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Abstract
Let us consider groups G1 = Zk ∗ (Zm ∗Zn), G2 = Zk × (Zm ∗Zn), G3 = Zk ∗ (Zm ×Zn),
G4 = (Zk ∗Zl) ∗ (Zm ∗Zn) and G5 = (Zk ∗Zl)× (Zm ∗Zn), where k, l,m,n ≥ 2. In this
paper, by defining a new graph �(Gi) based on the Gröbner-Shirshov bases over
groups Gi , where 1≤ i ≤ 5, we calculate the diameter, maximum and minimum
degrees, girth, chromatic number, clique number, domination number, degree
sequence and irregularity index of �(Gi). Since graph theoretical studies (including
such above graph parameters) consist of some fixed point techniques, they have
been applied in such fields as chemistry (in the meaning of atoms, molecules, energy
etc.) and engineering (in the meaning of signal processing etc.), game theory and
physics. In addition, the Gröbner-Shirshov basis and the presentations of algebraic
structures contain a mixture of algebra, topology and geometry within the purposes
of this journal.
MSC: 05C25; 13P10; 20M05; 20E06; 26C10
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1 Introduction and preliminaries
In [, ], the authors have recently developed a new approach between algebra (in the
meaning of groups andmonoids) and analysis (in themeaning of generating functions). In
a similarmanner, in this paper, wemake a connection between graph theory andGröbner-
Shirshov bases. In the literature, there are no works related to the idea of associating a
graphwith theGröbner-Shirshov basis of a group. So, we believe that this paper will be the
first work in that direction. As we depicted in the abstract of this paper, while graph the-
oretical studies actually consist of some fixed point techniques, so they have been applied
in different branches of science such as chemistry (in the meaning of atoms, molecules,
energy etc.) and engineering (in the meaning of signal processing etc.), Gröbner-Shirshov
bases and algebraic presentations contain a mixture of algebra, topology and geometry
within the purposes of this journal.
In detail, in this paper, we investigate the interplay between the group-theoretic property

of a group G and the graph-theoretic properties of �(G) which is associated with G. By
group-theoretic property, while we deal with the Gröbner-Shirshov basis of a given group,
by graph-theoretic property, we are interested in the diameter, maximum and minimum
degrees, girth, chromatic number, clique number, domination number, degree sequence
and irregularity index of the corresponding graph of group. In the literature, there are
some important graph varieties and works that are related to algebraic and topological
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structures, namely, Cayley graphs [–] and zero-divisor graphs [–]. But the graph con-
structed in here is different from the previous studies and is also interesting in terms of
using Gröbner-Shirshov basis theory during the construction of the vertex and edge sets.
So, this kind of graph provides not only the classification of algebras (groups, semigroups),
but also solving the problems of normal forms of elements, word problem, rewriting sys-
tem, embedding theorems, extensions of groups and algebras, growth function, Hilbert
series, etc. As is well known, these problems are really important in fixed point results
since they have a direct connection to nature sciences.
Throughout this paper, for k, l,m,n≥ , we consider special groupsG = Zk ∗ (Zm ∗Zn),

G = Zk × (Zm ∗Zn), G = Zk ∗ (Zm ×Zn), G = (Zk ∗Zl) ∗ (Zm ∗Zn) and G = (Zk ∗Zl)×
(Zm ∗Zn) associated with the presentations

PG = 〈x,a,b;xk = ,am = ,bn = 〉,
PG = 〈x,a,b;xk = ,am = ,bn = ,xa = ax,xb = bx〉,
PG = 〈x,a,b;xk = ,am = ,bn = ,ab = ba〉,
PG = 〈x, y,a,b;xk = , yl = ,am = ,bn = 〉,
PG = 〈x, y,a,b;xk = , yl = ,am = ,bn = ,xa = ax,xb = bx, ya = ay, yb = by〉,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

()

respectively. By recalling the fundamentals of the Gröbner-Shirshov (GS) basis and then
obtaining the GS-basis of each above groupGi, in Section ., we define new simple, undi-
rected graphs �(Gi) associated with GS-bases of these groups. Then in Section , we com-
pute the diameter, maximum and minimum degrees, girth, chromatic, clique and domi-
nation numbers, degree sequence and finally irregularity index of graphs �(Gi) for each
 ≤ i≤ .

