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Abstract
In this paper, a modified proximal point algorithm for finding common fixed points of
averaged self-mappings in Hilbert spaces is introduced and a strong convergence
theorem associated with it is proved. As a consequence, we apply it to study the split
feasibility problem, the zero point problem of maximal monotone operators, the
minimization problem and the equilibrium problem, and to show that the unique
minimum norm solution can be obtained through our algorithm for each of the
aforementioned problems. Our results generalize and unify many results that occur in
the literature.
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1 Introduction
Throughout this paper,H denotes a real Hilbert space with the inner product 〈·, ·〉 and the
norm ‖ · ‖, I the identity mapping onH, N the set of all natural numbers and R the set of
all real numbers. For a self-mapping T onH, F(T) denotes the set of all fixed points of T .
Let C and Q be nonempty closed convex subsets of two Hilbert spaces H and H re-

spectively, and letA :H →H be a bounded linearmapping. The split feasibility problem
(SFP) is the problem of finding a point with the property:

x∗ ∈ C and Ax∗ ∈ Q. ()

The SFP was first introduced by Censor and Elfving [] for modeling inverse problems
which arise from phase retrievals and medical image reconstruction. Recently, it has been
found that the SFP can also be used to model the intensity-modulated radiation therapy.
For details, the readers are referred to Xu [] and the references therein.
Assume that the SFP has a solution. There are many iterative methods designed to ap-

proximate its solutions. The most popular algorithm is the CQ algorithm introduced by
Byrne [, ]:
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It starts with any x ∈H and generates a sequence {xn} through the iteration

xn+ = PC
(
I – γA∗(I – PQ)A

)
xn, ()

where γ ∈ (, 
‖A‖ ), A

∗ is the adjoint of A, PC and PQ are the metric projections onto C and
Q respectively.
The sequence {xn} generated by the CQ algorithm () converges weakly to a solution of

SFP (), cf. [–]. Under the assumption that SFP () has a solution, it is known that a point
x∗ ∈H solves the SFP () if and only if x∗ is a fixed point of the operator

PC
(
I – γA∗(I – PQ)A

)
, ()

cf. [], where Xu also proposed the regularized method

xn+ = PC
(
I – γn

(
A∗(I – PQ)A + αnI

))
xn, ()

and proved that the sequence {xn} converges strongly to a minimum norm solution of SFP
() provided the parameters {αn} and {γn} verify some suitable conditions. This regularized
methodwas further investigated by Yao, Jiang and Liou [], and Yao, Liou and Shahzad [].
Motivated by the above works, it is desirable to devise an algorithm for approximating

a point x∗ ∈ C so that

Ax∗ ∈Q and Bx∗ ∈Q, ()

where A, B are two bounded linear mappings fromH toH.
On the other hand, it has been an interesting topic of finding zero points of maximal

monotone operators. A set-valuedmapA :H → H with the domainD(A) is calledmono-
tone if

〈x – y,u – v〉 ≥ 

for all x, y ∈D(A) and for any u ∈ A(x), v ∈ A(y), where D(A) is defined to be

D(A) = {x ∈H : Ax 	=∅}.

A is said to be maximal monotone if its graph {(x,u) : x ∈ H,u ∈ A(x)} is not properly
contained in the graph of any other monotone operator. For a positive real number α, we
denote by JAα the resolvent of a monotone operator A, that is, JAα (x) = (I + αA)–(x) for any
x ∈H. A point v ∈H is called a zero point of a maximal monotone operator A if  ∈ A(v).
In the sequel, we shall denote the set of all zero points ofA byA–, which is equal to F(JAα )
for any α > . A well-knownmethod to solve this problem is the proximal point algorithm
which starts with any initial point x ∈H and then generates the sequence {xn} inH by

xn+ = JAαnxn, n ∈N,

where {αn} is a sequence of positive real numbers. This algorithm was first introduced
by Martinet [] and then generally studied by Rockafellar [], who devised the iterative
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sequence {xn} by

xn+ = JAαnxn + en, n ∈N, ()

where {en} is an error sequence in H. Rockafellar showed that the sequence {xn} gen-
erated by () converges weakly to an element of A– provided that A– 	= ∅ and
lim infn→∞ αn > . In , Güler [] established an example showing that the sequence
{xn} generated by () converges weakly but not strongly. Since then, many authors have
conducted research on modifying the sequence in () so that the strong convergence is
guaranteed, cf. [–] and the references therein. Recently, Wang and Cui [] consid-
ered the following algorithm:

xn+ = anu + bnxn + cnJAαnxn + en, n ∈N, ()

where {an}, {bn}, {cn} are sequences in (, ) with an + bn + cn =  for all n ∈ N, and {en} is
an error sequence in H. They showed that the sequence {xn} generated by () converges
strongly to a zero point of A provided the following conditions (i) and (ii) are verified:

(i) lim
n→∞an = ,

∞∑
n=

an = ∞, lim inf
n→∞ cn > , lim inf

n→∞ αn > ;

(ii) either
∞∑
n=

‖en‖ <∞ or lim
n→∞

‖en‖
an

= .

