t)uh(t,x)dt +ψh(x), x ∈ 
̃h.

()

In the second step, () is replaced by the difference scheme (), and we get the following
difference scheme:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

– uhk+(x)–u
h
k (x)+u

h
k–(x)

τ
+Ax

hu
h
k(x) = ϕh

k (x),
ϕh
k (x) = f h(tk ,x),x ∈ 
h, tk = kτ , ≤ k ≤N – ,Nτ = ,

uh(x) = ϕh(x), x ∈ 
̃h,

uhN (x) =
∑N

j= ρ(tj –
τ
 )τ (

uhj (x)+u
h
j–(x)

 ) +ψh(x), x ∈ 
̃h

()

for the numerical solution of ().
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Theorem  Let τ and |h| =
√
h + · · · + hn be sufficiently small positive numbers. Then

under the assumption () the solution of the difference scheme () satisfies the following
stability estimates:

max
≤k≤N–

∥∥uhk∥∥Lh ≤M(δ)
[

max
≤k≤N–

∥∥ϕh
k
∥∥
Lh

+
∥∥ψh∥∥

Lh
+
∥∥ϕh∥∥

Lh

]
.

The proof of Theorem  is based on Theorem  and the symmetry properties of the
difference operator Ax

h defined by () in Lh.

Theorem  Let τ and |h| be sufficiently small positive numbers. Then under the assump-
tion () the solution of the difference scheme () satisfies the following almost coercivity
estimates:

max
≤k≤N–

∥∥τ–(uhk+ – uhk + uhk–
)∥∥

Lh
+ max

≤k≤N–

∥∥uhk∥∥W
h

≤M(δ)
[
ln


τ + |h| max

≤k≤N–

∥∥ϕh
k
∥∥
Lh

+
∥∥ϕh∥∥

W
h
+
∥∥ψh∥∥

W
h

]
.

The proof of Theorem  is based on Theorem , on the estimate (), on the symmetry
properties of the difference operator Ax

h defined by () in Lh, and on the following theo-
rem on the coercivity inequality for the solution of the elliptic difference problem in Lh.

Theorem  For the solutions of the elliptic difference problem

Ax
hu

h(x) = ωh(x), x ∈ 
h, uh(x) = , x ∈ Sh

the following coercivity inequality holds []:∥∥uh∥∥W
h

≤M(δ)
∥∥ωh∥∥

Lh
.

Theorem  Let τ and |h| be sufficiently small positive numbers. Then under the assump-
tion () the solution of the difference scheme () satisfies the following coercivity stability
estimate:∥∥{τ–(uhk+ – uhk + uhk–

)}N–


∥∥
Cα
([,]τ ,Lh)

+
∥∥{uhk}N–



∥∥
Cα
([,]τ ,W


h)

≤M(δ)
[∥∥ϕh∥∥

W
h
+
∥∥ψh∥∥

W
h
+


α( – α)

∥∥{ϕh
k
}N–


∥∥
Cα
([,]τ Lh)

]
.

The proof of Theorem  is based on Theorem , on the symmetry properties of the
difference operator Ax

h defined by the formula (), and on Theorem  on the coercivity
inequality for the solution of the elliptic difference equation in Lh.

4 Numerical results
Weconsider the Bitsadze -Samarskii type nonlocal boundary problem for the elliptic equa-
tion ⎧⎪⎪⎪⎨⎪⎪⎪⎩

– ∂u(t,x)
∂t – ∂u(t,x)

∂x + u = π exp(–t) sin(πx),
 < t < ,  < x < , u(,x) = sin(πx),

u(,x) =
∫ 
 e

–λu(λ,x)dλ + (exp(–) + 
 exp(–) –


 ) sin(πx),  < x < ,

u(t, ) = u(t, ) = ,  < t < .

()
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Table 1 The errors for first- and second-order difference scheme

N =M = 20 N =M = 40 N =M = 80

First-order difference scheme 0.173 0.0087 0.0044
Second-order difference scheme 6.245e–004 1.562e–004 3.906e–005

The exact solution of this problem is

u(t,x) = exp(–t) sin(πx).

In the present part for the approximate solutions of the Bitsadze-Samarskii type nonlo-
cal boundary-value problem (), we will use the first and second orders of the accuracy
difference schemes with grid intervals τ = 

N , h = 
M for t and x, respectively. For the ap-

proximate solution of the nonlocal boundary Bitsadze-Samarskii type problem (), we
consider the set [, ]τ × [, ]h of a family of grid points depending on the small parame-
ters τ and h,

[, ]τ × [, ]h =
{
(tk ,xn) : tk = kτ , ≤ k ≤N – ,Nτ = ,

xn = nh,  ≤ n≤M – ,Mh = 
}
.

Applying the first order of the accuracy difference scheme from [] and the second order
of the accuracy difference scheme () for the approximate solutions of the problem, we
have the second-order difference equations with respect to n with matrix coefficients. To
solve these difference equations, we have applied the procedure of a modified Gauss elim-
ination method for the difference equations with respect to n with matrix coefficients. To
obtain the solution of (), we use MATLAB programming. The errors are computed by

EN
M = max

≤k≤N–

(M–∑
n=

∣∣u(tk ,xn) – ukn
∣∣h) 



of numerical solutions for different values of M and N , where u(tk ,xn) represents the ex-
act solution and ukn represents the numerical solution at (tk ,xn). The results are shown in
Table , respectively.

5 Conclusion
In this paper, the second order of the accuracy difference scheme for the approximate so-
lution of the Bitsadze-Samarskii type nonlocal boundary-value problem with the integral
condition for elliptic equations is presented. Theorems on the stability estimates, almost
coercive stability estimates, and coercive stability estimates for the solution of difference
scheme for elliptic equations are proved. The theoretical statements for the solution of
this difference scheme are supported by the result of a numerical example. As can be seen
from Table , the second order of the accuracy difference scheme is more accurate than
the first order of the accuracy difference scheme.
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