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Abstract

Background: Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given
the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an
experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors
covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of
activity is constantly changing, and fail to make full use of the information distributed over the sensor array.

Methods: We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to
reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample
of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect,
estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time
courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes
this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest.

Results: We illustrate the technique with data from a dual-task experiment and use it to track the temporal
evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating
the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial
level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be
applied to any data-analysis question that can be posed independently at each sensor, and we provide one
example, using linear regression, that highlights the versatility of the technique.

Conclusion: The approach described here combines established techniques in a way that strikes a balance between
power, simplicity, speed of processing, and interpretability. We have used it to provide a direct view of parallel and
serial processes in the human brain that previously could only be measured indirectly. An implementation of the
technique in MatLab is freely available via the internet.

Keywords: Spatial filter, Electroencephalography, Magnetoencephalography, Electrocorticography, Functional
magnetic resonance imaging, Decoding, EEG, MEG, ECoG, fMRI
Background
Many techniques for the measurement of neural activity
result in multivariate time series. Methods such as electro-
encephalography (EEG), magnetoencephalography (MEG),
electro-corticography (ECoG), and near-infrared spectros-
copy (NIRS) may involve tens or even hundreds of sensors.
Although all of these methods have some degree of spatial
selectivity, there is also a significant amount of redundancy
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between different sensors: any given experimental effect,
no matter how well localized, will normally appear in more
than one sensor. With many sensors and potentially many
possible experimental effects and interactions, one is
confronted with the question of which sensors to subject
to analysis and how to choose them. This is paramount in
analyses where one is specifically interested in the within-
trial time course of an experimental effect.
Perhaps the most widely-used approach is to select a

single sensor or take the average over a contiguous clus-
ter of sensors – a "region of interest" or ROI. Although
the ROI approach is simple and readily interpretable, it
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Figure 1 Illustrative comparison of region of interest (ROI) and EMS
filtering analyses applied to a representative subject. The mean time
course of an ROI (A), fixed spatial filter (B), and evolving spatial filter (C) for
the difference between the lag-9 and control conditions in the data from
Marti et al (2012). Just above each of the panels is the topography of the
average spatial filter within each of three different temporal windows: 0.25
to 0.30 sec, 1.20 to 1.25 sec, and 1.40 to 1.45 sec. Only the
magnetometers are shown for clarity. Note that the ROI “spatial filter” is
discrete and binary, and is identical at all time points in the epoch. The
time course in (B) was derived using a stationary filter computed over the
data in a specific time window (EMSf-st), with the spatial filter defined as
the mean difference between the lag-9 and control conditions between
1.35 and 1.45 sec. The grayscale error boundary extends to 99%
confidence (on a t distribution, df = 9). Note that the difference is
maximized in the time window over which the spatial filter was defined.
Note also that, as in (A), the spatial filter is identical at all time points, but
that unlike (A), the spatial filter is continuous-valued rather than discrete.
The time course in (C) was derived from the output of canonical EMS
filtering. The dashed line shows the time course of the stationary template
used in panel B (for visual comparison with panel B). Note in panel C that
the spatial filters are continuous-valued and are also changing across time
in the epoch (the spatial filter is computed independently at each time
point in the epoch according to the objective function, which in this case
is simply the difference between the lag-9 and control conditions).
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does not take into account the distribution of activity
across the sensor array. Nor does it account for situa-
tions where a given experimental effect appears in two
or more non-contiguous regions, with potentially oppos-
ite signs. Thus many sensors that are sensitive to a given
experimental effect may be left out of the ROI, and the
sensors that are included in the ROI are all treated
equally even though some may carry much more signal
than others.
An ROI is a special case of a linear spatial weighting

applied to the sensors [1], often referred to as a spatial
filter, where the sensors belonging to the ROI have a
weight of 1/n (n being the number of sensors belonging
to the ROI) and all other sensors have a weight of zero.
A number of techniques are available for deriving spatial
filters so as to capture distinct signal sources in the data
([1] and see Discussion). Spatial filtering can be highly
effective in detecting signal features in multi-sensor data,
even at the single-trial level [2].
In signal processing a common technique for detecting