This theorem generalizes and unifies many results that occur in the literature, cf. [–,
, ].
For another maximal monotone operator B, we would like to seek appropriate condi-

tions on the coefficient sequences {an}, {bn}, {cn} and {dn} so that the sequence {xn} gen-
erated by

xn+ = anu + bnJBβnxn + cnJAαnxn + dnen, n ∈N, ()

can converge strongly to a common zero of A and B.
We find that both of problems () and () can be solved simultaneously in amore general

setting. As amatter of fact, any resolvent is firmly nonexpansive and any firmly nonexpan-
sivemapping is 

 -averaged, cf. [], which is a special case of λ-averagedmappings (for the
definition of λ-averaged mappings, we refer readers to Section ). Also, as shown in the
proof of Theorem . of [], for any γ ∈ R with  < γ < 

‖A‖ , the operator () is
+γ ‖A‖

 -
averaged. It is quite natural to ask whether the sequence {xn} generated by

xn+ = anu + bnSnxn + cnTnxn + dnen ()

can converge strongly to a point of
⋂∞

n= F(Sn) ∩ ⋂∞
n= F(Tn) provided the coefficient

sequences {an}, {bn}, {cn} and {dn} are imposed on appropriate conditions, where for
any n ∈ N, each Sn is μn-averaged by Gn, and each Tn is λn-averaged by Kn. We shall
show in Section  that the sequence {xn} generated by () converges strongly to a point of⋂∞

n= F(Sn)∩
⋂∞

n= F(Tn) provided
⋂∞

n= F(Sn)∩
⋂∞

n= F(Tn) 	=∅ and {μn}, {λn} and the co-
efficient sequences {an}, {bn}, {cn} and {dn} verify the conditions:

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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(i) {μn} and {λn} are convergent sequences in (, ) with limit μ,λ ∈ (, ) respectively;
(ii) there are two nonnegative real-valued functions κ and κ on N with

‖Gmx – x‖ + ‖Kmx – x‖ ≤ κ(m)‖Gnx – x‖ + κ(m)‖Knx – x‖,
∀m ∈N,∀n≥ m,∀x ∈ C;

(iii) {an}, {bn}, {cn} and {dn} are sequences in [, ] with an + bn + cn + dn =  and
an ∈ (, ), ∀n ∈N;

(iv) limn→∞ an = limn→∞ dn
an = ,

∑∞
n= an = ∞,

∑∞
n= dn <∞;

(v) lim infn→∞ bn > , lim infn→∞ cn > .
Based on this main result, we shall deduce many corollaries for averaged mappings in

Section . Section  is devoted to applications. We apply our results in Section  to study
the split feasibility problem, the zero point problem of maximal monotone operators, the
minimization problem and the equilibrium problem, and to show that the unique min-
imum norm solution can be obtained through our algorithm for each of the aforemen-
tioned problems.

2 Preliminaries
In order to facilitate our investigation in Section , we recall some basic facts. Let C be a
nonempty closed convex subset ofH. A mapping T : C →H is said to be

(i) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) firmly nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖ – ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈ C;

(iii) λ-averaged by K if

T = ( – λ)I + λK

for some λ ∈ (, ) and some nonexpansive mapping K .
If T : C → C is nonexpansive, then the fixed point set F(T) of T is closed and convex,

cf. []. If T = ( – λ)I + λK is averaged, then T is nonexpansive with F(T) = F(K).
The metric projection PC from H onto C is the mapping that assigns each x ∈ H the

unique point PCx in C with the property

‖x – PCx‖ =min
y∈C ‖y – x‖.

It is known that PC is nonexpansive and characterized by the inequality: for any x ∈H,

〈x – PCx, y – PCx〉 ≤ , ∀y ∈ C. ()

For α > , the resolvent JAα of maximal monotone operator A on H has the following
properties.

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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Lemma . Let A be a maximal monotone operator onH. Then
(a) JAα is single-valued and firmly nonexpansive;
(b) D(JAα ) =H and F(JAα ) = A–;
(c) (The resolvent identity) for μ,λ > , the following identity holds:

JAμx = JAλ

(
λ

μ
x +

(
 –

λ

μ

)
JAμx

)
, ∀x ∈H.

We still need some lemmas that will be quoted in the sequel.

Lemma . Let x, y, z ∈H. Then
(a) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉;
(b) for any λ ∈R,

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖;

(c) for a,b, c ∈ [, ] with a + b + c = ,

‖ax + by + cz‖ = a‖x‖ + b‖y‖ + c‖z‖ – ab‖x – y‖ – ac‖x – z‖ – bc‖y – z‖.

Lemma . (Demiclosedness principle []) Let T be a nonexpansive self-mapping on a
nonempty closed convex subset C of H, and suppose that {xn} is a sequence in C such that
{xn} converges weakly to some z ∈ C and limn→∞ ‖xn – Txn‖ = . Then Tz = z.

Lemma . [] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ ≤ ( – αn)sn + αnμn + νn, n ∈N,

where {αn}, {μn} and {νn} verify the conditions:
(i) {αn} ⊆ [, ],

∑∞
n= αn = ∞;

(ii) lim supn→∞ μn ≤ ;
(iii) {νn} ⊆ [,∞) and

∑∞
n= νn < ∞.

Then limn→∞ sn = .

Lemma . [] Let {sn} be a sequence in R that does not decrease at infinity in the sense
that there exists a subsequence {sni} such that

sni < sni+, ∀i ∈ N.

For any k ∈ N, define mk = max{j ≤ k : sj < sj+}. Then mk → ∞ as k → ∞ and
max{smk , sk} ≤ smk+, ∀k ∈N.

