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1 Introduction
In the present paper, we are concerned with the existence of solutions for the fractional
differential equation

D§,u(t) =f(t,u(t),u' (1)), te€(0,1) (1.1)

with anti-periodic boundary value conditions

/!

U)ot = 27 ut) =1, (tz’“u(t))l or = —(tz’“u(t))‘ . (1.2)

where Dfj, denotes the standard Riemann-Liouville fractional derivative of order « € (1, 2),
and the nonlinear function f(t, -, -) may be singular at ¢ = 0.

Differential equations with fractional order are a generalization of ordinary differential
equations to non-integer order. This generalization is not a mere mathematical curios-
ity but rather has interesting applications in many areas of science and engineering such
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as electrochemistry, control, porous media, electromagnetism, etc. (see [1-4]). There has
been a significant development in the study of fractional differential equations in recent
years; see, for example, [5-21].

Anti-periodic boundary value problems occur in mathematic modeling of a variety of
physical processes and have recently received considerable attention. For examples and de-
tails of anti-periodic fractional boundary value problems, see [22—31] and the references
therein. However, up to now, almost all studies on anti-periodic fractional boundary value
problems have been devoted to fractional equations with the Caputo fractional derivative.
Recently, there appeared a paper dealing with anti-periodic boundary value problems of
a fractional equation with the Riemann-Liouville fractional derivative (see [22]), which
will be formulated later. The main reason is that in general the Riemann-Liouville frac-
tional derivative #(0) (0 < i < ) does not exist unless % (0) = 0, and therefore there is
some difficulty in expressing anti-periodic boundary value conditions with the Riemann-
Liouville fractional derivative. So, no matter which kind of anti-periodic boundary value
conditions we shall propose, first of all, we must ensure that the limits exist taken on the
left-hand side of the formula on the anti-periodic boundary value conditions when vari-
able tends to zero. In the paper [22] mentioned above, Ahmad and Nieto put forward a
kind of boundary value problems as follows:

Du(t)=f(t,u(t)), te€[0,T],0<a <2,
I2u(0) = bo27%u(T™),  D2'u(0%) = byDe T u(T™), bo #1,by #1.

It is well known that the limits I2;%%(0*) and D%;'u(0*) exist. Moreover, it can be verified
that £27%u(t) ;- o+ = ﬁlg;"u(w), & ut)),_ o = ﬁDgilu(O"). Especially, compar-
ing with the recent article (see [32]) dealing with the following periodic boundary value

problems with Riemann-Liouville fractional derivative

D¥u(t) = f(t,u,D%u), te(0,1\{t,t2,...,tm},0 < <1,
o u(t)mor =u), O D*u(t)lo = Du(l),

(£ = )" W(t) — uG)leser = L(u(t),

(£ = 1) (D*u(®) = D*u(t))l i~ = Li(u()),

and taking into account the consistency with integer order anti-periodic boundary value
problems, we consider the anti-periodic boundary value condition (1.2) in the present pa-
per to be more natural and suitable. It is noteworthy that such a form of anti-periodic
boundary value conditions (1.2) is very convenient to construct an appropriate Banach
space which coordinates the feature of the solution u because of the fact that lim u(¢) = co
(t — 0%) may occur and function f(¢, -, -) may be singular at ¢ = 0. Moreover, when o — 2
in (1.2), the anti-periodic boundary value conditions in (1.2) are changed into u(0) = —u(1),
u'(0) = —u/(1), which are coincident with anti-periodic boundary value conditions of
second-order differential equations (see [33]).

The rest of this paper is organized as follows. In Section 2, we present some necessary
definitions and preliminary results that will be used to prove our main results. In Section 3,
we put forward and prove our main results. By applying the contraction mapping principle
and the other fixed point theorem, we obtain the existence and uniqueness of solutions
for boundary value problems (simply denoted by BVP). Finally, we give two examples to
demonstrate our main results.
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2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this paper.
Let N be the set of positive integers, R be the set of real numbers.

Definition 2.1 ([3]) The Riemann-Liouville fractional integral of order « > 0 of a function
y:(a,b] - Ris given by

1 t
I, y() = m /0 (t- s)“’ly(s) ds, te(a,b].

Definition 2.2 ([3]) The Riemann-Liouville fractional derivative of order « > 0 of a func-
tion y : (a,b] — R is given by

o a1 AN 1y
D“+y(t)_F(n—oe)(dt) /0 7(t_s)a_n+lds, t€ (a,b),

where n = [«] + 1, [¢] denotes the integer part of «.

Lemma 2.1 ([34]) Let @ > 0. Ifu € C(0,1) N L(0,1) with a fractional derivative of order o
that belongs to C(0,1) N L(0,1), then

I§, Dy, u(t) = u(t) + at® ot oyt
forsomec; €R,i=1,2,...,n, where n = [a] + 1.
Let
X = {u ‘ue C/(O,l],tlir(r)l+ 7 u(t) and t1i151+ (tz""u(t))/ exist}, and

Xo = {u :u € C(0,1]NL(0,1), sup |t2_"‘u(t)| < oo].
te(0,1]

It is easy to verify that X; is a normed linear space with the norm

[lzl1 = maxi sup |t2’°‘u(t)
]

}1 ue le (21)
te(0,1

, sup | (tz"”u(t))/
te(0,1]

and X is a normed linear space with the norm

lullo = sup |£~*u(e)
te(0,1]

, MEX(),

respectively. Moreover, we have the following lemma.
Lemma 2.2 Xj is a Banach space with the norm ||u||;.