the presence of a known signal, s, in noisy data, is to
simply use s itself as a filter. Typically a different label,
h, is used to refer to s when treated as a filter. In this
context, h (= s) is referred to as a “matched filter” be-
cause the filter is matched to (identical to) the shape of
the known signal that we are trying to detect, but that
might be hidden in noise. Filtering is performed by sim-
ply correlating the filter, h, with a segment of noisy data,
x. A matched filter is the optimal filter for revealing the
presence of a known signal (i.e. maximizing the signal-
to-noise ratio, or SNR), assuming independent and iden-
tically distributed (i.i.d) noise [3,4]. If the noisy data are
in the form of an observed spatial topography (e.g. over
an EEG montage) rather than a time series, then the fil-
ter is in effect a linear spatial weighting, and we apply
the filter by taking the dot product (a.k.a. scalar product)
of the filter and the noisy data (this operation is
explained below). A matched spatial filter by itself is al-
most always sub-optimal in actual practice because the
assumption of i.i.d noise is rarely, if ever, met. However,
in many cases the use of a matched spatial filter alone
will yield a significant improvement in SNR, and has
practical advantages owing to its simplicity.
A given spatial filter can only capture the time course

of activity from a single fixed vantage point. Experimen-
tal effects, on the other hand, almost never have the
same distribution across the sensor array throughout the
time course of a trial epoch. The sensor(s) that most
strongly exhibit the effect will change over time,
reflecting the spatio-temporal evolution of the under-
lying activity in the brain. In order to examine the time
course of an experimental effect, the vantage point (i.e.
the weighting applied to the sensors) has to change over
time (see Figure 1C).
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Here we propose a simple, powerful, and versatile
technique that uses matched spatial filtersa in order to
reduce epoched multi-sensor data to a single time
course that tracks a given experimental effect across the
timespan of each trial. Rather than being defined a-
priori, the filters are estimated directly from the data it-
self, independently at each time point – hence the name
“effect-matched spatial filtering” (EMS filtering). The
“data” in this context are assumed to be a multi-
channel time series with repeated trials (i.e. a three-
dimensional matrix, channel x sample x trial). The
goal is to reduce each trial’s data (a channel x time
matrix) to a single time course that measures the mag-
nitude of an experimental effect at each time point in
the epoch, resulting in a trial x time matrix of surrogate
time courses. These can be used to reveal the temporal
evolution of an experimental effect, which distinguishes
this approach from techniques such as principal compo-
nents analysis (PCA) or independent components analysis
(ICA) that reveal the temporal evolution of a fixed linear
combination of the channels.
Because the method is driven by both the data and the

data analysis question, and is applied separately at each
time point, the resulting time series can be thought of as
a functional reconstruction: instead of attempting to re-
construct the time course of an anatomical source, we
reconstruct the time course of an experimental or be-
havioral effect (whose anatomical generators may change
across time) in the original units (e.g. micro-volts or
femto-tesla). We validate the method using MEG data
from a previously-published study [5]. Part of this study
involved measuring the latency of specific brain events
in the average across groups of trials. Here we demon-
strate how EMS filtering is able to estimate this latency
on single trials and thus directly test for a trial-by-trial
correspondence between the latency of brain events and
reaction time.

Use of EMS filtering to measure serial and parallel brain
processes
We tested EMS filtering on data come from a prior
study (Marti et al., 2012) that investigated the brain
mechanisms of the psychological refractory period
(PRP). The PRP is a behavioral phenomenon in which
participants are slower to perform the second of two in-
dependent tasks when stimuli are presented in close suc-
cession [6]. In Marti et al.’s paradigm, participants were
asked first to detect an auditory tone (high or low pitch,
“task 1”) and then a visual letter (‘Y’ or ‘Z’, “task 2”). The
experiment was designed to test the “router model” of
the PRP [7] according to which two different stimuli, in
this case the tone and the letter (T1 and T2 respect-
ively), can be integrated in parallel at the sensory level,
while the execution of task decisions requires access to a
serial central stage of processing. When the execution of
the two tasks overlaps in time, the second stimulus is in-
tegrated at the perceptual stage but has to wait in a sen-
sory buffer while the first stimulus is processed at the
serial stage. Once task 1 is completed, then T2 can ac-
cess the serial stage and the second decision operation
can be carried out. This model makes two important
predictions regarding brain activity related to parallel
and serial brain processing: (1) The onset of early sen-
sory activity related to T2 should be time-locked to
the presentation of T2 and prolonged at least until a
decision is reached for task 1 – i.e. its duration, but
not its latency, is expected to covary with the reaction
time to T1 (RT1). (2) This should be followed by a
second wave of activation, corresponding to the access
to the serial stage. The latency of this second wave of
activation, but not its duration, is expected to covary
with RT1 (the converse of the prediction regarding the
sensory stage).
We used EMS filtering to examine the precise relation

between the duration of the sensory stage, latency of the
central stage, and the duration of T1 processing, at the
single-trial level, and to reconstruct T2-related main ef-
fects in the time-locked average. We demonstrate the ef-
ficacy of EMS filtering in improving the signal to noise
ratio of individual trials and in revealing the time course
of an experimental effect (the difference between two
conditions) in the time-locked average. We also use
EMS filtering to test specific predictions derived from
the router model [7] regarding parallel and serial pro-
cessing in the brain.

