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Abstract
In this paper, we study the global and blow-up solutions of the following nonlinear
parabolic problems with a gradient term under Robin boundary conditions:

⎧⎪⎨
⎪⎩
(b(u))t =∇ · (g(u)∇u) + f (x,u, |∇u|2, t) in D× (0, T ),
∂u
∂n + γ u = 0 on ∂D× (0, T ),

u(x, 0) = u0(x) > 0 in D,

where D ⊂R
N (N ≥ 2) is a bounded domain with smooth boundary ∂D. By

constructing auxiliary functions and using maximum principles, the sufficient
conditions for the existence of a global solution, an upper estimate of the global
solution, the sufficient conditions for the existence of a blow-up solution, an upper
bound for ‘blow-up time’, and an upper estimate of ‘blow-up rate’ are specified under
some appropriate assumptions on the functions f , g, b and initial value u0.
MSC: 35K55; 35B05; 35K57
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1 Introduction
In this paper, we study the global and blow-up solutions of the following nonlinear
parabolic problems with a gradient term under Robin boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩
(b(u))t =∇ · (g(u)∇u) + f (x,u,q, t) in D× (,T),
∂u
∂n + γu =  on ∂D× (,T),

u(x, ) = u(x) >  in D,

(.)

where q := |∇u|, D ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂D, ∂/∂n

represents the outward normal derivative on ∂D, γ is a positive constant, u is the initial
value,T is themaximal existence time of u, andD is the closure ofD. SetR+ := (,+∞).We
assume, throughout the paper, that b(s) is a C(R+) function, b′(s) >  for any s ∈ R

+, g(s)
is a positive C(R+) function, f (x, s,d, t) is a nonnegative C(D×R

+ ×R+ ×R
+) function,

and u(x) is a positive C(D) function. Under the above assumptions, the classical theory
[] of parabolic equation assures that there exists a unique classical solution u(x, t) with
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some T >  for problem (.) and the solution is positive over D × [,T). Moreover, the
regularity theorem [] implies u(x, t) ∈ C(D× (,T))∩C(D× [,T)).
Many papers have studied the global and blow-up solutions of parabolic problemswith a

gradient term (see, for instance, [–]). Some authors have discussed the global and blow-
up solutions of parabolic problems under Robin boundary conditions and have got a lot
of meaningful results (see [–] and the references cited therein). Some special cases of
problem (.) have been treated already. Zhang [] dealt with the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =∇ · (g(u)∇u) + f (u) in D× (,T),
∂u
∂n + γu =  on ∂D× (,T),

u(x, ) = u(x) >  in D,

where D ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂D. By constructing

auxiliary functions and usingmaximumprinciples, the sufficient conditions characterized
by functions f , g and u were given for the existence of a blow-up solution. Zhang []
investigated the following problem:

⎧⎪⎪⎨
⎪⎪⎩
(b(u))t =�u + f (u) in D× (,T),
∂u
∂n + γu =  on ∂D× (,T),

u(x, ) = u(x) >  in D,

where D ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂D. By constructing

some auxiliary functions and using maximum principles, the sufficient conditions were
obtained there for the existence of global and blow-up solutions. Meanwhile, the upper
estimate of a global solution, the upper bound of ‘blow-up time’ and the upper estimate
of ‘blow-up rate’ were also given. Ding [] considered the following problem:

⎧⎪⎪⎨
⎪⎪⎩
(b(u))t =∇ · (g(u)∇u) + f (u) in D× (,T),
∂u
∂n + γu =  on ∂D× (,T),

u(x, ) = u(x) >  in D,

where D ⊂ R
N (N ≥ ) is a bounded domain with smooth boundary ∂D. By constructing

some appropriate auxiliary functions and using a first-order differential inequality tech-
nique, the sufficient conditions were obtained for the existence of global and blow-up so-
lutions. For the blow-up solution, an upper and a lower bound on blow-up time were also
given.
In this paper, we study problem (.). Since the function f (x,u,q, t) contains a gradient

term q = |∇u|, it seems that the methods of [–] are not applicable for problem (.).
In this paper, by constructing completely different auxiliary functions with those in [–
] and technically using maximum principles, we obtain some existence theorems of a
global solution, an upper estimate of the global solution, the existence theorems of a blow-
up solution, an upper bound of ‘blow-up time’, and an upper estimates of ‘blow-up rate’.
Our results extend and supplement those obtained [–].
We proceed as follows. In Section  we study the global solution of (.). Section  is

devoted to the blow-up solution of (.). A few examples are presented in Section  to
illustrate the applications of the abstract results.
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2 Global solution
The main result for the global solution is the following theorem.