3 Strong convergence theorems
To establish a strong convergence theorem for averaged mappings Sn, Tn, n ∈ N, on H
associated with algorithm (), we at first need a lemma.

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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Lemma . If T = ( – λ)I + λK is a λ-averaged self-mapping by K on a nonempty closed
convex subset C ofH and p ∈ F(T), then for any x ∈ C, one has

‖Tx – p‖ ≤ ‖x – p‖ – λ( – λ)‖x –Kx‖.

Proof Let x be any point in C. Then, using Tp = Kp = p and the nonexpansiveness of K ,
we have from Lemma .(b) that

‖Tx – p‖ = ‖Tx – Tp‖

=
∥∥( – λ)x + λKx –

(
( – λ)p +Kp

)∥∥

=
∥∥( – λ)(x – p) + λ(Kx –Kp)

∥∥

= ( – λ)‖x – p‖ + λ‖Kx –Kp‖ – λ( – λ)
∥∥x – p – (Kx –Kp)

∥∥

≤ ( – λ)‖x – p‖ + λ‖x – p‖ – λ( – λ)‖x –Kx‖

= ‖x – p‖ – λ( – λ)‖x –Kx‖. �

Theorem . For any n ∈ N, suppose that Sn = ( – μn)I + μnGn and Tn = ( – λn)I +
λnKn are averaged self-mappings on a nonempty closed convex subset C of H with � :=⋂∞

n= F(Sn)∩
⋂∞

n= F(Tn) 	=∅, satisfying that

(.) lim
n→∞μn = μ ∈ (, ), lim

n→∞λn = λ ∈ (, );

and there are two nonnegative real-valued functions κ and κ on N with

(.) ‖Gmx – x‖ + ‖Kmx – x‖ ≤ κ(m)‖Gnx – x‖ + κ(m)‖Knx – x‖,

∀m ∈N,∀n≥ m,∀x ∈ C.

Suppose further that {an}, {bn}, {cn} and {dn} are sequences in [, ]with an+bn+cn+dn = 
and an ∈ (, ) for all n ∈ N, and that {en} and {vn} are two bounded sequences in C. For
an arbitrary norm convergent sequence {un} in C with limit u, start with an arbitrary x =
y ∈ C and define two sequences {xn} and {yn} by

xn+ = anu + bnSnxn + cnTnxn + dnen;

yn+ = anun + bnSnyn + cnTnyn + dnvn.

Then both of {xn} and {yn} converge strongly to P�u provided the following conditions are
satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > .

Moreover, when every Sn is the identity mapping I , the result still holds without the condi-
tion lim infn→∞ bn > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/190


Huang and Hong Fixed Point Theory and Applications 2013, 2013:190 Page 7 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/190

Proof Put p = P�u. Firstly, we show that {xn} converges strongly to p. It comes from the
nonexpansiveness of Sn and Tn that

‖xn+ – p‖ = ∥∥an(u – p) + bn(Snxn – p) + cn(Tnxn – p) + dn(en – p)
∥∥

= an‖u – p‖ + (bn + cn)‖xn – p‖ + dn‖en – p‖,

from which it follows that {xn} is a bounded sequence. Taking into account of Lemma .
and using Lemma ., we get

‖xn+ – p‖

=
∥∥an(u – p) + bn(Snxn – p) + cn(Tnxn – p) + d(en – p)

∥∥

≤ ∥∥bn(Snxn – p) + cn(Tnxn – p) + dn(en – p)
∥∥ + an〈u – p,xn+ – p〉

= ( – an)
∥∥∥∥ bn
 – an

(Snxn – p) +
cn

 – an
(Tnxn – p) +

dn
 – an

(en – p)
∥∥∥∥


+ an〈u – p,xn+ – p〉

≤ ( – an)
(

bn
 – an

‖Snxn – p‖ + cn
 – an

‖Tnxn – p‖ + dn
 – an

‖en – p‖
)

+ an〈u – p,xn+ – p〉
≤ bn‖Snxn – p‖ + cn‖Tnxn – p‖ + dn‖en – p‖ + an〈u – p,xn+ – p〉
≤ bn

(‖xn – p‖ –μn( –μn)‖xn –Gnxn‖
)

+ cn
(‖xn – p‖ – λn( – λn)‖xn –Knxn‖

)
+ dn‖en – p‖ + an〈u – p,xn+ – p〉

= (bn + cn)‖xn – p‖ + dn‖en – p‖ + an〈u – p,xn+ – p〉
– bnμn( –μn)‖xn –Gnxn‖ – cnλn( – λn)‖xn –Knxn‖. ()

We now carry on with the proof by considering the following two cases: (I) {‖xn – p‖} is
eventually decreasing, and (II) {‖xn – p‖} is not eventually decreasing.
Case I: Suppose that {‖xn –p‖} is eventually decreasing, that is, there isN ∈ N such that

{‖xn – p‖}n≥N is decreasing. In this case, limn→∞ ‖xn – p‖ exists in R. By condition (ii), we
may assume that there are two b, c ∈ (, ) such that b ≤ bn and c ≤ cn for all n ∈ N. Then
from inequality () we have

 ≤ bμn( –μn)‖xn –Gnxn‖ + cλn( – λn)‖xn –Knxn‖

≤ bnμn( –μn)‖xn –Gnxn‖ + cnλn( – λn)‖xn –Knxn‖

≤ (bn + cn)‖xn – p‖ – ‖xn+ – p‖ + dn‖en – p‖ + an〈u – p,xn+ – p〉
=

(
 – (an + dn)