Methods
Applying a spatial filter: signal projection
Throughout the manuscript we use the word “projec-
tion” in the sense of “orthogonal projection onto a line”,
which is equivalent to taking the dot product of two vec-
tors, χ and w. If χ is an observed topography and w is a
spatial filter, then we apply the filter by taking the dot
product of χ and w, i.e. by projecting χ onto w. The dot
product (or scalar product) involves multiplying the two
vectors element-by-element, and then taking the sum of
the result, expressed as a single scalar value. It is closely
related to correlation: for a given w, the more closely χ
resembles w the larger the dot product (keeping the
norm of χ constant). Setting the filter, w, to unit length
(‖w‖ = 1), has the advantage of preserving the measure-
ment units of any data that are projected onto it: If χ is
a vector of measurements in micro-volts, then the pro-
jection of χ onto w will result in a single scalar value also
expressed in micro-volts. In summary: A spatial filter is
simply a set of coefficients (one for each sensor) in the
form of a vector, which can be visualized as a topograph-
ical pattern over the sensor array. The filter is applied by
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taking the dot product of the data (an observed topog-
raphy) and the filter, resulting in a single scalar value
that pools activity from all of the sensors.

Effect-matched spatial filtering
When analyzing multivariate signal data, the goal is most
often to address a particular scientific question, for ex-
ample “what is the time course of the experimental effect
(condition A) with respect to that of the control condition
(condition B) in my data?” This question could apply to
EEG, MEG, ECoG, or other multi-sensor data. One can
estimate the effect across time in the trial epoch by taking
the mean (across trials) of the data belonging to condition
A, the mean (across trials) of the data belonging to condi-
tion B, and then computing the difference between them.
This has to be done separately for each sensor, resulting in
as many time courses as there are sensors, with the ex-
perimental result (if there is one) distributed among them.
We want to summarize each trial’s data (a channel x time
matrix) in a single time course, using a weighted combin-
ation of the sensors (spatial filter) that is tuned to detect
the experimental effect.
The canonical matched-filtering approach would be to

start with a known topographical pattern corresponding
to “the difference between condition A and condition B”,
and use that topographical pattern as a spatial filter.
However, in an experimental setting, we do not know
what “the difference between condition A and condition
B” is supposed to be at each time point in the trial epoch
(or at any time point, for that matter). The solution
given by our approach is to measure the experimental
effect in the data itself, and use the resulting topograph-
ical pattern as a spatial filter. The filter is set to unit
length (by dividing by its own norm) in order to pre-
serve the units of the data that will be projected onto it.
We also want the resulting time course to “follow” the

experimental effect across time. Hence the procedure is
repeated separately and indpendently for each sample in
the trial resulting in a filter set (one spatial filter for each
time point) as well as a single “surrogate time-course”
per trial (the result of applying the filter set to each tri-
al’s data).
In order to avoid circularity in the procedure [8,9], the

data that are projected onto the filter set must be inde-
pendent of the data used to derive the filter set. The best
estimate of the filter set, while avoiding circularity, is de-
rived based on all of the data except for one trial that we
set aside and project onto the filter. [We must leave out at
least one trial in order to avoid circularity, and the more
trials we leave out the fewer trials remain on which to base
our estimate of the filter.] Thus we use a simple leave-
one-out (LOO) or leave-one-out-per-class (LOOPC) pro-
cedure: we iteratively project each trial’s data onto the
spatial filter-set derived from all of the other trials. The
LOO procedure renders the surrogate time courses un-
biased (see [9] and Additional file 1), and hence more
readily interpretable – wherever there really is no effect to
be found, the experimental effect in the surrogate time
courses is expected to be zero (b and Additional file 1). In
addition to being a method of cross validation, the LOO
procedure, when used in this way, has the effect of attenu-
ating trial-specific noise, resulting in a higher SNR in the
average across trials (Figure 2B).
EMS filtering algorithm
(For a formal mathematical description of EMS filtering,
see Appendix A).
Consider the data-analysis question posed above:

“what is the time course of the experimental effect (con-
dition A) with respect to that of the control condition
(condition B) in my data?” We want to summarize this
kind of experimental result in a single time course, using
a weighted combination of the sensors (spatial filter) that
yields a higher signal-to-noise ratio than any single sen-
sor. We also want the resulting time course to “follow”
the experimental effect across time.
The procedure is simple (the two steps below are ap-

plied separately and independently at each time point).
Let ⟨χ⟩ denote the mean over the elements of the vec-
tor χ. Let χA be a vector of measurements at a single
channel and single time point, for all trials belonging to
condition A, and likewise for χB. Let χ

(k) be a vector of
measurements at a single channel and single time point,
for all trials except for trial k (i.e. with the kth trial left
out if x contains the kth trial). Then

1. For each trial, k:
a. Compute 〈xA

(k)
〉 − 〈xB

(k)
〉 at each channel and treat

the resulting vector, w (one scalar value per channel),
as a spatial filter.
b. Set w to unit length, i.e. let ŵ ¼ w

∥w∥.

c. Use ŵ as a spatial filter for the left-out trial (trial k)
by taking the dot product of ŵ0 (a 1 x channel vector)
and the data (a channel x 1 vector). This results in a
single surrogate value, sk ¼ ŵ 0•xk .

2. Compute ⟨SA⟩•⟨SB⟩ over the resulting surrogate values.

The results (one for each time point in the trial epoch),
when strung together in temporal order, yield a single time
course that gives an answer to the data analysis question, in
this case “what is the time course of the experimental effect
(condition A) with respect to that of the control condition
(condition B) in my data?” The entire set of surrogate values
belonging to a single trial is referred to as a surrogate time
course, and the entire set of surrogate time courses (one per
trial) is a trial x time matrix denoted by the symbol S
(lowercase s is used to denote a single surrogate value).



Figure 2 EMS filtering improves the quality of single-trial time courses. Panel (A) presents data from a representative subject, comparing
the ROI method (left) to the EMS filtering method (right). There are two columns of two raster plots, with time on the horizontal and trial # on
the vertical. Amplitude is coded in color, going from blue (negative) to green (zero) to red (positive), and the color axis is scaled to the minimum
and maximum amplitude in each data matrix. Below each pair of raster plots (top: lag-9 condition; bottom: control condition) is the time course
of the difference between the means of the two conditions, mean(lag-9) – mean(control). No smoothing was applied to the images. Panel (B) shows
the estimated mean signal-to-noise ratio as a function of the number of trials averaged together, for the ROI (blue) and EMS filtering (green) methods.
Panel (C) shows the mean performance (10 subjects) of a univariate Gaussian naïve-Bayes (GNB) classifier tested on the output of a nested EMS
filtering procedure (green; see methods). The performance of a GNB classifier applied to the mean over the ROI (blue) and the performance of a linear
support-vector machine (red) are shown for comparison. Notice that the performance of a univariate decision rule (GNB) applied to the output of EMS
filtering is comparable to the performance of a multivariate linear SVM applied to the original sensor data.
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Although the procedure above is defined in an itera-
tive, leave-one-out (LOO) fashion, note that a leave-one-
out-per-condition (LOOPC) procedure can be used if
there are an equal number of trials in each condition.
Group-level analyses can be applied to the results from
each subject using standard methods. The algorithm can
also be applied across subjects, where ⟨χA⟩ and ⟨χB⟩ are
pre-computed separately for each subject, in which case
a leave-one-subject-out procedure should be used.
In order to generalize to data-analysis questions other

than the example given above (the difference between
the means of two experimental conditions), we refer to
the computational operation corresponding to the data
analysis question (e.g. ⟨χA⟩ − ⟨χB⟩) as the objective
function. Hence, in the general version of the algorithm,
⟨χA⟩ − ⟨χB⟩ in step 1 above is replaced by F(X,y), where
F is the objective function, X is the data matrix (channel
x sample x trial) and y is a vector of condition labels
(one for each trial). The objective function is simply a
computational representation of the data analysis ques-
tion, which might, for example, concern the relationship
between the sensor data and a behavioral variable such
as reaction-time. The MatLab toolbox that we provide
includes standard objective functions, but also allows for
the objective function to be user-defined. This makes
the method highly versatile (see Discussion).
For some purposes one might want to compute a sin-