Proof In fact, let {u,} be any sequence in Xj with ||u, — u,,|l1 = 0. Then, for arbitrary
& > 0, there exists N € N such that

Iy =t |1 < &,
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when n,m > N. So,

|2 u () = & u(t)| <&, £€(0,1], (2.2)

|(t2—a l/ln(t)), - (t2_aum(t))/| <& L€ (0, 1]’ (23)

when n,m > N.
In view of (2.2), there exists v € C(0,1] such that 2%y, — v uniformly on (0,1], and so

u, () = v(©)* 2, te(0,1].

Set u = v(t)t*~2. Then u,(t) — u(t), t € (0,1] and u € C(0,1]. So, letting m — +00 in (2.2),
we have

|2 u,(6) - 2 u(t)| <&, te(0,1],

when n > N. That is, > %u,, — t*"*u uniformly on (0,1]. Because lim, o+ t2™%u,(t) exists
for all m € N, by applying the theorem to the limit convergence of function sequences, we
know that lim,,_, o lim,_ o+ £2~%u,(¢) exists, and

lim 2 %u(t) = lim lim £ “u,(t) = im lim £2%u,(?).
t—0t t—0t n—00

n—oot—>0+

So, lim;_, o+ t**u(t) exists.
Similarly, applying the theorem to the differentiability of function sequences and letting
m — o0 in (2.3), we obtain

() = (P u(®) | <, (1], o

whenever n > N.
Let f,(t) = (t2“u,(t))’ and f(¢) = (£>~*u(t))’. Then (2.4) means that f, — f uniformly on
(0.1], and so

lim f(¢) = lim lim f,(t) exists

t—>07 n—o00t—0+

by applying the theorem to the limit convergence of function sequences again. That is,

lim (tz_"‘u(t))/ = lim lim (tz_"‘u,,(t))/ exists.

t—0* n—o0t—0*

Thus, lim,_, o+ (£>2u(t))’ exists.

To summarize, ||, — ulj; — 0 with u# € Xj. O
Now, we consider the following auxiliary boundary value problem:

Dy, u(t)=h(t), te(0,1],
tzfabi(t |t—>0* = —tz""u(t)“:l, (25)
= u®)],or = —(Eu(®))| oy,

where & € X,.
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We have the following lemma.

Lemma 2.3 For a given h € Xy, if u € X is a solution of BVP (2.5), then u is given by

u(t) = —¢%1 /01 Gy (s)h(s) ds + %72 /: G, (s)h(s) ds

L e
+ T /0 (t-95)"h(s)ds, te(0,1], (2.6)
where
Gi(s) = 2F1(a) [2-a)@-5)*"+(@-1(1-9*?], se(0,1), (2.7)
Gals) = 4F1(a) [(@-1A-9)*?-al-5)""], se(0,1). (2.8)

Proof In fact, owing to the fact that / € Xy, in view of Lemma 2.1, we have
u(t) = %7 + 2% 2 +1I5,h(t), te(0,1] (2.9)

for some ¢, ¢y € R.
So,

£7U(t) = at + ¢ + UL K(E), te(0,1], (2.10)
and
() = 1 + (2 — )12 h(t) + LI (E), e (0,1]. 2.11)

Because |s>"*h(s)| < ||h]lo, s € (0,1], we have

1 t
I§ h(t)| < —/ (¢ — ) Hh(s)| ds
|0 | F(Ol) o | |
N / (- 92 ()| ds
I'(a) Jo
”h”O /t 1 a=2
< (t—s)*"s""ds
- Ta) Jo )
s=tt ”h”() 2( 1)/1 1_a-2
e 172110 o 1-7)* "t 2 dr
I (er) 0
M(a-1) am1)
= — a= ,1]. 2.12
R gy, te©.) (2.12)
Thus,
7 IMNa-1)
708 h(t)| < ——||lot%,
(18,10 = 50— o
(2.13)

Illoz*™, € (0,1].

+

1-o jo F(Ol—l)
|t I8, h(D)| < Tea T

Page 5 of 24
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Similarly, we have

MNa-1
|t2‘“13+_1h(t)|5r,((a )

———||hllot*, te(0,1].
2y WHlo ©.1]

From (2.13)-(2.14), it follows that

lim 271§, h(t) = 0,

t—0+

lim £7°I¢, h(t) = 0,
t—>0+
and

lim 215 h(t) = 0.

t—0+

(2.14)

(2.15)

(2.16)

(2.17)

So, by the boundary value conditions in (2.5) together with (2.10)-(2.11), from (2.15)-(2.17)

it follows that

a1 +2c+15,h(1) =0,

21 + (2 — a)Ig, h(1) + 127 h(1) = 0.

Thus, (2.18)-(2.19) imply that

2-«a 1.
a = —T18‘+h(1) - 510+1h(1),

o o 1 o—
cy = —Zlmh(l) + Zl‘”lh(l)’

Substituting (2.20)-(2.21) into (2.9), we have

u(t) = —=[(2 - )I§, h(1) + I§T h (D)7 + ! [18, Q) — oI, h(1)]¢7% + 1§, h(2)

1 1
2 4
1 1
= —t""l/ Gi(s)h(s)ds + t""Z/ Gy(s)h(s)ds + 1, h(t), te(0,1],
0 0

where G, G, are given by (2.7) and (2.8), respectively.
The proofis complete.

We definite an operator T on Xj as follows:
1 1
Th(t) = —t"“I/ Gi(s)h(s)ds + ta‘Z/ Gy(s)h(s)ds + I, h(t), te(0,1]
0 0

for h € Xy.
We first establish the following lemma.

Lemma 2.4 TX, C X;.

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Page 6 of 24
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Proof For any h € Xy, from (2.12), we have that

o) —1)

F 2o 1) 171l

1
/ (1-s)*?! |h(s)| ds <
0

Again,
1 1
/ a —s)"‘_2|h(s)| ds = / 1- S)O‘_Zs“_2|52_°‘h(s)| ds
0 0

1
< lhlo f (1-5)*2s*2ds
0

= ||AlloBle =1, = 1).