)‖xn – p‖ – ‖xn+ – p‖ + dn‖en – p‖ + an〈u – p,xn+ – p〉

and noting via condition (i) that

lim
n→∞

(
 – (an + dn)

)‖xn – p‖ = lim
n→∞‖xn+ – p‖ and

lim
n→∞dn‖en – p‖ = lim

n→∞an〈u – p,xn+ – p〉 = ,

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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we conclude that

lim
n→∞

(
bμn( –μn)‖xn –Gnxn‖ + cλn( – λn)‖xn –Knxn‖

)
= ,

which implies that

lim
n→∞‖xn –Gnxn‖ = lim

n→∞‖xn –Knxn‖ = . ()

Then from condition (.) we deduce for allm ∈N that

lim
n→∞‖xn –Gmxn‖ = lim

n→∞‖xn –Kmxn‖ = . ()

Since {xn} is bounded, it has a subsequence {xnk } such that {xnk } converges weakly to some
z ∈H and

lim sup
n→∞

〈u – p,xn+ – p〉 = lim
k→∞

〈u – p,xnk – p〉 = 〈u – p, z – p〉 ≤ , ()

where the last inequality follows from () since z ∈ � by Lemma .. Choose M >  so
that sup{‖en – p‖ + ‖u – p‖‖xn+ – p‖ : n ∈N} ≤ M. From () we have

‖xn+ – p‖

≤ (
 – (an + dn)

)‖xn – p‖ + (an + dn) · 〈u – p,xn+ – p〉
+ dn

(‖en – p‖ + ‖u – p‖‖xn+ – p‖)
≤ (

 – (an + dn)
)‖xn – p‖ + (an + dn) · 〈u – p,xn+ – p〉 + dnM. ()

Accordingly, because of () and condition (i), we can apply Lemma . to inequality ()
with sn = ‖xn – p‖, αn = an + dn, μn = 〈u – p,xn+ – p〉 and νn = dnM to conclude that

lim
n→∞xn = p.

Case II: Suppose that {‖xn –p‖} is not eventually decreasing. In this case, by Lemma .,
there exists a nondecreasing sequence {mk} in N such that mk → ∞ and

max
{‖xmk – p‖,‖xk – p‖} ≤ ‖xmk+ – p‖, ∀k ∈N. ()

Then it follows from () and () that

‖xmk – p‖

≤ ‖xmk+ – p‖

≤ (bmk + cmk )‖xmk – p‖ + dmk‖emk – p‖

+ amk 〈u – p,xmk+ – p〉 – bmkμmk ( –μmk )‖xmk –Gmkxmk‖

– cmkλmk ( – λmk )‖xmk –Kmkxmk‖. ()

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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Therefore,

 ≤ bmkμmk ( –μmk )‖xmk –Gmkxmk‖ + cmkλmk ( – λmk )‖xmk –Kmkxmk‖

≤ –
(
 – (bmk + cmk )

)‖xmk – p‖ + dmk‖emk – p‖ + amk 〈u – p,xmk+ – p〉
= –(amk + dmk )‖xmk – p‖ + dmk‖emk – p‖ + amk 〈u – p,xmk+ – p〉,

and then proceeding just as in the proof in Case I, we obtain

lim
k→∞

‖xmk –Gmkxmk‖ = lim
k→∞

‖xmk –Kmkxmk‖ = , ()

which in conjunction with condition (.) shows for allmj that

lim
k→∞

‖xmk –Gmjxmk‖ = lim
k→∞

‖xmk –Kmjxmk‖ = ,

and then it follows that

lim sup
k→∞

〈u – p,xmk+ – p〉 ≤ . ()

From () we have

(
 – (bmk + cmk )

)‖xmk – p‖ ≤ dmk‖emk – p‖ + amk 〈u – p,xmk+ – p〉,

and thus

‖xmk – p‖ ≤ dmk

amk + dmk

‖emk – p‖ + amk

amk + dmk

〈u – p,xmk+ – p〉

≤ dmk

amk

‖emk – p‖ + 〈u – p,xmk+ – p〉.

Letting k → ∞ and using () and condition (i), we obtain

lim
k→∞

‖xmk – p‖ = . ()

Also, since

‖xmk+ – xmk‖
≤ amk‖u – xmk‖ + bmkμmk‖Gmkxmk – xmk‖ + cmkλmk‖Kmkxmk – xmk‖

+ dmk‖emk – xmk‖,

which together with () implies limk→∞ ‖xmk+ – xmk‖ = , and so

lim
k→∞

‖xmk+ – p‖ =  ()

by virtue of (). Consequently, we conclude limk→∞ ‖xk –p‖ =  via () and (). In addi-
tion, note that the condition lim infn→∞ bn =  is used to establish limn→∞ ‖xn –Gnxn‖ = 

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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and limk→∞ ‖xmk – Gmkxmk‖ =  in () and () respectively. However, both limits hold
trivially without this condition provided every Sn is the identity mapping I .
Next, we show that {yn} converges strongly to p too. Applying Lemma . to the follow-

ing inequality

‖yn+ – xn+‖ ≤ an‖un – u‖ + (bn + cn)‖yn – xn‖ + dn‖vn – en‖
=

(
 – (an + dn)

)‖yn – xn‖ + an‖un – u‖ + dn‖vn – en‖

for all n ∈ N, we see that limn→∞ ‖yn – xn‖ = , and hence limn→∞ yn = p follows. This
completes the proof. �

The following lemma is easily proved and so its proof is omitted.