gle spatial filter and apply the same filter at all time
points in the trial epoch, and this is also supported by
our toolbox. By doing so it is possible to examine the
time course of a specific stationary topography. For in-
stance, if one was interested in the time course of the
P300 component of the ERP in EEG data, one could
compute a single topography over a time window cen-
tered on the peak of the P300. Applying the topography
as a spatial filter would result in a single time course
highlighting the onset, peak, and cutoff of that specific
spatial pattern. Another scenario where one might use
EMS filtering in this way would be to estimate the
“readiness potential” (RP) [10] – a slow buildup of neur-
onal activity that precedes self-initiated movements –
from multi-sensor data. For this purpose one could use
an objective function that computes the difference be-
tween the amplitude at ~100 ms prior to movement on-
set with that at ~500 ms prior to movement. Sensors at
which the mean amplitude is changing over that time
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interval will be weighted more heavily than sensors at
which the mean amplitude does not vary over that inter-
val. The resulting filter should expose the time course of
the (functionally-defined) RP more accurately than any
single sensor.

Non-independence of the surrogate time courses
Although each trial is independent of the spatial filter
onto which it is projected, the spatial filters themselves
(one per trial) are not independent of one another since
they are all based on nearly the same set of trials. There-
fore, the resulting surrogate time courses are not inde-
pendent of one another. However, if they are grouped by
condition and averaged together for each subject, then
the resulting averages for each subject are independent
of one another, and so classical closed-form statistics
can be used. This is the most likely use of EMS filtering,
and so the non-independence of the surrogate time
courses will most often not be a concern. On the other
hand, if one wants to perform statistics on the aggregate
over surrogate time courses within a single subject, or if
EMS filtering is applied at the group level (i.e. by re-
placing “trial” with “subject” in the data matrix), then
resampling tests, such as the permutation test or boot-
strap, should be used. The non-independence of the sur-
rogate time courses is not a concern in the case of
within-subject single-trial analyses (as in Figure 3) that
do not involve averaging across subsets of the surrogate
time courses, or that are concerned with the latency or
duration of an effect (as in Figure 4) rather than the
amplitude.

Multiple comparisons
EMS filtering eliminates the need for multiple compari-
sons corrections across the sensor array. However, it does
not eliminate the need to correct for multiple compari-
sons across time (samples) in the trial epoch. The same
practices normally applied in the context of time-locked
averaging of a single sensor or ROI are appropriate.

Data set: MEG experiment (Marti et al. 2012)
All details about participants and MEG recordings are
reported in Marti et al. (2012). Briefly, ten subjects were
included in MEG analyses. All subjects were naïve to the
task, had normal or corrected-to-normal vision, and
gave written informed consent to participate.

Stimuli and apparatus
All participants performed a dual-task paradigm in
which the first target was a monotonic sound presented
to both ears and the second was a letter of the alphabet
presented visually. The first target (auditory) could be a
high pitch (1100 Hz) or a low pitch (1000 Hz) and was
presented for 84 ms. The second target (visual) was
either the letter "Y" or the letter "Z" presented in black
on a white background, (0.64 º of visual angle). The tar-
get letter was embedded in a visual stream of 12 random
black letters used as distractors. Each letter was
presented at the center of the screen for 34 ms with an
inter-stimulus interval of 66 ms. The target sound (T1)
was always synchronized to the third distractor and
followed by the second target (T2) after a variable inter-
target lag of 100, 200, 400 or 900 ms. In a fifth condition,
T2 was replaced by a non-target letter of the alphabet
(“distracter” or “control” condition). Participants were
instructed (1) to respond as fast as possible first to the
sound and then to the letter, (2) to respond as soon as the
corresponding stimulus appeared, thus avoiding "grouped
responses", and (3) that the second stimulus would occa-
sionally be absent, in which case they should simply not
perform the second task.
The experiment consisted of two training blocks of 20

trials each, one to practice the auditory task and the
other one to practice the visual task, followed by 5 ex-
perimental blocks. In four of these experimental blocks,
participants performed 100 trials of the dual-task and in
one block they performed 50 trials of only the visual task
while they had to listen passively to the sound (T1-
irrelevant condition). Thus, a maximum of 80 trials per
inter-target lag were recorded.