Thus, from (2.7)-(2.8), we know that the integrals fol Gi(s)h(s)ds and fol Gy (s)h(s)ds con-
verge. So, from (2.12) and (2.22), it follows that Th(t) exists on (0,1]. That is, the operator
T is well defined.

In what follows, we show that Th € X;.

From % € Xy, we know that # € C(0,1] and |s>~*k(s)| < ||k|o. Let ¢(s) = s> h(s), s € (0,1].
Then ¢ € C(0,1] and |¢(s)| < ||kllo, s € (0,1], and so ¥ € C((0,1] x (0,1]) and | (¢, s)| <
I/l by setting ¥ (¢, T) = ¢(t7), (¢, ) € (0,1] x (0,1].

Since
/t (t—9)*2h(s)ds = /t (t—8)* 2> P(s)ds
0 0

1
s:ztf tza—s/ (1 _ ‘()a_z'(a_zl/f(t, 'L') d‘L’, (223)
0

and |y (¢, T)| < |lkllo, ¥ € C((0,1] x (0,1]), we know that fot (£ = 8)*2h(s)ds is continu-
ous on (0,1] from (2.23) and applying the Lebesgue convergence theorem. Consequently,
(Th) € C(0,1] according to

1 1
(Th)'(¢) = —(« - 1)1,“"‘2/0 Gi(s)h(s)ds + (a — 2)t°‘_3/0 Ga(s)h(s)ds

1
" T@-1)

/ﬁ(t—sylzh@)d& te(0,1] (2.24)
0

by (2.22).
Finally, in view of (2.22), we have

1 1
t%%nmn=4/(5@mgm+f(5@m@m+ﬁwmﬁm,temJL (2.25)
0 0

and

1

(tz‘“(Th)(t))’ = —/ Gi(s)h(s)ds + (2 — )t ™13, k()
0

1

" T@-1)

tL“/¢U—sW4h@ﬁk, t€(0,1]. (2.26)
0

Page 7 of 24
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Again,

e ! w2 ‘ ||h||o
ﬁ ‘/0\ (t—S) h(S) ds <

_1 /(t S)aZaZdS

s= tt ”h”()ta 1/ (1_ )a -2 o= Zd_’:

IMNa-1)
_ Tla=Dlkllo 4,
= Toa-2 7, te(0,1]. (2.27)

Hence, formula (2.25) together with (2.13) implies that lim,_, o+ >~ (Th)(¢) = fol Go(s)ds
exists, and formula (2.26) together with (2.13)-(2.27) implies that lim,_, o+ (¢2-%(Th)(t))' =
—fo Gi(s) ds exists.

Summing up the above analysis, we obtain that T/ € X;. The proof is complete. g

We need the following lemma, which is important in establishing our main result in the
next section.

Lemma 2.5 T: X, — Xj is completely continuous.

Proof We divide the proof into two parts.
Part 1. First, we show that 7 is a continuous operator.
Let {u,} be an arbitrary sequence in Xy with #,, - u € X. Then

|57 (4 (5) — w(s))| < 1t — ullo, s € (0,1].

Thus, from (2.25), it follows that

1 1
tz_"‘|Tuy,(t) - Tu(t)| < t/o Gl(s)|u,,(s) - u(s)| ds +/0 |G2(s)| . |u,,(s) - u(s)| ds

t2—a t w1
+ F(a),/o (t-s) |u,,(s)—u(s)|ds
1 1
< |:t/ Gy (s)s*2 ds+/ \Gz(s)|s°‘_2 ds
0 0
+ o (£ —s)* %2 ds] N, — ullo
') Jo
(5o +2) I —1)
< B lun —ullo, te(0,1],
noting that
1 1
wo . al(@-1) w2 Ba -2)T(x-1)
/0 Gi(s)s*“ds = 72F(2o: T /(; |G2(s)|s ds < —4F(2a EET (2.28)
and
1 t a-1 -2 s=tt tz(ail) ! oa-1_o-2
m/()(t—s) s “ds = F(a)/o(l—t) % *dt
= Mﬁ(“*), t e (0,1]. (2.29)

I'2a —1)
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So,

5 2N (-1
sup tz_“‘Tu,,(t) - Tu(t)’ < Mllun —ulo. (2.30)
e(0,1] 4T (2 - 1)

Similarly, from (2.26), (2.28) and (2.29), we have

, 1 2« t
2-o -2 l-a o-1_o-2
|(t ((Tu,,)(t) - (Tu)(t)) | < |:/0 Gi(s)s* “ds + mt fo (t—s)"s""ds

1 ra -2 a2
t a L — o o d Yy —
*TasD) /0( )" ds | llu, — ullo
3al(a —1)
< — "|u, - , te(0,1
< Sra g 4 ulo £
noting that
1 ! -2 o2 s=tt t2a—3 ! a=2_o-2
—— [ (t=-9)*"""ds’= — | 1-1)*"t*“drt
T(a-1) Jo MNa-1) Jo
Ma-1) 5,3
= 2T pes e (0,1]. 2.31
r2a-2) €(01] (23D
So,
o 3al'(e-1)
27 (Tu,(t) - Tu(t)) | < ==ty — ullo. 2.32
tzzﬁ]l( (Tun(2) u())|—2r(2a—1)”u” ullo (2.32)

From (2.30)-(2.31), we have that

I T — Tully < Dlltan — ullo,

where

{ 5o +2)T(a—1) 3al’(a-1) } (5a +2)IM(a —1)
D=m =

AT -1) '2Ra-1))  4T'Qu-1) (2.33)

So, T is a continuous operator on Xj.

Part 2. Now we show that T is a compact operator.