Lemma . For any n ∈ N, suppose that Sn = ( – μn)I + μnGn and Tn = ( – λn)I + λnKn

are averaged self-mappings on a nonempty closed convex subset C ofH such that condition
(.) holds. Then {Sn} and {Tn} satisfy condition (.) if and only if {Gn} and {Kn} satisfy
condition (.).

If the sequence {Sn} (resp. {Tn}) of averaged mappings consists of a single mapping S
(resp. T ), then {Sn} and {Tn} obviously verify conditions (.) and (.), and hence from
Lemma . we have the following corollary.

Corollary . Suppose S and T are two averaged self-mappings on a nonempty closed
convex subset C ofH with � = F(S)∩ F(T) 	=∅, and suppose that {an}, {bn}, {cn} and {dn}
are sequences in [, ] with an + bn + cn + dn =  and an ∈ (, ) for all n ∈ N, and {en} and
{vn} are two bounded sequences in C. For an arbitrary norm convergent sequence {un} in C
with limit u, start with an arbitrary x = y ∈ C and define two sequences {xn} and {yn} by

xn+ = anu + bnSxn + cnTxn + dnen;

yn+ = anun + bnSyn + cnTyn + dnvn.

Then both of {xn} and {yn} converge strongly to P�u provided the following conditions are
satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > .

Moreover, when S is the identity mapping I , the result still holds without the condition
lim infn→∞ bn > .

Theorem . For any n ∈N, suppose Sn and Tn are firmly nonexpansive self-mappings on
a nonempty closed convex subset C ofH with � :=

⋂∞
n= F(Sn)∩

⋂∞
n= F(Tn) 	=∅, satisfying

condition (.). Suppose further that {an}, {bn}, {cn} and {dn} are sequences in [, ] with

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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an + bn + cn + dn =  and an ∈ (, ) for all n ∈ N, and {en} and {vn} are two bounded se-
quences in C. For an arbitrary norm convergent sequence {un} in C with limit u, start with
an arbitrary x = y ∈ C and define two sequences {xn} and {yn} by

xn+ = anu + bnSnxn + cnTnxn + dnen;

yn+ = anun + bnSnyn + cnTnyn + dnvn.

Then both of {xn} and {yn} converge strongly to P�u provided the following conditions are
satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > .

Moreover, when every Sn is the identity mapping I , the result still holds without the condi-
tion lim infn→∞ bn > .

Proof Since any firmly nonexpansive mapping is 
 -averaged, condition (.) holds, and

hence by Lemma . we see that all the requirements of Theorem . are verified. There-
fore, the desired conclusion follows. �

If Sn = I and dn =  for all n ∈ N in Theorem ., then we have the following corollary.

Corollary . Suppose, for all n ∈N, that Tn = (–λn)I+λnKn is an averaged self-mapping
on a nonempty closed convex subset C ofH with� =

⋂∞
n= F(Tn) 	=∅, and limn→∞ λn = λ ∈

(, ), and assume that condition (.) holds for {I} and {Tn}. Suppose further that {an},
{bn} and {cn} are sequences in [, ] with an + bn + cn =  and an ∈ (, ) for all n ∈ N. Let
{αn} be a sequence in (,∞). For an arbitrary fixed u ∈ C, start with an arbitrary x ∈ C
and define

xn+ = anu + bnxn + cnTnxn, n ∈N.

Then the sequence {xn} converges strongly to P�u provided the following conditions are
satisfied:

lim
n→∞an = ,

∞∑
n=

an = ∞, lim inf
n→∞ cn > .

Corollary . Suppose, for all n ∈ N, that Tn = (–λn)I+λnKn is an averaged self-mapping
onHwith� =

⋂∞
n= F(Tn) 	=∅, and limn→∞ λn = λ ∈ (, ), and assume that condition (.)

holds for {I} and {Tn}. Suppose further that {an}, {bn} and {cn} are sequences in [, ] with
an + bn + cn =  and an ∈ (, ) for all n ∈ N, and that {en} is a bounded sequence inH. Let
{αn} be a sequence in (,∞). For an arbitrary fixed u ∈ H, start with an arbitrary x ∈ H
and define

xn+ = anu + bnxn + cnTnxn + en, n ∈N.

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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Then the sequence {xn} converges strongly to P�u provided the following conditions are
satisfied:

(i) lim
n→∞an = ,

∞∑
n=

an = ∞, lim inf
n→∞ cn > ;

(ii) either lim
n→∞

‖en‖
an

=  or
∞∑
n=

‖en‖ < ∞.

Proof Put p = P�u. Let z = x and define a sequence {zn} iteratively by

zn+ = anu + bnzn + cnTnzn.