Theorem . Let u be a solution of problem (.). Assume that the following conditions
(i)-(iv) are satisfied:

(i) for any s ∈R
+,

(
sb′(s)

)′ ≥ , sb′(s) –
(
sb′(s)

)′ ≤ ,
(
g(s)
b′(s)

)′
≤ ,

[


g(s)

(
g(s)
b′(s)

)′
+


b′(s)

]′
+

g

(
g(s)
b′(s)

)′
+


b′(s)

≤ ;
(.)

(ii) for any (x, s,d, t) ∈ D×R
+ ×R+ ×R

+,

ft(x, s,d, t)≤ , fd(x, s,d, t)
[(


b′(s)

)′
+


b′(s)

]
≤ ,

(
f (x, s,d, t)b′(s)

g(s)

)
s
–
f (x, s,d, t)b′(s)

g(s)
≤ ;

(.)

(iii)

∫ +∞

m

b′(s)
es

ds = +∞, m :=min
D

u(x); (.)

(iv)

α :=max
D

∇ · (g(u)∇u) + f (x,u,q, )
eu

> , q := |∇u|. (.)

Then the solution u to problem (.)must be a global solution and

u(x, t)≤H–(αt +H
(
u(x, t)

))
, (x, t) ∈ D×R+, (.)

where

H(z) :=
∫ z

m

b′(s)
es

ds, z ≥m, (.)

and H– is the inverse function of H .

Proof Consider the auxiliary function

P(x, t) := b′(u)ut – αeu. (.)

Now we have

∇P = b′′ut∇u + b′∇ut – αeu∇u, (.)

�P = b′′′ut|∇u| + b′′∇u · ∇ut + b′′ut�u + b′�ut – αeu|∇u| – αeu�u, (.)

http://www.boundaryvalueproblems.com/content/2013/1/237
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and

Pt = b′′(ut) + b′(ut)t – αeuut

= b′′(ut) + b′
(
g
b′ �u +

g ′

b′ |∇u| + f
b′

)
t
– αeuut

= b′′(ut) +
(
g ′ –

b′′g
b′

)
ut�u + g�ut +

(
g ′′ –

b′′g ′

b′

)
ut|∇u|

+
(
g ′ + fq

)∇u · ∇ut +
(
fu –

b′′f
b′ – αeu

)
ut + ft . (.)

It follows from (.) and (.) that

g
b′ �P – Pt =

(
b′′′g
b′ +

b′′g ′

b′ – g ′′
)
ut|∇u| +

(

b′′g
b′ – g ′ – fq

)
∇u · ∇ut

+
(

b′′g
b′ – g ′

)
ut�u – α

g
b′ e

u|∇u| – α
g
b′ e

u�u – b′′(ut)

+
(
b′′f
b′ – fu + αeu

)
ut – ft . (.)

By (.), we have

�u =
b′

g
ut –

g ′

g
|∇u| – f

g
. (.)

Substitute (.) into (.), to get

g
b′ �P – Pt =

(
b′′′g
b′ –

b′′g ′

b′ – g ′′ +
(g ′)

g

)
ut|∇u| +

(

b′′g
b′ – g ′ – fq

)
∇u · ∇ut

–
(b′)

g

(
g
b′

)′
(ut) +

(
fg ′

g
–
b′′f
b′ – fu

)
ut +

(
α
g ′

b′ e
u – α

g
b′ e

u
)

|∇u|

+ α
f
b′ e

u – ft . (.)

With (.), we have

∇ut =

b′ ∇P –

b′′

b′ ut∇u + α
eu

b′ ∇u. (.)

Next, we substitute (.) into (.) to obtain

g
b′ �P +

[

(
g
b′

)′
+ 

fq
b′

]
∇u · ∇P – Pt

=
(
b′′′g
b′ +

b′′g ′

b′ – g ′′ +
(g ′)

g
– 

(b′′)g
(b′)

+ 
b′′fq
b′

)
ut|∇u|

+
(
α

b′′g
(b′)

eu – α
g ′

b′ e
u – α

g
b′ e

u – α
fq
b′ e

u
)

|∇u|

–
(b′)

g

(
g
b′

)′
(ut) +

(
fg ′

g
–
b′′f
b

– fu
)
ut + α

f
b′ e

u – ft . (.)
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In view of (.), we have

ut =

b′ P + α

eu

b′ . (.)