Assume that Q is an arbitrary bounded set in Xy. Then there exists M > 0 such that
llt]lo < M for all u € Q. By an argument similar to (2.30) and (2.32) in Part 1, from (2.25)-
(2.26), we can obtain

(5a +2)IM(a —1)

sup |27 Tu(t)| < ~——————llullo,
t€(0,1]| | 4T (2e - 1)

N 3al(a —1)
sup |(#7Tu(t))' | < —————Ilullo,
te(0,1] 2I'2a - 1)

and so || Tu||; < D|lullo < DM, where D is as in (2.33). It means that 72 is bounded.
Now, we show that the set of functions B is equicontinuous on (0.1], where B =
(£27*Tu(t) 1 u € Q).
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In fact, for any 4, t; € (0,1] with ¢ < £, and u € Q, from (2.25), we have
|57 Tu(ts) — £ Tu(t)|

1
< (tz—h)/o G1(5)|M(S)|ds

1
+—

I'(a)

1 i
<(t - tl)/o Gl(s)|u(s)| ds + ﬁ ’/0 [t%‘“(tz —s)* T —s)"‘_l]u(s) ds

15) al
£ / (ty — )" u(s)ds — £ / (t1 —5)" ' u(s)ds
o 0

')

2-a
t2

, (2.34)

/‘fz (t, — 8)* Lu(s) ds

f

Again,

1 1 1 _
/o Gl(s)iu(s)i ds = /0 Gl(s)s“_2|32_°‘u(s)| ds < M/(; Gy(s)s* ™ ds = %,

/tl [t%‘“(tz —g)* - tlz_”‘(tl - s)“_l]u(s) ds
0

15 t
< (t%’“ - tlz_‘") / 1 (tp - s)“_l‘u(s)‘ ds + tlz_“ / 1 [(tz S Ly (o s)""l] ’u(s)| ds
0 0
5]
< M(t%‘“ — tlz_“) / (t — ) 1s* 2 ds
0
f
+ Mtlz_“ / [(tz —5)* (4 - s)o‘_l]s“‘_2 ds,
0

and

2-a
t2

/tz (£, — 8)* Luls) ds

4

(5]
< M/ (ty —5)* L% 2 ds
fn
ty M
< M/ s ds= —— (57" - 7).
f oa-1
Thus, from (2.34), it follows that

|57 Tu(ts) — £ Tu(t)|

MaT (a - 1) M-8 (" w1 a2
= r@a-1) (t2-0) + [ (a) /o (t2 =5 ds
Mtlz_a i a-1 a-17.a-2 M(tg_l _ ti)‘—l)
+ T /0 [(t2—5) " = (-9 ]s* P ds + @-Dr@ (2.35)

Again,

151 1 1
/ (ty—s)* 1% 2ds < / s 2ds= ——, (2.36)
0 0 a-1
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£ / -9 (- s ds

[/ (t, )alaZdS/(tl )a1a2dsi|

i

_tl I:tz( /0 a- t)alaZdt al)/ a- T)alazdt]

i A /(1 ) %2 gt

= (g e g )Ba, o — 1)

< (#5 - #])Bla, - 1), (2.37)

because

4

15} 7
/ (ty — 5)* 1> ds 27 t§<" b / ’ (1-1)* 1 2dr,
0 0

51 _ 1
/ (th—8)* s 2 ds shr tlz(a_l) / (1-1)* 2 gx,
0 0

and 1 < th, 1 < < 2.
Substituting (2.36)-(2.37) into (2.35), we have

; - Mo (o ~ 1) M6 —157)
|57 Tu(t,) - £ Tu(t)| < ree-D) 20 T D@

MU(a—1), o ME™ -6
*Tea—n & G )

The above inequality shows that the set B = {t2~% Tu(t)|u € Q} is equicontinuous on (0, 1].

Finally, we show that the set B’ is also equicontinuous on (0, 1], where
B = {(Tu(®) lu € Q).
As before, for any #, £, € (0,1] with f; < £, and u € Q, in view of (2.26), we have

[ Tu(tz))/ - (g™ Tu(tl))’|

<2 t“‘/tz (ty —5)* ' u(s)d. t”ftl (1 —5)* " uls) d
— —8)*u(s)ds — —8)*u(s)ds
= FO[) 2 o 2 1 o 1
! 5 /tz (t2 —5)*Pu(s)ds — 7 /tl (t1 - 9)**u(s)d.
+ —8)*“u(s)ds — —8)*“u(s)ds
Fa-1)]2 Jo 7 toJe
2-« i 1 14 1
e 5%t —8) T - (- 9)* d
< @) [/0 |57 (t2 - ) 17— 97 |uls)| ds

t
+ té_“ / (£ —5)*7! |u(s)| ds]
5]

1 4
m |:/0 |t§_a (tZ - S)O(_2 - t12_a (tl - S)a_2| |u(s)| ds
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5]
+ t%‘”‘ / (ty — s)“_2|u(s)| ds:|
5]

-a)M[ (4 s\*! s\ b s\
= T U ((-2) -0-2) ) e | (-2) 2‘“}
M f s a-2 s a2 v
L) ((5) (0) Jeras
ty a-2
+/ (1—;) s"‘zdsi|, (2.38)
n 2

noting that |u(s)| = s*72 - [s2%u(s)| < s*2M, s € (0,1], and

a-1 a-1 a-2 a-2
S N N S
L 4 4 Ly

keeping in mind that 1 < o < 2.