MEG recordings and pre-processing
While subjects performed the cognitive tasks, we con-
tinuously recorded brain activity using a 306-channel
whole-head magnetoencephalography system (Elekta
Neuromag®) with 102 gradiometers and 102 pairs of or-
thogonally oriented planar gradiometers. The subject's
head position was measured at the beginning of each run
and this information was used during data pre-processing
to compensate for differences in head position between
runs. Electro-oculogram (EOG) and electrocardiogram
(ECG) were recorded simultaneously for offline rejec-
tion of eye movements and cardiac artifacts. Signal
Space Separation, head movement compensation, and
interpolation of bad channels were applied using the
MaxFilter Software (Elekta Neuromag®). Epoching, trial
rejection, and baseline correction were then applied
using the Fieldtrip software package (http://fieldtrip.
fcdonders.nl/). Independent components analysis (ICA)
was used to identify and remove ocular and cardiac ar-
tifacts. Data for each of the three subsets of sensors
(one array of magnetometers and two arrays of gradi-
ometers) were separately converted to Z-scores by nor-
malizing to the mean and standard deviation over the
entire data set for that sensor type. This is necessary
because data from magnetometers and gradiometers
are expressed in different units and the range of values
differs by an order of magnitude.

http://fieldtrip.fcdonders.nl/
http://fieldtrip.fcdonders.nl/


Figure 3 Applying EMS filtering to test predictions regarding the psychological refractory period. Data presented are for Seen and
Unseen trials from the Lag 1 condition sorted according to RT1 and time locked to T2. The spatial filter used in the analysis was computed by
subtracting Lag 1 (seen) and Control conditions. Each panel represents trials as a function of time sorted according to the speed of RT1, after
using an evolving spatial filter (A), or stationary spatial filters computed at specific latencies: the averaged amplitude between 200–300 ms
(B) or 700–900 ms (C) after T2 onset. For subsequent analysis, we refer to these two components as the early and late components, respectively.
Previously (Marti et al., 2012) these had been labeled according to their latencies in the lag 9 condition, i.e. M250 and M550. Black dots represent
RT1 (small) and RT2 (big). Black lines represent T1 onset (0 ms) and T2 onset (100 ms).
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Measure of signal-to-noise ratio
To estimate the signal-to-noise ratio (SNR; Figure 2A
and B) we first identified the time window of the max-
imum difference between the lag-9 and control conditions,
which was in the time range 1.4 to 1.7 sec (the onset of
the target stimulus, T2, was at 0.9 sec). We chose the
interval from −0.5 to −0.3 sec as the baseline (noise) inter-
val. SNR was then computed as the root-mean-squared
difference between the lag-9 and control conditions, in the
selected time window, divided by the standard deviation
of the difference in the baseline time interval. This value
was then log transformed to express it in decibels. More
precisely:

SNR ¼ 10log10 RMSsSTDð Þ2

Where

RMSs ¼

ffiffiffiffiffiffiffiffiffiffiffiX
i∈S

d2i

ns

s
; STDN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i∈N

di−�dð Þ2

nN−1

s
, S refers to the

set of samples belonging to the “signal” interval (1.4 to



Figure 4 Average across subjects for the early (M250) and late (M550) components for lag 1 and control conditions, time locked to T2.
Seen trials were split according to the speed of RT1. Trials where RT1 was smaller than the first quartile was classified as fast (blue line) and trials
above the third quartile were classified as slow (red line). Blinked and Control trials are represented in green and black respectively. Over the
group, the M250 was time locked to the onset of the stimulus and larger for slow versus fast RT1, while the M550 was delayed for slow versus
fast RT1 trials. Bar plots on the right represent the group averaged peak latency and duration of the M250 (upper part) and the M550 (lower part)
for seen trials in lag 1 condition. Each bar represent a quartile of RT1 from fast (blue) to slow (red) reaction times. An ANOVA with RT1 quartiles
as a within-subject factor revealed a significant effect on the duration of the M250 but not on its latency. It was the opposite for the M550: a
significant effect was observed on the latency but not on the duration.
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1.7 sec), N refers to the set of samples belonging
to the “noise” (or baseline) interval (−0.5 to −0.3 sec), nS
is the number of samples in the “signal” interval, nN is
the number of samples in the “noise” interval, and d
is the difference between the mean over trials belonging
to the lag-9 condition and the mean over trials belong-
ing to the control condition.
To estimate the SNR for different numbers of trials,

for each n in 1,…,25 we computed the SNR for a ran-
dom selection of n trials. We repeated this 100 times for
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each value of n in order to arrive at a more precise esti-
mate (Figure 2B).