Remark  The reason for us to present our results on these above parameters actually
comes from their equality status. In other words, each result will be a good example for
certain equalities over graph theoretical theorems.

(I)Preliminaries for graph theory.We first recall that for any simple graphG, the distance
(length of the shortest path) between two vertices u, v of G is denoted by dG(u, v). If no
such path exists, we set d(x, y) := ∞. Actually, the diameter of G is defined by

diam(G) =max
{
dG(x, y) : x and y are vertices of G

}
.

The degree degG(v) of a vertex v of G is the number of vertices adjacent to v. Among all
degrees, themaximum degree �(G) (or theminimum degree δ(G)) of G is the number of
the largest (or the smallest) degrees in G ([]).
It is known that the girth of a simple graph G, gr(G) is the length of the shortest cycle

contained in G. However, if G does not contain any cycle, then the girth of it is assumed
to be infinity.
Basically the coloring of G is an assignment of colors (elements of some set) to the ver-

tices ofG, one color to each vertex, so that adjacent vertices are assigned distinct colors. If
n colors are used, then the coloring is referred to as n-coloring. If there exists an n-coloring
of G, then G is called n-colorable. The minimum number n for which G is n-colorable is
called a chromatic number ofG and is denoted by χ (G). There exists another graph param-
eter, namely the clique of a graphG. In fact, depending on the vertices, each of themaximal
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complete subgraphs ofG is called a clique. Moreover, the largest number of vertices in any
clique of G is called the clique number and denoted by ω(G). In general, χ (G) ≥ ω(G) for
any graph G [] and it is worth studying the cases that imply equality.
A subset D of the vertex set V (G) of a graph is called a dominating set if every vertex

V (G)\D is joined to at least one vertex of D by an edge. Additionally, the domination
number γ (G) is the number of vertices in the smallest dominating set for G [].
There also exists the term degree sequence, denoted by DS(G), which is a sequence of

degrees of vertices of G. In [], a new parameter for graphs has been recently defined,
namely the irregularity index of G denoted by t(G), which is the number of distinct terms
in the set DS(G).
(II)Preliminaries for theGröbner-Shirshov basis. Since themain body of the paper is built

up by considering the Gröbner-Shirshov (GS) basis, it is worth presenting some historical
background about it as in the following.
The Gröbner basis theory for commutative algebras, which provides a solution to the

reduction problem for commutative algebras, was introduced by Buchberger []. In [],
Bergman generalized the Gröbner basis theory to associative algebras by proving the ‘dia-
mond lemma.’ On the other hand, the parallel theory of Gröbner bases was developed for
Lie algebras by Shirshov []. The key ingredient of the theory is the so-called composi-
tion lemma which characterizes the leading terms of elements in the given ideal. In [],
Bokut noticed that Shirshov’s method works for associative algebras as well. Thus, for this
reason, Shirshov’s theory for Lie algebras and their universal enveloping algebras is called
the Gröbner-Shirshov basis theory. There are some specific studies on this subject related
to some algebraic structures (see, for instance, [–]). Wemay finally refer to the papers
[–] for some other recent studies of Gröbner-Shirshov bases. In the following, we give
some fundamental facts about this important subject.
Let K be a field, and let K〈X〉 be the free associative algebra over K generated by X. De-

note by X∗ the free monoid generated by X, where the empty word is the identity denoted
by . For a wordw ∈ X∗, we denote the length ofw by |w|. Suppose thatX∗ is a well-ordered
set. Then every nonzero polynomial f ∈ K〈X〉 has the leading word f . If the coefficient of
f in f is equal to one, then f is called monic.
Let f and g be two monic polynomials in K〈X〉. We then have two compositions as fol-

lows:
- If w is a word such that w = f b = ag for some a,b ∈ X∗ with |f | + |g| > |w|, then the
polynomial (f , g)w = fb – ag is called the intersection composition of f and g with
respect to w. The word w is called an ambiguity of intersection.