I Qa—2)e
3MT(a-1)
that y < 1. Since ¢*~! is uniformly continuous on [0, 1], there exists §; > 0 such that

1
For an arbitrary ¢ > 0, take y = %( )a-1. We can assume that ¢ is small enough

(¢ =DM (x)e
32 - a)M[(e - 1B, = 1) +1]’

0<tyt -t <

when 0 < -4 < 81, t1, b € (0,1]

Moreover, because

t s a-1 s a-1
L6 2) oo
0 1) 151
t a-1 t a-1
=/ (1— i) sa’zds—/ (1— i) 22 ds
0 ty 0 151
a 1
2
= tg’lf (1-7)* ' 2dr - tf"I/ (1-7)* ' 2dr
0 0
1
<@&'-g7 / A-7)* " ?dr = (57" - 7" )Blo, e — 1)
0
and

f2 s\ 2 1
/ <1 - —) s* 2 ds < / s ds= —— (557" -7,
fn 15} u a-1

we obtain

Q-a)M[ [n s\t s\%1 w2 o s\*! o
e A (o B (O B C A (o B

- 2-a)M
- T(a)

[B(oz,a “1D+ ](tg-l — ) < g (2.39)

a-—1

when 0 < th—-4h < 81, t1, b € (0,1]

Page 12 of 24
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(DIf0<t <y and ) <t with £, — £ <y, then

M f s\ s\ a2

r(a—l)/o [(1‘5) _<1_E> } “
M i S o o—2

‘sl (-5) oo

Stlt Mtal /(I_T)aZ aZdI.
MNo-1)

MT(a -1
M-l o ¢ (2.40)
T2 —-2) 3

and

M (" s\ Mt"‘ !
et (-3 e 2 oo
- 51 2

ta -1
1-17)% -2 Ot Zd
< Ta-1 / 1-17) T
29 IMIMN (¢ - 1
&;ﬂ—l - ¢ (2.41)
T(2x—2) 3
because 0 < £, < 2y.
Consequently, by (2.40)-(2.41) we have
M fn a-2 a-2 ty a-2
7[/ ((1—1) —(l—i) )s“‘zds+/ <1—i> s“_zds]
Ma-1)[Jo h by fn t
2¢e
— 2.42
<3 (2.42)
whenO <t <y withO <t -t < y.
(2) If y <t <y, then
fH a-2 a-2
[ l0-2) -(-2) Jea
0 tl t2
= ti"_l/ 1-1)*2r% 24y - tg‘_l/ (1-1)*21% 24y
0 0
= (e l—tg‘ - / A -7)* 22 dr + 15~ 1/ 1-1) 2" %dr
<ty / 1-1)%2¢ "‘Zdt</ (1-1)%21%24x, (2.43)

and

ty s a=2 1 1
/ (1 - —) %72 ds = tg‘_l / (1-7)*21%2dr < / (1-7)% 272, (2.44)
" b n 4

Page 13 of 24


http://www.advancesindifferenceequations.com/content/2013/1/306

Chai Advances in Difference Equations 2013, 2013:306 Page 14 of 24
http://www.advancesindifferenceequations.com/content/2013/1/306

Hence, (2.43)-(2.44) imply that

M t s a-2 s a-2 v ty s a-1 w2
F(a—l)[_/o <<1_E> _<1_t_1> )S dH/n <1_5> ’ ds}

oM 1

a2 _a-2
<4F(a—1) %(1 )% “dr. (2.45)

Because fol (1-1)*21%2dr =B(a — 1,0 — 1) < 00, there exists o € (0,1) such that

MNo-1)
3M

1
/ (1-1)%21% 24t < &, (2.46)
n

when0<1-n<o.
Take 0 < §; < yo, then from (2.46), it follows that

! Ma-1
/ (1-1)*2%%2dr < G )8, (2.47)
4 3M

D)

when0<t2—t1<82,notingthat0<1—%=%<%§abecauset2>tlzy.

So, from (2.45) together with (2.47), it follows that

M £ s\ S\ a2 K s " a2
F(a—l)[/o ((1_5) _(I_E) )S d“/n (l_tz) ’ ds}

=, 2.48
<3 (2.48)

wheny <tpand 0 <t —t < 8,.
Now, take § = min{8y, 85,y }. Then, when 0 < £, —#; < §, by (2.38), (2.39), (2.42) and (2.48),
we have

(B Tuty) - (7 Tu(t)) | < e. (2.49)
The above inequality (2.49) shows that the set B’ is equicontinuous on (0,1]. As a con-
sequence of the Arzela-Ascoli theorem, we have that T'Q2 is a compact set in X;. The proof

is complete. d

Finally, for the remainder of this section, we give the following lemma, which will be
used to obtain our main results.

Lemma 2.6 ([35]) Let E be a Banach space. Assume that 2 is an open bounded subset of
E with 0 € Q, and let A : Q — E be a completely continuous operator such that

lAu|| < |lull, Yued.

Then A has a fixed point in Q.
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3 Main results
Let us introduce some assumptions which will be used throughout this paper.

(H1) f€C((0,1] x R x R,R).
(Ha) sup,c(y [£27£(£,0,0)]| < oo.
(H3) There exist two constants L; > 0, L, > 0 such that

Lf(t,xz,yz) —f(t,xl,y1)| < Lilxa —x1| + Lot|y2 — y1l

forallx;,y;, €R,i=1,2,and t € (0,1].
(H4) There exist a function ¢ € Xy and constants N7 > 0, N, > 0, 61,6, € (0,1) such that

f (tx,9)] < ¢(@) + N | + Not|y|*

forallx;,y;, € R,i=1,2,and ¢ € (0,1].

We define two operators F, T on X; as follows:
Au = TFu, Fu :f(t,u,u’), te(0,1], forue X,

where T is defined as before.
We first establish the following lemma to obtain our results.

Lemma 3.1 Suppose that (H;), (Hy), (H3) hold. Then the operator A maps X; into X;.