Substituting (.) into (.), we get

g
b′ �P +

[

(
g
b′

)′
+ 

fq
b′

]
∇u · ∇P

+
{[

g
(

g

(
g
b′

)′)′
+ fq

(

b′

)′]
|∇u| + g

(b′)

(
fb′

g

)
u

}
P – Pt

= –αeu
{
g
[(


g

(
g
b′

)′
+


b′

)′
+

g

(
g
b′

)′
+


b′

]
+ fq

[(

b′

)′
+


b′

]}
|∇u|

–
(b′)

g

(
g
b′

)′
(ut) – α

geu

(b′)

[(
fb′

g

)
u
–
fb′

g

]
– ft . (.)

The assumptions (.) and (.) guarantee that the right-hand side of (.) is nonnegative,
i.e.,

g
b′ �P +

[

(
g
b′

)′
+ 

fq
b′

]
∇u · ∇P

+
{[

g
(

g

(
g
b′

)′)′
+ fq

(

b′

)′]
|∇u| + g

(b′)

(
fb′

g

)
u

}
P – Pt

≥  in D× (,T). (.)

By applying the maximum principle [], it follows from (.) that P can attain its non-
negative maximum only for D× {} or ∂D× (,T). For D× {}, by (.), we have

max
D

P(x, ) =max
D

{
b′(u)(u)t – αeu

}
=max

D

{∇ · (g(u)∇u
)
+ f (x,u,q, ) – αeu

}

=max
D

{
eu

[∇ · (g(u)∇u) + f (x,u,q, )
eu

– α

]}
= .

We claim that P cannot take a positive maximum at any point (x, t) ∈ ∂D × (,T). In
fact, suppose that P takes a positive maximum at a point (x, t) ∈ ∂D× (,T), then

P(x, t) >  and
∂P
∂n

∣∣∣∣
(x,t)

> . (.)

With (.) and (.), we have

∂P
∂n

= b′′ut
∂u
∂n

+ b′ ∂ut
∂n

– αeu
∂u
∂n

= –γ b′′uut + b′
(

∂u
∂n

)
t
+ γαueu

= –γ b′′uut + b′(–γu)t + γαueu = –γ
(
ub′)′ut + γαueu

= –γ
(
ub′)′

(

b′ P + α


b′ e

u
)
+ γαueu

= –γ
(ub′)′

b′ P + γαeu
ub′ – (ub′)′

b′ on ∂D× (,T). (.)

http://www.boundaryvalueproblems.com/content/2013/1/237
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Next, by using the fact that (sb′(s))′ ≥ , sb′(s) – (sb′(s))′ ≤  for any s ∈R
+, it follows from

(.) that

∂P
∂n

∣∣∣∣
(x,t)

≤ ,

which contradicts with inequality (.). Thus we know that the maximum of P in D ×
[,T) is zero, i.e.,

P ≤  in D× [,T),

and

b′(u)
eu

ut ≤ α. (.)

For each fixed x ∈ D, integration of (.) from  to t yields

∫ t



b′(u)
eu

ut dt =
∫ u(x,t)

u(x)

b′(s)
es

ds ≤ αt, (.)

which implies that u must be a global solution. Actually, if that u blows up at finite time
T , then

lim
t→T–

u(x, t) = +∞.

Passing to the limit as t → T– in (.) yields

∫ +∞

u(x)

b′(s)
es

ds ≤ αT

and

∫ +∞

m

b′(s)
es

ds =
∫ u(x)

m

b′(s)
es

ds +
∫ +∞

u(x)

b′(s)
es

ds ≤
∫ u(x)

m

b′(s)
es

ds + αT < +∞,

which contradicts with assumption (.). This shows that u is global. Moreover, it follows
from (.) that

∫ u(x,t)

u(x)

b′(s)
es

ds =
∫ u(x,t)

m

b′(s)
es

ds –
∫ u(x)

m

b′(s)
es

ds =H
(
u(x, t)

)
–H

(
u(x)

) ≤ αt.

Since H is an increasing function, we have

u(x, t)≤H–(αt +H
(
u(x)

))
.

The proof is complete. �

http://www.boundaryvalueproblems.com/content/2013/1/237
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3 Blow-up solution
The following theorem is the main result for the blow-up solution.

Theorem . Let u be a solution of problem (.). Assume that the following conditions
(i)-(iv) are fulfilled:

(i) for any s ∈R
+,

(
sb′(s)

)′ ≥ , sb′(s) –
(
sb′(s)

)′ ≥ ,
(
g(s)
b′(s)

)′
≥ ,

[


g(s)

(
g(s)
b′(s)

)′
+


b′(s)

]′
+

g

(
g(s)
b′(s)

)′
+


b′(s)

≥ ;
(.)