- If w = f = agb for some a,b ∈ X∗, then the polynomial (f , g)w = f – agb is called the
inclusion composition of f and g with respect to w. The word w is called an ambiguity
of inclusion.

If g is monic, f = agb and α is the coefficient of the leading term f , then transformation
f 	→ f – αagb is called elimination (ELW) of the leading word of g in f .
Let S ⊆ K〈X〉 with each s ∈ S be monic. Then the composition (f , g)w is called trivial

modulo (S,w) if (f , g)w =
∑

αiaisibi, where each αi ∈ K , ai,bi ∈ X∗, si ∈ S and aisibi < w.
If this is the case, then we write (f , g)w ≡  mod(S,w). We call the set S endowed with
the well-ordering < a Gröbner-Shirshov basis for K〈X | S〉 if any composition (f , g)w of
polynomials in S is trivial modulo S and corresponding w.
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The following lemma was proved by Shirshov [] for free Lie algebras with deg-lex
ordering (see also []). In , Bokut [] specialized Shirshov’s approach to associative
algebras (see also []). Meanwhile, for commutative polynomials, this lemma is known
as Buchberger’s theorem (see [, ]).

Lemma  (Composition-diamond lemma) Let K be a field,

A = K〈X | S〉 = K〈X〉/ Id(S)

and let < be a monomial ordering on X∗, where Id(S) is the ideal of K〈X〉 generated by S.
Then the following statements are equivalent:
 S is a Gröbner-Shirshov basis.
 f ∈ Id(S)⇒ f = asb for some s ∈ S and a,b ∈ X∗.
 Irr(S) = {u ∈ X∗ | u �= asb, s ∈ S,a,b ∈ X∗} is a basis for the algebra A = K〈X | S〉.

If a subset S of K〈X〉 is not a Gröbner-Shirshov basis, then we can add to S all nontrivial
compositions of polynomials of S, and by continuing this process (maybe infinitely), we
eventually obtain a Gröbner-Shirshov basis Scomp. Such a process is called the Shirshov
algorithm.

1.1 A new graph based on GS-bases
In the following, for  ≤ i ≤ , by taking into account each group Gi presented by PGi =
〈Xi;Ri〉, as in (), we define a undirected graph �(Gi) = (Vi,Ei) and all results will be con-
structed on it.
The vertex Vi and edge Ei = {(vp, vq)} sets consist of
- generators of Gi,
- leading elements of polynomials in the GS basis of Gi,
- ambiguities of intersection or inclusion in the GS basis of Gi,

and
- vp and vq form an ambiguity with each other,
- ∃vr ∈ X∗

i such that vr = xvp or vr = vqy for some x, y ∈ Xi,
- vp is reducible to vq,

respectively.
Since the Gröbner-Shirshov basis plays an important role in the definition of this new

graph, let us define these bases for each of the groupsGi where  ≤ i≤ . To do that, let us
assume an ordering among the generators of Gi ( ≤ i ≤ ) as x > a > b and the generators
of G and G as x > y > a > b.
Now, let us first consider PG . Since we have no intersection or inclusion compositions,

the Gröbner-Shirshov basis of G is S = {xk – ,am – ,bn – }.
For PG , we have the ambiguities of intersection as xka, xam, xkb, xbn. Since these are

trivial to modulo R, the Gröbner-Shirshov basis of G is S = {xk – ,am – ,bn – ,xa –
ax,xb – bx}.
For PG , we have the ambiguities of intersection as amb and abn. Since these are trivial

to modulo R, the Gröbner-Shirshov basis of G is S = {xk – ,am – ,bn – ,ab – ba}.
ForPG , since we have no intersection or inclusion compositions, the Gröbner-Shirshov

basis of G is S = {xk – , yl – ,am – ,bn – }.

http://www.fixedpointtheoryandapplications.com/content/2013/1/71
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Figure 1 Modals of the new graph. (a) The general graph �(Gi) based on the Grobner-Shirshov basis.
(b) The graph �(G), where G = Z3 × (Z3 ∗Z3) as defined in Example 1.