Proof For any u € Xj, by (Hs) , we have

If (& u,1') = f(£,0,0)| < Li|u(t)| + Lot|u/(8)|, £ e€(0,1].
So,
If (& u(e), ' ()| < |f(£0,0)| + L |u(t)| + Lot|/' ()|, ¢ €(0,1]. (3.1)
Again,
u(®)| = |22 u®)| < t*2ull, te(0,1], (3.2)
and so
' (t)| = |72 ult) + (@ - 2)e u@)|
< 2| u®)'| + 2 - )t u()|
< P lully + (2 - o) |ully
<33 -a)lull, te(0,1]. (3.3)

Hence, by (3.1)-(3.3), we have

If (& u(t), ' ®)| < |f(£,0,0)] + (L1 + 3 = @)La)t* 2|lully, t€(0,1], (3.4)
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and so
|27F (6, w(e), u (8)) | < [£7°F(£,0,0)] + (L1 + (B — &) Lo) [lully, € (0,1]. (3.5)
Again, from (H,) and by letting K = sup,o,; |"*f(£,0,0)|, we have
_ -2 2-a =2
[f(£,0,0)| = t*7*[£7f(£,0,0)| < Kt*2, te(0,1],

and so f(¢,0,0) € L(0,1). Thus, according to hypothesis (H;) and (3.4)-(3.5), we know that
f@u,u') € C(0,1] N L(0,1) and sup, gy |£27%f (¢, u,u')| < co. That is, Fu € Xy. Therefore,
in view of Lemma 2.5, it follows that Au € Xj. Thus, A : X — Xj. The proof is complete.

O

The following lemma is significant to obtaining the result in this article.

Lemma 3.2 Suppose that (H;) and (Hy) hold. Then the operator A : X1 — Xj is completely
continuous.

Proof We first show that the operator F maps X; into Xy under (Hy).
In fact, for any u € X3, by an argument similar to (3.4)-(3.5), from (H4) combined with
(3.2)-(3.3), it follows that

If (,u(®), u/ )| < D(8) + Ny |ua(0)| ™ + Not|us'(2)]
< (t) + Nyt a1 + Npt(3 — ) 26302 | 2

<o) + LD (N flul ! + No(3 - ) ull?), te(0,1], (3.6)
and so
|27 f (&, ue), u (0) ]| < 27p(t) + Nillull]' + No(B —a)|ull 2, te(0,1] 3.7)

noting that 61,6, € (0,1) and 1 < < 2.

Thus, according to hypothesis (H;), formulae (3.6)-(3.7) ensure that Fu € Xy, noting that
¢ € Xp.

Now, we prove that the operator A : X; — X; is completely continuous.

First of all, in view of Lemma 2.5, we know that the operator A : X; — X; because of the
fact that F: X; — Xy and A = TF.

It remains to show that the operator A is completely continuous. The following proof is
divided into two steps.

Step 1. We show that the operator A is compact on X;.

In fact, assuming that © is an arbitrary set in Xj, there exists M > 0 such that |ju|; <M
for all u € Q. Thus, from (3.7), it follows that

[Eullo < sup £27%¢(t) + NuM™ + No(3 — )M™ 2 N.
te(0,1]

Therefore, the set B = {h|h = Fu,u € Q} is bounded in Xy, and therefore, 7B is a compact
set in view of Lemma 2.5. That is, A2 is a compact set, owing to the fact that A = TF and
B =FQ. Hence, A is a compact operator.
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Step 2. We show that the operator A is continuous on Xj.
Let {u,};2, be an arbitrary sequence in X; with u,, — 1o € X;. Then there exists M > 0
such that ||u,|; <M, n=0,1,2,.... Thus, from (3.7), it follows that

|27 Fu, ()] < |70 ()| + Nilluall}! + No(3 — @) |12
< sup [2p(®)| + N\\M* + N3 - )M™ EN (3.8)
te(0,1]
forn=0,1,2,....

The following proof is divided into two parts.
Part 1. By (2.25), we have

|27 (Au,(2) = Auo(2))|

1
< tf Gl(s)|Fun(s) —Fuo(s)‘ ds

/ |G2(s)| |Fun(s) Fuo(s)| ds+ / (t—s5)*" 1|Fun(s) Fuo(s)| ds
! 1
< /0 (Gl(s) + |G2(s)’ + m(l —s)* )’Fu,, uo(s)| ds, te(0,1]. (3.9)

By (2.28)-(2.29), we get

! 1 5a +2
/0 (Gl(s) + ’Gz(S)‘ + @(1 —s)"‘_1>s°"2 ds < #{:_1) < +00.

So, for any ¢ > 0, by the absolute continuity of Lebesgue integral, there exists 0 < § < 1 such
that

8
ZN/O (Gl(s) + ’Gg(s)} + ﬁ(l —s)"‘_1>s""2 ds < %,

and therefore,

s
a-1 €
./o (Gl(s) + |Gz(s)| + m(l —) )|Fun(s) —Fuo(s)| ds < 5 (3.10)

holds for n =1,2,..., because |Fu,(s) — Fuo(s)| < 2Ns*2, s € (0,8], n=1,2,..., observing
(3.8).
On the other hand, for all £ € [§,1], formulae (3.2)-(3.3) imply that