(ii) for any (x, s,d, t) ∈ D×R
+ ×R+ ×R

+,

ft(x, s,d, t)≥ , fd(x, s,d, t)
[(


b′(s)

)′
+


b′(s)

]
≥ ,

(
f (x, s,d, t)b′(s)

g(s)

)
s
–
f (x, s,d, t)b′(s)

g(s)
≥ ;

(.)

(iii)

∫ +∞

M

b′(s)
es

ds < +∞, M :=max
D

u(x); (.)

(iv)

β :=min
D

∇ · (g(u)∇u) + f (x,u,q, )
eu

> , q := |∇u|. (.)

Then the solution u of problem (.)must blow up in finite time T , and

T ≤ 
β

∫ +∞

M

b′(s)
es

ds, (.)

u(x, t)≤G–(β(T – t)
)
, (x, t) ∈ D× [,T), (.)

where

G(z) :=
∫ +∞

z

b′(s)
es

ds, z > , (.)

and G– is the inverse function of G.

Proof Construct the following auxiliary function:

Q(x, t) := b′(u)ut – βeu. (.)

http://www.boundaryvalueproblems.com/content/2013/1/237
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Replacing P and α with Q and β in (.), respectively, we get

g
b′ �Q +

[

(
g
b′

)′
+ 

fq
b′

]
∇u · ∇Q

+
{[

g
(

g

(
g
b′

)′)′
+ fq

(

b′

)′]
|∇u| + g

(b′)

(
fb′

g

)
u

}
Q –Qt

= –βeu
{
g
[(


g

(
g
b′

)′
+


b′

)′
+

g

(
g
b′

)′
+


b′

]
+ fq

[(

b′

)′
+


b′

]}
|∇u|

–
(b′)

g

(
g
b′

)′
(ut) – β

geu

(b′)

[(
fb′

g

)
u
–
fb′

g

]
– ft . (.)

Assumptions (.) and (.) imply that the right-hand side in equality (.) is nonpositive,
i.e.,

g
b′ �Q +

[

(
g
b′

)′
+ 

fq
b′

]
∇u · ∇Q

+
{[

g
(

g

(
g
b′

)′)′
+ fq

(

b′

)′]
|∇u| + g

(b′)

(
fb′

g

)
u

}
Q –Qt

≤  in D× (,T). (.)

With (.), we have

min
D

Q(x, ) =min
D

{
b′(u)(u)t – βeu

}
=min

D

{∇ · (g(u)∇u
)
+ f (x,u,q, ) – βeu

}

=min
D

{
eu

[∇ · (g(u)∇u) + f (x,u,q, )
eu

– β

]}
= . (.)

Substituting P and α with Q and β in (.), respectively, we have

∂Q
∂n

= –γ
(ub′)′

b′ Q + γβeu
ub′ – (ub′)′

b′ on ∂D× (,T). (.)

Combining (.)-(.) with the fact that (sb′(s))′ ≥ , sb′(s) – (sb′(s))′ ≥  for any s ∈ R
+,

and applying themaximumprinciples again, it follows that theminimumofQ inD× [,T)
is zero. Thus

Q ≥  in D× [,T),

and

b′(u)
eu

ut ≥ β . (.)

At the point x∗ ∈D, where u(x∗) =M, integrate (.) over [, t] to get

∫ t



b′(u)
eu

ut dt =
∫ u(x∗ ,t)

M

b′(s)
es

ds ≥ βt, (.)

http://www.boundaryvalueproblems.com/content/2013/1/237
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which implies that umust blow up in finite time. Actually, if u is a global solution of (.),
then for any t > , (.) shows

∫ +∞

M

b′(s)
es

ds ≥
∫ u(x∗ ,t)

M

b′(s)
es

ds ≥ βt. (.)

Letting t → +∞ in (.), we have

∫ +∞

M

b′(s)
es

ds = +∞,

which contradicts with assumption (.). This shows that u must blow up in finite time
t = T . Furthermore, letting t → T in (.), we get

T ≤ 
β

∫ +∞

M

b′(s)
es

ds.

By integrating inequality (.) over [t, s] ( < t < s < T ), for each fixed x, we obtain

G
(
u(x, t)

) ≥G
(
u(x, t)

)
–G

(
u(x, s)

)
=

∫ +∞

u(x,t)

b′(s)
es

ds –
∫ +∞

u(x,s)

b′(s)
es

ds

=
∫ u(x,s)

u(x,t)

b′(s)
es

ds =
∫ s

t

b′(u)
eu

ut dt ≥ β(s – t).