We have limn→∞ zn = p by Corollary .. Since

‖xn+ – zn+‖ ≤ bn‖xn – zn‖ + cn‖Tnxn – Tnzn‖ + ‖en‖
≤ (bn + cn)‖xn – zn‖ + ‖en‖
= ( – an)‖xn – zn‖ + ‖en‖, ()

the limit limn→∞ ‖xn – zn‖ =  follows by applying Lemma . to (), and thus,

lim
n→∞xn = p. �

4 Applications
In this section, we shall apply some of the strong convergence theorems in Section  to
approximate a solution of the split feasibility problem, a common zero of maximal mono-
tone operators, a minimizer of a proper lower semicontinuous convex function, and to
study the related equilibrium problem.
Xu [] transformed SFP () to the fixed point problem of the operator ():

PC
(
I – γA∗(I – PQ)A

)
.

He proved Lemma . below.

Lemma. [] Apoint x∗ ∈H solves SFP () if and only if x∗ is a fixed point of the operator
(): PC(I – γA∗(I – PQ)A).

Moreover, in the proof of Theorem . of [], Xu showed the following lemma.

Lemma . [] For any γ ∈ R with  < γ < 
‖A‖ , the operator (): PC(I – γA∗(I – PQ)A) is

+γ ‖A‖
 -averaged.

Invoking Lemmas . and ., we obtain the theorem below from Corollary . by
putting S = I and T = PC(I – γA∗(I – PQ)A) for all n ∈N.

Theorem . Let C and Q be nonempty closed convex subsets of two Hilbert spaces H

and H respectively, and let A :H → H be a bounded linear mapping. Put T = PC(I –

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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γA∗(I – PQ)A), where γ satisfies  < γ < 
‖A‖ . Suppose that the solution set � of SFP ()

is nonempty, and suppose further that {an}, {bn}, {cn} and {dn} are sequences in [, ] with
an + bn + cn + dn =  and an ∈ (, ) for all n ∈N, and that {en} is a bounded sequence in C.
For an arbitrary fixed u ∈ C, start with an arbitrary x ∈ C and define the sequence {xn} by

xn+ = anu + bnxn + cnTxn + dnen.

Then {xn} converges strongly to P�u provided the following conditions are satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ cn > .

When the point u in the above theorem is taken to be , we see that the limit point v of
the sequence {xn} is the unique minimum norm solution of SFP (), that is, ‖v‖ =min{x̂ :
x̂ ∈ �}.
Here, readers may compare the above theorem with Theorem . of [], which says, for

 < γ < 
‖A‖ and sequence {an} in [, 

+γ ‖A‖ ] satisfying

∞∑
n=

an
(


 + γ ‖A‖ – an

)
= ∞,

that the sequence {xn} generated by

xn+ = ( – an)xn + anPC
(
I – γA∗(I – PQ)A

)
xn

converges weakly to a solution of SFP () provided the solution set of SFP () is nonempty.
It is also interesting to compare Theorem . with Theorem . of [] and Theorem .
of []. Our method is different from those in [] and [] even in the case of u = , because
our algorithm contains an error term and uses the operator PC(I – γA∗(I – PQ)A) directly
without any regularization.

Theorem. Let C andQ be nonempty closed convex subsets of twoHilbert spacesH and
H respectively, and let A, B be bounded linear mappings from H to H. Put S = PC(I –
γB∗(I – PQ)B) and T = PC(I – γA∗(I – PQ)A), where γ satisfies  < γ < min{ 

‖B‖ ,


‖A‖ }.
Suppose the solution set � of SFP () is nonempty, and suppose further that {an}, {bn}, {cn}
and {dn} are sequences in [, ] with an + bn + cn + dn = , and an ∈ (, ) for all n ∈ N, and
that {en} is a bounded sequence in C. For an arbitrary fixed u ∈ C, start with an arbitrary
x ∈ C and define the sequence {xn} by

xn+ = anu + bnSxn + cnTxn + dnen.

Then {xn} converges strongly to P�u provided the following conditions are satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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Proof It is clear that this theorem follows from Lemmas . and . and Corollary ..
�

Replacing Sn and Tn in Theorem . with the resolvents JBβn and JAαn of two maximal
monotone operators B and A respectively, we have Theorem . below.

Theorem . Suppose that B and A are two maximal monotone operators on H with
B– ∩ A– 	= ∅, and suppose that {an}, {bn}, {cn} and {dn} are sequences in [, ] with
an+bn+cn+dn =  and an ∈ (, ) for all n ∈N.Let {αn} and {βn} be sequences in (,∞), and
let {en} and {vn} be two bounded sequences inH. For an arbitrary norm convergent sequence
{un} in H with limit u, start with an arbitrary x = y ∈ H and define two sequences {xn}
and {yn} by

xn+ = anu + bnJBβnxn + cnJAαnxn + dnen;

yn+ = anun + bnJBβnyn + cnJAαnyn + dnvn.

Then both of the sequences {xn} and {yn} converge strongly to PB–∩A–u provided the fol-
lowing conditions are satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > ;

(iii) lim inf
n→∞ αn > , lim inf

n→∞ βn > .

Proof Since all the requirements of Theorem . are satisfied except conditions (.) and
(.), we have to check these two conditions. For any n ∈ N, let Sn = JBβn and Tn = JAαn . By
Lemma .(b), we have B– = F(Sn) and A– = F(Tn) for all n ∈N. Moreover, since all Sn
and Tn are firmly nonexpansive, all of them are 

 -averaged, so condition (.) is satisfied
with μn = λn = 

 for all n ∈N. According to Lemma ., it remains to prove that condition
(.) holds for {JBβn} and {JAαn}. Since condition (iii) holds, we may assume that there is
τ ∈ (, ) such that τ < αn and τ < βn for all n ∈ N. Let κ(n) =  + αn

τ
and κ(n) =  + βn

τ
.