(@) < 2l <8°7°M, n=0,12,...,

|, ()] < B = a)t*Nluuly <28°°M, n=0,1,2,...,
and

|ta(s) — 0(8)| < 8Nty — ollr, n>=1, (3.11)

| () = 10(8))'| < 28° 2|ty — oy, > 1. (312)
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Since f (¢, x, y) is uniformly continuous on [8,1] x [-8%72M, §*2M] x [-283M, 28*3M],
from (H;), for € given as before, there exists Kj > 1 such that

|Fun(s) —Fuo(s)| < ga, se[8,1], (3.13)

when 7 > Kj, noting that (3.11)-(3.12), where d = (fs (G1(s) + |Ga(s)| + )d YL

Thus, when n > K, formula (3.13) implies that

1
/ (Gl(s) + |Gz(s)| —— (1 =s)%" 1) |Fun(s) Fuo(s)| ds < - (3.14)
5 F( )

holds forn=1,2,....
Substituting (3.10) and (3.14) into (3.9), we have that

657 (Aus(6) - Au() | <, £€(0,1),
when n > K3, and so

sup |t2_"‘ (Au,,(t) —Au(t))| <e¢ (3.15)
te(0,1]

when n > Kj.
Part 2. By (2.26), we have

(227 (Aun(£) - Auo (D)) |

1
5/ Gl(s)|Fu,,(s)—Fu0(s)|ds
0

+ ZF(—ao)z - /Ot (t- s)a-l‘Fun(s) - Fuo(s)’ ds
tz_a ' oa—2
-1/, (¢ - )% | Fu,(s) — Fuo(s)| ds

/1 2-a (1 s\
= Gl(s)|Fun (s) - Fuo(s)| ds + (1 - z) |Fun(s) — Fuyg (s)| ds
0 0

I'(e)

1 t a-2
fan, (177) - Fat]s

N

t a-2
/G1(5)|Fu,,(s) Fuo(s)|ds+r() <1 z) |Fun(s)—Fuo(s)|ds, (3.16)

because of the fact that 1%(;) + ﬁ and 1-3) Te(-
For ¢ given as before, take 0 < §; < mm{l (m)a 1}, where N is given by (3.8).

(i) If £ € (0, &1], then from (3.8) it follows that

1 t s a-2
@/o <1_E> | Fit(s) ~ Futo(s)| ds

= 1 ‘ s o a-2| 2-a
_m/o <1_Z) $*72[%7 (Fit(s) — Futo(s))| ds

S)Ol—2
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2N ! -2
(1 - f) %2 ds

<
~ T(e) Jo t
s=tt 2N !
=L _fx—l/ (l_r)rx—2ra—2 dt

') 0

2N e
< —8'Bla-lLa-1)<-. 3.17
=T (x-la-1)< 3 (3.17)

(ii) If £ € (61,1], then

t a=2
ﬁfo (1—;) |Fu,,(s)—Fu0(s)fds

8 a=-2
= ﬁfo (1— ;) |Fu,,(s)—Fu0(s)|ds

1 t s a2
+ m /51 (1 - Z) |Fu,,(s) —Fuo(s)| ds. (3.18)

81 s a-2
(1 - E) |Fu,,(s) - Fuo(s)| ds

3
Sis
S~

-2

) ’Fu,,(s)—Fuo(s)|ds
-2

) %2 ds

s=sz 2N 1
ar 27 so-l / 1 - 7)? 272 ds
IM(a) 0

2N
" T(a)

|«

=<
iy
A

£
8% 'Bla-1,a—-1)< 3 (3.19)
By an argument similar to (3.13), we can know that there exists K, > 1 such that

|Fu,,(s) —Fuo(s)| < %8, s € [8,1], (3.20)

when n > K, where d; = (o« — 1)I" ().
Thus, from (3.20), for ¢ € (81,1], it follows that

1 tlsa_zF()F()d i t1sa_2d
m&(_;) |MnS_u0S|S<3F(a) 51<_E> ’

dye €
“3@-1)r@ 3 (321)

when n > K;.
By (3.18) together with (3.19) and (3.21), we have

1 t a-2 9
m/() (1-%) |Fun(s)—Fuo(s){ds<§, t€(0,1], (3.22)

when n > Ks.

Page 19 of 24
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On the other hand, from the proof in Part 1 (see the deducing on (3.10) and (3.14)), there
exists K3 such that the inequality

1
/ Gy (5)| Futn(s) — Fuo(s)| ds < % (3.23)
0

holds when #n > K.
Define L = max{K, K3}. From (3.16) together with (3.17), (3.22) and (3.23), we have

(- (A0 - Awo(0) | <5, £,

when # > L, and so

sup | (£ (Aun(t) - Aug (1)) | < & (3.24)
te(0,1]
when > L.
Formulae (3.15), (3.24) yield that Au,, — Au, in X;. That is, the operator A is continuous
on X;. The proof is complete. O

In view of Lemma 2.3, it is easy to know that u € X; is a solution of BVP (1.1)-(1.2) if and
only if # € X; is a fixed point of the operator A. Therefore, we can focus on seeking the
existence of a fixed point of A in Xj.

Let D = %(L1 + (3 — a)Ly), where Ly, L, is given by (Hs).

We are now in a position to state the first theorem in the present paper.

Theorem 3.1 Suppose that (H;)-(Hs) hold. If D < 1, then BVP (1.1)-(1.2) has a unique so-

lution.

Proof According to (H;)-(Hy), we know that A : X; — Xj by Lemma 3.1. By an argument
similar to (2.30), for any u,v € Xj, in view of (H3) together with (2.25), (2.28) and (2.29),

we have

|27 (Au(t) - Av(t))|

1
< t/ Gl(s)|Fu(s) —Fv(s)| ds
0

t2—01
')

1 1 tZ—ot t
=2 =2 _ya-loa—2
< I:t/o Gi(s)s ds+/(; |G2(s)‘s ds + F(ot)/o (t—5)*"s ds]

(L1 + B =a)Ly) lu vl

- (5a +2)T (a0 - 1)(L1 + (3 —a)Ly)
- 4T (20 - 1)

1 t
+ / |G2(s)| . |Fu(s) - Fv(s)| ds + / (£ —s)*t |Fu(s) - Fv(s)| ds,
0 0

llee = viix

éDl””l_V”h t€(0:1]1
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because

|Fu(s) - Fv(s)| < L1|u(s) - v(s)| + L2s| (u(s) - V(S)),|
<" (Li+(B-a)Ly)llu—vl1, s€(0,1]

by (3.2)-(3.3).
Thus,

sup ’t2_0‘ (Au(t) —Av(t))’ <Di|lu—v|;. (3.25)
te(0,1]