Decoding analysis
In Figure 2C we present the results of an analysis where
we attempted to classify each time point in each trial as
belonging to either the lag-9 or the control condition.
For this analysis we used a nested EMS filtering proced-
ure and a Gaussian naïve-Bayes (GNB) classifier. For
each iteration of the outer loop, we set aside two trials,
one from each condition. Then, for the inner loop, we
performed EMS filtering on the remaining trials in order
to estimate the mean, among the resulting surrogate
measures, for each condition. If there were more trials
in one condition than in the other, then we randomly se-
lected a subset of the trials from the condition with the
greater number of trials, so as to have an equal number
of trials per condition.
For each time point in each of the two outer-loop left-

out trials, we computed its posterior probability given
the mean and variance of the surrogate measures, out-
put from the inner loop, for each of the two categories
(lag-9, control). The category with the highest probability
was taken as the classifier’s decision. The resulting time
course of classification accuracy was then smoothed with
a 50 ms sliding window before averaging across subjects.
The same procedure was used for decoding based on
the ROI, except that at each iteration of the EMS filter-
ing algorithm, the spatial filter was replaced by the ROI
(Figure 2C): Each sensor belonging to the ROI was
assigned the weight 1, all other sensors were assigned a
weight of zero, and then the vector was set to unit
length by dividing by its norm.
For comparison, we also performed decoding using a

linear support vector machine (SVM) with five-fold
cross validation (L2 loss function, L2 penalty, penalty
parameter (C) = 1). As with the other decoding analyses,
we equalized the number of trials in each condition by
selecting a random subset of trials from the condition
with a greater number of trials. We ran the SVM five
times for each subject and averaged these together and
pooled the variance (for Figure 2C). For this analysis we
used the SciKit Learn toolbox for Python [11] (available
at http://scikit-learn.org).

Results and discussion
Results
Demonstrating the efficacy of EMS filtering
Advantages of EMS filtering at the single-trial level
Figure 2A presents the results obtained for a single sub-
ject and allows a direct comparison between the ROI ap-
proach and EMS filtering. EMS filtering appears to
reveal the presence of the second target at the single
trial level more clearly than does the ROI. In testing
this more formally, we found that as the number of tri-
als increases, EMS filtering significantly improves the
signal-to-noise ratio (SNR) as compared to the ROI
method (p < 0.05 for each trial count between 3 and 25;
p < 0.01 for each trial count between 4 and 19; one-
sided Wilcoxon signed rank test; Figure 2B).
The above conclusion is of course dependent on the

choice of ROI, and in particular on how well the ROI
targeted the effect of interest. The ROI that we used (see
Figure 1A) was chosen using a cluster-based permuta-
tion test [12] applied to the lag-9 versus control condi-
tions. This test revealed a large cluster of latitudinal
gradiometers with a significant difference between the
two conditions at around 550 ms after T2, and the 8
sensors in the center of this cluster were chosen as the
ROI. There was no other significant cluster in this time
window. Technically, because the ROI was chosen
using the same data on which the SNR and decoding
results were computed, this introduces some circular-
ity in the ROI-based analyses. We intentionally allowed
this since it can only confer an advantage on the ROI
method, and thus counts as more conservative test of
EMS filtering.
To further test the quality of single trial data we

attempted to classify each time point in each trial as be-
longing to either the lag-9 or the control condition,
based only on the one-dimensional output of the EMS
filtering algorithm. We nested the EMS filtering proced-
ure inside of the classifier cross-validation so that the
training and test data sets were always disjoint (see
Methods). A univariate GNB classifier applied to the
output of EMS filtering (EMSf-GNB) reached a peak
average performance of greater than 70% correct over
the time range of 1.35 sec to 1.45 sec (ranging from 68%
to 86%; Figure 2C, green line). For comparison we ap-
plied the same classifier to the average over an eight-
channel region of interest (ROI-GNB) defined based on
separate data (Figure 2C, blue line), and also applied a
linear support-vector machine (SVM) to the original
multi-sensor data (Figure 2C, red line). Although the
SVM performed slightly better than EMSf-GNB, remark-
ably, discrimination of the two categories based on the
univariate output of EMS filtering was comparable to
the performance of the SVM, and both were markedly
better than ROI-GNB (Figure 2C). Note that while the
SVM yields slightly better separability of the two classes
at the single-trial level, this may come at the expense of
the “interpretability” of the topography of the weight
vectors (see Discussion).