Then, by virtue of the resolvent identity and the nonexpansiveness of JAαm , one has for all
m ∈N that

∥∥JAαnx – JAαmx
∥∥ =

∥∥∥∥JAαm
(

αm

αn
x +

(
 –

αm

αn

)
JAαnx

)
– JAαmx

∥∥∥∥
≤

∣∣∣∣ – αm

αn

∣∣∣∣∥∥JAαnx – x
∥∥ ≤

(
 +

αm

αn

)∥∥JAαnx – x
∥∥,

and thus

∥∥JAαmx – x
∥∥ ≤ ∥∥JAαmx – JAαnx

∥∥ +
∥∥JAαnx – x

∥∥
≤

(
 +

αm

αn
+ 

)∥∥JAαnx – x
∥∥

≤
(
 +

αm

τ

)∥∥JAαnx – x
∥∥ = κ(m)

∥∥JAαnx – x
∥∥, ∀n≥ m,∀x ∈H.

http://www.fixedpointtheoryandapplications.com/content/2013/1/190


Huang and Hong Fixed Point Theory and Applications 2013, 2013:190 Page 15 of 20
http://www.fixedpointtheoryandapplications.com/content/2013/1/190

The same argument shows for allm ∈N that

∥∥JBβmx – x
∥∥ ≤ κ(m)

∥∥JBβnx – x
∥∥, ∀n≥ m,∀x ∈H.

Therefore, condition (.) is true for {JAαn} and {JBβn}. �

PuttingTn = JAαn inCorollary . (resp. Corollary .) andnoting that {I} and {JAαn} verifies
condition (.) due to lim infn→∞ αn > , we obtain the following two corollaries.

Corollary . Suppose that A is a maximal monotone operator onH with A– 	=∅, and
suppose that {an}, {bn} and {cn} are sequences in [, ] with an + bn + cn =  and an ∈ (, )
for all n ∈ N. Let {αn} be a sequence in (,∞). For an arbitrary fixed u ∈ H, choose an
arbitrary x ∈H and define

xn+ = anu + bnxn + cnJAαnxn, n ∈N.

Then the sequence {xn} converges strongly to PA–u provided the following conditions are
satisfied:

lim
n→∞an = ,

∞∑
n=

an = ∞, lim inf
n→∞ cn > , lim inf

n→∞ αn > .

Corollary . [] Suppose that A is a maximal monotone operator onH with A– 	=∅,
and suppose that {an}, {bn} and {cn} are sequences in [, ] with an + bn + cn =  and an ∈
(, ) for all n ∈ N. Let {αn} be a sequence in (,∞), and let {en} be a bounded sequence
inH. For an arbitrary fixed u ∈H, choose an arbitrary x ∈H and define

xn+ = anu + bnxn + cnJAαnxn + en, n ∈N.

Then the sequence {xn} converges strongly to PA–u provided the following conditions are
satisfied:

(i) lim
n→∞an = ,

∞∑
n=

an = ∞, lim inf
n→∞ cn > , lim inf

n→∞ αn > ;

(ii) either lim
n→∞

‖en‖
an

=  or
∞∑
n=

‖en‖ < ∞.

Let f : H → (–∞,∞] be a proper lower semicontinuous convex function. The set of
minimizers of f is defined to be

argmin
y∈H

f (y) =
{
z ∈H : f (x)≤ f (y) for all y ∈H

}
,

and the subdifferential of f is defined as

∂f (x) =
{
z ∈H : 〈y – x, z〉 ≤ f (y) – f (x),∀y ∈H

}

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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for all x ∈H. As shown in Rockafellar [], ∂f is a maximal monotone operator. Moreover,
one has

 ∈ ∂f (z) ⇔ z ∈ argmin
y∈H

f (y),

that is,

(∂f )– = argmin
y∈H

f (y).

Hence argminy∈H f (y) = F(J∂fα ) for any α > , and then invoking Corollary ., we obtain
the following theorem.

Theorem . Let f : H → (–∞,∞] be a proper lower semicontinuous convex function,
and suppose that {an}, {bn} and {cn} are sequences in [, ] with an + bn + cn =  and an ∈
(, ) for all n ∈ N. Let {αn} be a sequence in (,∞), and put � = argminy∈H f (y). For an
arbitrary fixed u ∈H, choose an arbitrary x ∈H and define

xn+ = anu + bnxn + cnJ∂fαnxn. ()

Then the sequence {xn} converges strongly to P�u provided the following conditions are
satisfied:

(i) lim
n→∞an = ,

∞∑
n=

an = ∞;

(ii) lim inf
n→∞ cn > , lim inf

n→∞ αn > .

For any n ∈ N, define gn :H → (–∞,∞] by

gn(z) = f (z) +


αn
‖z – xn‖

for all z ∈H. Then we have, for any z ∈H,

∂gn(z) = ∂f (z) +

αn

(z – xn),

cf. []. Hence,

z ∈ (∂gn)– ⇔  ∈ ∂gn(z)

⇔  ∈ ∂f (z) +

αn

(z – xn)

⇔ xn ∈ z + αn∂f (z) = (I + αn∂f )(z)

⇔ z = (I + αn∂f )–xn = J∂fαnxn.