Similarly, from (2.26) together with (2.28), (2.31), we have

sup | (€7 (Au(t) - Av(8)))'| < Dallu-vi, (3.26)
te(0,1]

where D, = 3‘1{ I;Z i) (L +(3- a)Lz)

From the fact that 2%*= 50”2 > 3¢ 5> by (3.25) and (3.26), we immediately have that

lAu — Avlly < Dllu - vl

As D <1, A is a contraction mapping. So, by the contraction mapping principle, A has a
unique fixed point #. That is, « is the unique solution of BVP (1.1)-(1.2). O

We give another result in this paper as follows.
Theorem 3.2 If (H;), (H4) hold, then BVP (1.1)-(1.2) has at least one solution.

Proof First, by Lemma 3.2, we know that A : X; — X; is completely continuous.

Let po = (51;21;(—“151)' o = 3?;23 } qo = SUP;c(o) 2 B(t), do = poqo, di = eoqo, and 0 =
max{@l,eg}. Put D =p()(N1 + (3 (X)Nz) G-= eo(Nl + (3 - Ol)Ng).

Take R > max({l, 2d0,2d1,(2D)ﬁ,(2G)ﬁ}, and set © = {u: ||ul; < R}. Now, we prove

that

lAully < llulli, Vue€df. (3.27)

In fact, for any u € 92, by (Ha4) and (2.25) together with (3.7), we have

|27 Au(t)| < t/lG ( ' .
< 1 s)|Fu(s)| ds + |G2(S)| |Fu(s)| ds
0 0
2—a t
+ It‘(a) /0 (t—s)“ﬂFu(s)}ds

1 1 1
< |:/0 Gi(s)s* 2 ds+/0 |G2(s)|s°"2 ds + F(la)/o (1 —5)* 1522 ds:|

('sup 2@ + Nullull + Na(3 - )] 7

te(0,1]
5a +2)'a -1
< Bas DD (up 290 + Nulull? + No(3 - )l
4T Q2o -1) N


http://www.advancesindifferenceequations.com/content/2013/1/306

Chai Advances in Difference Equations 2013, 2013:306
http://www.advancesindifferenceequations.com/content/2013/1/306

= po (q() + N1R91 + N2(3 - Ol)RHZ)
< po(qo + (N1 + 3 —)N>)R?)
=dy+DR’ <R,

because

1 1
/ Gi(s)s*2 ds+/ |G1(s)|s"‘_2 ds + —— / (1-s)*"15*2 ds < po,
0 0 I (er)

noting that (2.28), (2.29) and keeping in mind the choice of R and |u|l; =R
Thus,

sup |t2_°‘Au(t)| <R (3.28)
te(0,1]

Similarly, by (Hs) and (2.26) together with (3.7), we have

2 —a ! 2-«a 1-a ! a-1
(£ Ault }</(; Gi(s)|Fu(s)| ds + F(a)t /O(t—s) |Fu(s)| ds

a-2
1
G 012d 101 aloz2d
</o 1(s)s s+ f(t s) s
a2a2
I‘(oz 1 /(t s) ds)

- (qo + NiR" + N»(3 — a)R™)

<(xF(a—1) 2-a)T(a-1) ,, T(a-1) a_1>
= + T+ t
Ra-1)  T'Qa-1) T'Qa—-2)

. (qo + NiR" + N, (3 - a)R92)

N

eo(qo + NiR™ + N»(3 — )R?)
€0 (q() + (N1 + (3 - O()Nz)Rg)

N

1
=d +GR < (5 + GR("I)R <R

noting that (2.28), (2.29), (2.31) and the choice of R as well as || u||; = R
Thus,

sup |(£“Au(t))’| < R. (3.29)
te(0,1]

Summing up (3.28) and (3.29), we have that ||Au||; < R. That is, ||Au||; < ||u||; because
ll]l; = R. So, the relation (3.27) holds. As a consequence of Lemma 2.6, the operator A
has at least one point . That is, # is a solution of BVP (1.1)-(1.2). O

Example 3.1 Consider the following anti-periodic boundary value problem:

3
D¢, u(t) = atP + 1o¢;1(1+t> 1‘:7,(;())' f In(1 + (/' (£))%),

h ! (3.30)
Bu)imor = ~Ou@pm,  uO) g0 = 3 u@)), s
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1
10/ (t+1) T+]x]

ﬁln(l + y?) satisfies |f(t,%2,92) — f(t,x1,1)| < ﬁwz - x| + ﬁlyz - »l, and
SUP,c(0,1] |£27%f(¢,0,0)| < co. Further, L; = ﬁ,Lg = %, and D = % < 1. Asa consequence
of Theorem 3.1, BVP (3.30) has a unique solution.

where o = %, B> —% and a € R. Clearly, the function f(¢,x,y) = at® +

Example 3.2 Consider the following anti-periodic boundary value problem:

3
2 _ % : u(t) : 5 2
DZ,u(t) = (1 +eM)t 2 + (tant) sin o 2(sint) In(1 + (2 (¢))*),

t€(0,1), (3.31)
Bu@or = ~2uBp,  (Eule))] g = (1)),

where o = %, M € R. Clearly, the function f(t,x,y) = (1 + eMt)t‘% + (tant)ﬁ +

2(sinzt) In(1+ (&/y)?) satisfies |f (¢, x,y)| < ¢(¢) + (tan1)|x| 3y 2]yl 5 where ¢ = (1+eM)3 ¢
Xo, So, all the assumptions of Theorem 3.2 are satisfied. Hence BVP (3.16) has at least one
solution.
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