Finally, for PG , we have the ambiguities of intersection as

xka,xam,xkb,xbn, yla, yam, ylb, ybn.

Since these are trivial to modulo R, the Gröbner-Shirshov basis of G is S = {xk – , yl –
,am – ,bn – ,xa – ax,xb – bx, ya – ay, yb – by}.

2 Graph theoretical results over�(Gi)
In this section, by considering the graph �(Gi),  ≤ i≤ , we mainly deal with some graph
properties, namely diameter, maximum and minimum degrees, girth, chromatic number,
clique number, domination number, degree sequence and irregularity index of �(Gi).

2.1 Case 1: the graph �(G1), where G1 = Zk ∗ (Zm ∗Zn)
If we consider the graph of the group G, then we have a subgraph of Figure (a) with ver-
tices v = am, v = a, v = xk , v = x, v = b and v = bn. In this graph the edge set depends
on the orders of factor groups of G. If we take k,m,n = , then by the edge definition, we
have the edges α, α, α in this subgraph of Figure (a). In the case k,m,n > , we do not
have any edges. In the remaining case, i.e., one or two orders of factor groups of G are
equal to two, we have one or two edges among α, α and α.
If we reconsider that the graph in Figure (a) depends on the group G with above facts,

then the picture will be shown as an unconnected graph which is not related to the num-
bers k,m and n. Thus the first result is the following.

Theorem  diam(�(G)) = ∞.

http://www.fixedpointtheoryandapplications.com/content/2013/1/71
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Theorem  The maximum and minimum degrees of the graph �(G) are

�
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > 

and

δ
(
�(G)

)
=

{
; k,m,n = ,
; at most two of k,m,n =  or k,m,n > ,

respectively.

Proof If we take that at least one of k, m, n is two, then we have at least one of the edges
α, α, α. Thus we get �(�(G)) = . If we consider k = m = n = , then since we have
edges α, α, α, this gives us that all vertices in the graph �(G) have degree one. So,
�(�(G)) = δ(�(G)) = . Now we consider the case k,m,n > . In this case, since we have
no edges in the graph�(G), we obtain�(�(G)) = δ(�(G)) = . If we take that atmost two
of k, m, n are equal to two, then we get four vertices having degree one and two vertices
having degree zero. Therefore, in this case, δ(�(G)) = . �

Theorem  For any k,m,n �= , the girth of the graph �(G) is equal to infinity.

Proof Since we just have the edges α, α and α depending on the numbers k, m, n, we
do not have any cycle in the graph �(G). So, gr(�(G)) = ∞. �

Theorem  The chromatic number of �(G) is equal to

χ
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

Proof If we take that at least one of k,m, n is two, then we have at least one of the edges α,
α, α. Thus we use two different colors since there exist neighbor vertices. By the edge
definition of �(G), we do not have any edges between generators and elements of three
factor groups of G. Thus we obtain χ (�(G)) = . If we consider k,m,n > , then since we
do not have any edges in the graph, we can label all vertices with the same color. Therefore
χ (�(G)) = . �

Theorem  The clique number of �(G) is equal to

ω
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

Proof The proof of this theorem is similar to the proof of Theorem . If we take that at
least one of k, m, n is , then we have at least one of the edges α, α, α, i.e., we have
a disconnected graph which has at least three complete subgraphs. Since these complete
subgraphs have two vertices, we get ω(�(G)) = . If we consider k,m,n > , then since we
do not have any edges in the graph, the number of vertices in maximal clique is one. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/71
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Theorem  The domination number of �(G) is equal to infinity.

Proof For all cases of k, m, n, since the graph �(G) is disconnected, we get γ (�(G)) =
∞. �

Theorem  The degree sequence and irregularity index of �(G) are given by

DS
(
�(G)

)
=

⎧⎪⎨
⎪⎩
(, , , , , ); k,m,n = ,
(, , , , , ); k,m,n > ,
(i, i, i, i, i, i); otherwise,

where ij = ,  for  ≤ j ≤ , and

t
(
�(G)

)
=

{
; k,m,n≥ ,
; at least one of k,m,n is equal ,

respectively.