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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This means that J∂fαnxn = argminy∈H gn(y) = argminy∈H{f (y) + 
αn ‖y – xn‖}, and thus the

iterative scheme () is can be replaced with

xn+ = anu + bnxn + cn argmin
y∈H

{
f (y) +


αn

‖y – xn‖
}
.

Let f : C ×C →R. An equilibrium problem is the problem of finding x̂ ∈ C such that

f (x̂, y) ≥ , ∀y ∈ C,

whose solution set is denoted by EP(f ). For solving an equilibrium problem, we assume
that the function f satisfies the following conditions:
(A) f (x,x) = , ∀x ∈ C;
(A) f is monotone, that is, f (x, y) + f (y,x)≤ , ∀x ∈ C;
(A) for all x, y, z ∈ C, lim supt↓ f (( – t)x + tz, y) ≤ f (x, y);
(A) for all x ∈ C, f (x, ·) is convex and lower semicontinuous.
The following lemma appears implicitly in Blum and Oetti [] and is proved in detail

by Aoyama et al. [], while Lemma . is Lemma . of Combettes and Hirstoaga [].

Lemma . [, ] Let f : C ×C →R be a function satisfying conditions (A)-(A), and
let r >  and x ∈H. Then there exists a unique z ∈ C such that

f (z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Lemma . [] Let f : C × C → R be a function satisfying conditions (A)-(A). For
r > , define Jfr :H → C by

Jfr x =
{
z ∈ C : f (z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all x ∈H. Then the following hold:
(a) J fr is single-valued;
(b) J fr is firmly nonexpansive;
(c) F(J fr ) = EP(f );
(d) EP(f ) is closed and convex.

We call J fr the resolvent of f for r > . Using Lemmas . and ., Takahashi et al. []
established the lemma below.

Lemma . [] Let f : C × C → R be a function satisfying conditions (A)-(A) and
define a set-valued mapping ofH into itself by

Gf (x) =

⎧⎨
⎩

{z ∈H : f (x, y)≥ 〈y – x, z〉,∀y ∈ C}, ∀x ∈ C,

∅, ∀x /∈ C.

Then the following hold:
(a) Gf is a maximal monotone operator with D(Gf ) ⊆ C;

http://www.fixedpointtheoryandapplications.com/content/2013/1/190
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(b) EP(f ) =G–
f ;

(c) J
Gf
r x = J fr x for all x ∈H.

Theorem . Let C be a nonempty closed convex subset of H and let fi : C × C → R,
i = , , be functions satisfying conditions (A)-(A) with EP(f)∩ EP(f) 	=∅. Suppose that
{an}, {bn}, {cn} and {dn} are sequences in [, ] with an + bn + cn + dn =  and an ∈ (, )
for all n ∈ N. Let {αn} and {βn} be sequences in (,∞), and let {en} be a bounded sequence
inH. For an arbitrary fixed u ∈H, choose an arbitrary x ∈H and define

xn+ = anu + bnJ
f
βnxn + cnJfαnxn + dnen, n ∈N.

Then the sequence {xn} converges strongly to PEP(f)∩EP(f)u provided the following conditions
are satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > ;

(iii) lim inf
n→∞ αn > , lim inf

n→∞ βn > .

Proof The set-valued mappings Gfi associated with fi, i = , , defined in Lemma . are
maximal monotone operators withD(Gfi )⊆ C, and it follows from Lemmas . and .
that J

Gfi
r = J fir and F(J

Gfi
r ) = F(J fir ) = EP(fi) = G–

fi  for any r > . Putting B = Gf and A = Gf

in Theorem ., the desired conclusion follows. �

Here, it is worth mentioning, just as the SFP, that the unique minimum norm solution
can be obtained through our algorithm for each of the minimization problem and the
equilibrium problem by taking u =  in Theorems . and ..
For a nonempty closed convex subset C ofH, its indicator function ιC defined by

ιC(x) =

⎧⎨
⎩
, x ∈ C;

∞, x /∈ C,

is a proper lower semicontinuous convex function and its subdifferential ∂ιC defined by

∂ιC(x) =
{
z ∈H : 〈y – x, z〉 ≤ ιC(y) – ιC(x),∀y ∈H

}

is a maximal monotone operator, cf. Rockafellar []. As shown in Lin and Takahashi [],
the resolvent J∂ιC

r of ∂ιC for r >  is the same as the metric projection PC , and (∂ιC)– = C.

Theorem . Let Ci, i = , , be two nonempty closed convex subsets of H with C ∩
C 	=∅. Suppose that {an}, {bn}, {cn} and {dn} are sequences in [, ]with an+bn+cn+dn = 
and an ∈ (, ) for all n ∈ N. Let {en} be a bounded sequence in H. For an arbitrary fixed
u ∈H, choose an arbitrary x ∈H and define

xn+ = anu + bnPCxn + cnPCxn + dnen, n ∈N.
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Then the sequence {xn} converges strongly to PC∩Cu provided the following conditions are
satisfied:

(i) lim
n→∞an = lim

n→∞
dn
an

= ,
∞∑
n=

an = ∞,
∞∑
n=

dn < ∞;

(ii) lim inf
n→∞ bn > , lim inf

n→∞ cn > .

Proof Putting A = ∂ιC and B = ∂ιC in Theorem ., the desired conclusion follows. �
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