Hence, by letting s→ T , we have

G
(
u(x, t)

) ≥ β(T – t).

Since G is a decreasing function, we obtain

u(x, t)≤G–(β(T – t)
)
.

The proof is complete. �

4 Applications
When b(u) ≡ u and f (x,u,q, t) ≡ f (u), the results stated in Theorem . are valid. When
g(u) ≡  and f (x,u,q, t) ≡ f (u) or f (x,u,q, t) ≡ f (u), the conclusions of Theorems .
and . still hold true. In this sense, our results extend and supplement the results of
[–].
In what follows, we present several examples to demonstrate the applications of the ab-

stract results.

Example . Let u be a solution of the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u + +u

+u |∇u| + e–u(e–u+eq)
+u (e–t + |x|) in D× (,T),

∂u
∂n + u =  on ∂D× (,T),

u(x, ) =  – |x| in D,

http://www.boundaryvalueproblems.com/content/2013/1/237
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where q = |∇u|, D = {x = (x,x,x) | |x| < } is the unit ball of R. The above problem
can be transformed into the following problem:

⎧⎪⎪⎨
⎪⎪⎩
(ueu)t =∇ · (( + u)eu∇u) + (e–u + eq)(e–t + |x|) in D× (,T),
∂u
∂n + u =  on ∂D× (,T),

u(x, ) =  – |x| in D.

Now

b(u) = ueu, g(u) = ( + u)eu, f (x,u,q, t) =
(
e–u + eq

)(
e–t + |x|),

u(x) =  – |x|, γ = .

In order to determine the constant α, we assume

s := |x|,

then  ≤ s ≤  and

α =max
D

∇ · (g(u)∇u) + f (x,u,q, )
eu

=max
D

{
|x| – |x| –  +

(
 + |x|)[exp(– + |x|) + exp

(
– + |x|)]}

= max
≤s≤

{
s – s –  + ( + s)

[
exp(– + s) + exp(– + s)

]}

= ..

It is easy to check that (.)-(.) hold. By Theorem ., umust be a global solution, and

u(x, t) ≤H–(αt +H
(
u(x)

))
= – +

√
.t +

(
 + u(x)

)

= – +
√
.t +

(
 – |x|).

Example . Let u be a solution of the following problem:

⎧⎪⎪⎨
⎪⎪⎩
ut =�u – 

u(+u) |∇u| + u(eu–e–q)
+u ( + t|x|) in D× (,T),

∂u
∂n + u =  on ∂D× (,T),

u(x, ) =  – |x| in D,

where q = |∇u|, D = {x = (x,x,x) | |x| < } is the unit ball of R. The above problem
may be turned into the following problem:

⎧⎪⎪⎨
⎪⎪⎩
(u + lnu)t =∇ · (( + 

u )∇u) + (eu – e–q)( + t|x|) in D× (,T),
∂u
∂n + u =  on ∂D× (,T),

u(x, ) =  – |x| in D.

http://www.boundaryvalueproblems.com/content/2013/1/237
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Now we have

b(u) = u + lnu, g(u) =  +

u
, f (x,u,q, t) =

(
eu – e–q

)(
 + t|x|),

u(x) =  – |x|, γ = .

By setting

s := |x|,

we have ≤ s≤  and

β =min
D

∇ · (g(u)∇u) + f (x,u,q, )
eu

=min
D

{
–|x| + |x| – 

( – |x|) exp( – |x|) + 
[
 – exp

(
–|x| – 

)]}

= min
≤s≤

{
–s + s – 
( – s) exp( – s)

+ 
[
 – exp(–s – )

]}

= ..

Again it is easy to check that (.)-(.) hold. By Theorem ., u must blow up in finite
time T , and

T ≤ 
β

∫ +∞

M

b′(s)
es

ds =


.

∫ +∞



(
 +


s

)

es

ds = .,

u(x, t)≤G–(β(T – t)
)
=G–(.(T – t)

)
,

where

G(z) =
∫ +∞

z

b′(s)
es

ds =
∫ +∞

z

(
 +


s

)

es

ds, z ≥ ,

and G– is the inverse function of G.

Remark . We can see from Example . that when the equation has a gradient term
with exponential increase, the functions g and b increase exponentially to ensure that the
solution of (.) blows up. It follows from Example . that when the equation has a gra-
dient term with exponential decay, the appropriate assumptions on the functions g and b
can guarantee the solution of (.) to be global.
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