Proof By the graph �(G), if k, m, n are equal to two and greater than two, then the de-
grees of the vertices are one and zero, respectively. But if at least one of k, m, n is equal
to two, then some vertices have degree one and some of them have degree zero. Hence,
by the definition of a degree sequence, we clearly obtain the set DS(�(G)), as depicted.
Nevertheless, it is easily seen that the irregularity index t(�(G)) =  and , as required.

�

2.2 Case 2: the graph �(G2), where G2 = Zk × (Zm ∗Zn)
If we consider the graph of the group G, then we have a subgraph of Figure (a) with
vertices v = am, v = a, v = xka, v = xk , v = x, v = xam, v = xa, v = xkb, v = b, v = bn,
v = xbn and v = xb. In this graph the edge set depends on the orders of factor groups of
G. If we take k,m,n =  then, by the edge definition, we have the edges αj,  ≤ j ≤ . In
the case k,m,n > , we do not have edges α, α, α, α, α, α and α in �(G).

Theorem  The diameter of the graph �(G) is equal to four.

Proof By considering the graph of the group G, we say that the diameter of the graph
�(G) does not depend on the numbers k, m, n. For any k, m, n, in the graph �(G) the
vertices v = xa and v = xb are adjacent to vertices v, v, v, v, v, v and v, v, v, v,
v, v, respectively. If we connect any two vertices, except v and v, via the shortest path,
we need to pass through the vertices v and v. For instance, we need the edges α, α,
α and α to connect two vertices v = a and v = b. This gives us diam(�(G)) = . �

Theorem  The maximum and minimum degrees of the graph �(G) are

�
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > 

http://www.fixedpointtheoryandapplications.com/content/2013/1/71
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and

δ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.

Proof For k,m,n = , in the graph of G the vertices v = xa and v = xb are adjacent to
vertices v, v, v, v, v, v and v, v, v, v, v, v, respectively. Since these vertices have
the largest degrees in �(G), we get �(�(G)) = . The other vertices v, v, v, v, v, v,
v and v have degree three and the remaining vertices v and v have degree five. So,
the minimum degree of the graph �(G) is δ(�(G)) = . Now we take k,m,n > . In this
case, we do not have edges α, α, α, α, α, α and α. Thus the vertices v, v, v,
v have degree four and the remaining vertices have degree two. So, �(�(G)) =  and
δ(�(G)) = . �

Theorem  The girth of the graph �(G) is equal to

gr
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

Proof By the considering the graph of the group G, we have twelve triangles and five
squares for k =m = n =  and k,m,n > , respectively. By the definition of girth, this gives
us the required result. �

Theorem  The chromatic number of the graph �(G) is equal to

χ
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

Proof If the graph �(G) has one of the following forms: Z × (Zm ∗ Zn), Zk × (Z ∗ Zn),
Zk × (Zm ∗ Z), Z × (Z ∗ Zn), Z × (Zm ∗ Z), Zk × (Z ∗ Z) or Z × (Z ∗ Z), then
we have similar neighbors for the graphs of each group. So, we can label the vertices with
three different colors. If k,m,n �= , then in the graph of G each vertex has two or four
neighbors. In this graph, since the opposite vertices, which have an edge between them,
can be labeled with the same color, we have two different colors. Hence χ (�(G)) = .

�

Theorem  The domination number of the graph �(G) is

γ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

Proof Firstly, we consider the case k =m = n = . Since the vertices v = xa and v = xb
are connected with all other vertices in the graph of G, we can take the dominating set
as {v, v}. Thus γ (�(G)) = . In the case k,m,n �= , since the number of edges is de-
creasing, the number of connected edges is decreasing as well. In this case, let us choose

http://www.fixedpointtheoryandapplications.com/content/2013/1/71
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the dominating set as {v, v, v, v}. Every vertex, except the vertices in the dominating
set, is joined to at least one vertex of this dominating set by an edge. Therefore we have
γ (�(G)) = . �

Theorem  The clique number of �(G) is equal to

ω
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

Proof In the graph �(G), for k =m = n = , we have twelve complete subgraphs. These
are obtained by the vertices v – v – v, v – v – v, v – v – v, v – v – v, v – v – v,
v – v – v, v – v – v, v – v – v, v – v – v, v – v – v and v – v – v. Hence
ω(�(G)) = . If k,m,n �= , then we can find the smallest complete subgraphs as edges
obtained by any two vertices in the graph �(G). So, ω(�(G)) = . �

Theorem  The degree sequence and irregularity index of �(G) are given by

DS
(
�(G)

)
=

{
(, , , , , , , , , , , ); k,m,n = ,
(, , , , , , , , , , , ); k,m,n > 

and

t
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.

Proof It is easily seen by the graph �(G). �

Example  Let us consider the group G = Z × (Z ∗Z) presented by

PG =
〈
x,a,b;x = ,a = ,b = ,xa = ax,xb = bx

〉
,

and x > a > b, the graph �(G) as drawn in Figure (b), with the vertex set

V
(
�(G)

)
=

{
x,a,b,x,a,b,xa,xb,xa,xb,xa,xb

}
.

By the result of Theorems  and , we have diam(�(G)) = , �(�(G)) = , δ(�(G)) = ,
gr(�(G)) = , χ (�(G)) = , γ (�(G)) = , ω(�(G)) = , DS(�(G)) = (, , , , , , , , , ,
, ) and t(�(G)) = .

2.3 Case 3: the graph �(G3), where G3 = Zk ∗ (Zm ×Zn)
If we consider the graph of the group G, then we have a subgraph of Figure (a) with
vertices v = am, v = a, v = abn, v = bn, v = b, v = amb, v = ab, v = x and v = xk . If we
take k,m,n = , then by the edge definition, we have the edges αj, ≤ j ≤  and α in this
subgraph of Figure (a). In the case k,m,n > , we do not have edges α, α, α, α, α in
the graph �(G).
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Theorem  The maximum and minimum degrees of the graph �(G) are

�
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > 

and

δ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.

Proof Let us consider the graph �(G) and take k,m,n = . In this case, the vertex v has
the maximum degree six and the vertices v and v have the minimum degree one. But
if we take k,m,n > , then since there do not exist the edges α, α, α, α and α in
the graph �(G), we obtain the maximum degree four by the vertex v and the minimum
degree zero by the vertices v and v. �

Theorem  The girth of the graph �(G) is

gr
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

Proof Firstly, we take account of the case k =m = n = . In this case, we have six triangles
which have the edges α – α – α, α – α – α, α – α – α, α – α – α, α – α – α,
α –α –α in the graph �(G). Thus gr(�(G)) = . Now we consider the case k,m,n > .
In this case, since we do not have the edges α, α, α, α and α, we have two squares
which have the edges α –α –α –α and α –α –α –α in the graph �(G). Therefore
gr(�(G)) = . �

Theorem  The chromatic number of the graph �(G) is

χ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

Proof Let us take k =m = n = . In the graph �(G), since the vertex v is connected with
all vertices except the vertices v and v, this vertex must be labeled by a different color
than other vertices. In addition, since other vertices are connected with each other doubly,
they can be labeled by two different colors. This gives us χ (�(G)) = . In the case k,m,n >
, since we have two squares, as in the previous proof, in the graph �(G), it is enough to
label two adjacent vertices by different colors. Hence χ (�(G)) = . �

Theorem  The domination number of the graph �(G) is equal to infinity.

Proof For all cases of k, m, n, since the graph �(G) is disconnected, we get γ (�(G)) =
∞. �
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Theorem  The clique number of the graph �(G) is equal to

ω
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

Proof For the case k =m = n = , we have six maximal complete subgraphs of the graph
�(G) which are triangles as in the proof of Theorem . Thus the largest number of the
vertices in any maximal complete subgraph is three. If we take k,m,n > , then we get
eight maximal complete subgraphs, namely α, α, α, α, α, α, α and α, having two
vertices. So, ω(�(G)) = . �

Theorem  The degree sequence and the irregularity index of �(G) are given by

DS
(
�(G)

)
=

{
(, , , , , , , , ); k,m,n = ,
(, , , , , , , , ); k,m,n > 

and

t
(
�(G)

)
= ; k,m,n≥ ,

respectively.

Proof It is easily seen by the graph of the group G. �

2.4 Case 4: the graph �(G4), where G4 = (Zk ∗Zl) ∗ (Zm ∗Zn)
If we consider the graph of the group G, then we get a subgraph �(G) of the graph in
Figure (a) with vertices v = am, v = a, v = xk , v = x, v = b, v = bn, v = yl and v = y.
If we take k, l,m,n = , then by Section ., we obtain the edges α, α, α and α in�(G).
For the case k, l,m,n > , we do not have any edges. On the other hand, since at most three
orders of factor groups of G are equal to two, we have at most three edges between α,
α, α and α.
Since the proof of each condition of the next result is quite similar to the related results

over the group G = Zk ∗ (Zm ∗Zn) in Case , we omit it.

Theorem  Let us consider the group G = (Zk ∗Zl) ∗ (Zm ∗Zn) with its subgraph �(G)
as defined in the first paragraph of this case.

(i) The maximum and minimum degrees of the graph �(G) are

�
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > 

and

δ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.
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(ii) For any k, l,m, n different from one by considering a subgraph of Figure (a), the
girth of the graph �(G) is gr(�(G)) = ∞.

(iii) The chromatic number of the graph �(G) is equal to

χ
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

(iv) The clique number of �(G) is equal to

ω
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

(v) The domination number of �(G) is equal to infinity.
(vi) The degree sequence and the irregularity index of �(G) are given by

DS
(
�(G)

)
=

⎧⎪⎨
⎪⎩
(, , , , , , , ); k,m,n = ,
(, , , , , , , ); k,m,n > ,
(i, i, i, i, i, i, i, i); otherwise,

where ij = ,  (≤ j ≤ ) and

t
(
�(G)

)
=

{
; k,m,n≥ ,
; otherwise,

respectively.

2.5 Case 5: the graph �(G5), where G5 = (Zk ∗Zl)× (Zm ∗Zn)
Similarly as in Case , for the group G, we obtain a subgraph �(G) of the graph in Fig-
ure (a) having vertices v = am, v = a, v = xka, v = xk , v = x, v = xam, v = xa, v = xkb,
v = b, v = bn, v = xbn, v = xb, v = ylb, v = yl , v = y, v = ybn, v = yb, v = yla,
v = v = a, v = v = am, v = yam and v = ya. In this graph, the edge set depends on
the orders of factor groups of G. If we take k, l,m,n = , then, by the adjacency definition
in Section ., we have the edges αj,  ≤ j ≤  with α = α. For the case k, l,m,n > ,
we do not have any edges α, α, α, α, α, α, α, α, α, α, α = α, α, α in
�(G).
In the following result (Theorem  below), we again omit the proof of it as in Theo-

rem  since it is quite similar to the related results over the group G = Zk × (Zm ∗Zn) in
Case .

Theorem  Let us consider the group G = (Zk ∗ Zl) × (Zm ∗ Zn) with its related graph
�(G) as defined in the first paragraph of Case .

(i) The maximum and minimum degrees of the graph �(G) are equal to

�
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > 
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and

δ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.
(ii) The girth of the graph �(G) is

gr
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

(iii) The chromatic number of the graph �(G) is

χ
(
�(G)

)
=

{
; at least one of k,m,n = ,
; k,m,n > .

(iv) The domination number of the graph �(G) is

γ
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

(v) The clique number of the graph �(G) is

ω
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > .

(vi) The degree sequence and the irregularity index of �(G) are given by

DS
(
�(G)

)
=

{
(, , , , , , , , , , , , , , , , , , , , , ); k,m,n = ,
(, , , , , , , , , , , , , , , , , , , , , ); k,m,n > 

and

t
(
�(G)

)
=

{
; k,m,n = ,
; k,m,n > ,

respectively.
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