Advantages of EMS filtering at the group level
The algorithm is not only able to increase the quality of
single-trial data but it also has two important advantages
at the group level compared to standard subject averaging.

http://scikit-learn.org
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First, because the spatial filter evolves across time
(Figure 1C), the resulting surrogate time courses are spe-
cific to an experimental manipulation. By comparison, the
ROI approach gives the time course of a fixed subset of
sensors and is thus blind to the evolution of the topog-
raphy in sensor space over the time span of the trial. Sec-
ond, the matrix of spatial filters is unique for each subject
(Figure 5), thereby factoring out anatomical variability
Figure 5 Spatial filters for the same experimental effect are
different for individual subjects. The topography of the spatial
filters for each of the 10 subjects used to produce Figure 1B
(a stationary template was used for each subject). Only the latitudinal
gradiometers are shown for clarity. The average topography over the
10 subjects is shown in the center, exposing the cluster that was
identified using FieldTrip’s cluster-based permutation test [12], and
used to define the region of interest (ROI; black dots). Each of the 10
subject-specific topographies (including the magnetometers and
latitudinal gradiometers, not shown) yields a time course that
maximally separates the means of the lag-9 and control conditions for
that subject. It is evident that, while the ROI captures a region that
tends to have a higher amplitude signal on average across subjects, it
is not an especially prominent region of activity for any individual
subject. EMS filtering thus factors out anatomical variability across
subjects in order to focus specifically on the time course of the
experimental effect.
across subjects and focusing specifically on the time
course of the experimental effect.

Revealing brain mechanisms of dual-task interference
using EMS filtering
Figure 3A shows the result of EMS filtering applied to
data from the lag-1 condition for a single subject. We
used a spatial filter computed from the subtraction Seen
(lag-1) minus Control (i.e. target absent) and applied this
filter to Seen and Blinked trials in the lag-1 condition. In
the average over the group, as well as for this particular
subject, we identified two events in the resulting time
course, one peaking at around 200–300 ms and another
between 700 and 900 ms after T2 onset. We will refer to
these as the early and late events, respectively. [These
are presumed to correspond to the M250 and M550
components identified in Marti et al. (2012). However,
we avoid naming these components in terms of their la-
tency because the latency of the late component is
highly variable due to the PRP effect – subject to the
T2-T1 lag.] Note that the difference in the latency of the
late event between the lag-9 and the lag-1 conditions
was expected and simply corresponds to the PRP effect.
As can be seen in Figure 3B, the early event was time

locked to T2 onset and its duration closely followed
RT1. This was confirmed at the group level (Figure 4) by
an ANOVA with quartiles of RT1 as a within-subject
factor: the duration of the early component was strongly
influenced by RT1 (F(3,27) [SD3] = 4.12; p < 0.05). This
matches the prediction of the model regarding the exist-
ence and the properties of a perceptual buffer: T2 enters
the buffer at a fixed time relative to T2 onset, but is held
at this stage for a duration proportional to the central
stage processing of T1 (and hence to RT1) before
gaining access to the central stage. By contrast, the re-
sults for the late event (Figure 4 bottom) matched the
properties of a serial central stage: the peak of the event,
but not its duration, was influenced by RT1 (F(3,27) =
5.28; p < 0.01, Figure 4). This is consistent with the model
according to which T2 enters the central stage only after
task 1 completion, with a latency proportional to RT1.
Thus, EMS filtering afforded a unique view of the

interference between the two tasks: we were able to in-
vestigate the precise relation between T1 processing and
T2 processing both at the single trial level and at the
group level. These results extend those obtained by S
Marti, M Sigman and S Dehaene [6] by revealing both
between- and within-subjects experimental effects. We
found that the first MEG event that distinguished target
from distractor stimuli matched our predictions regard-
ing the existence of a sensory buffer during the PRP. It
also shows a direct relation on a trial by trial basis be-
tween RT1 and the onset of the late event related to the
conscious perception of T2.
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Performance
Since different software was used for the EMS filtering
and SVM analyses (MatLab and Python, respectively),
performance comparisons can only be considered de-
scriptive and approximate. All analyses were tested on a
Dell Precision T3400 PC (64-bit dual Intel Core-2 Duo
CPU E8500 3.16 GHz, 6144 KB cache) running Ubuntu
Linux 10.04. All processes were single-threaded, so only
one processor was used. In all cases, results are reported
for the lag-9 versus control conditions (classification or
contrast between means) with ~ 30 to 75 trials per con-
dition per subject. The mean processing time of the
SVM analysis with five-fold cross validation was ~ 1 to 2
minutes per subject (avg 1.44 seconds per trial, +/− 0.37s
stdev). The mean running time of the SVM analysis with
leave-one-out cross validation was ~ 6 to 8 minutes per
subject (avg 6.86 seconds per trial, +/− 2.86s stdev).
The mean running time of leave-one-out EMS filtering
was ~ 2 to 3 seconds per subject (avg 0.042 seconds per
trial, +/− 0.002s stdev), and varied linearly with the
number of trials.

Discussion
A number of techniques are available for deriving graded
linear combinations of sensors so as to capture distinct
sources of variance. Data-driven techniques such as
principal component analysis (PCA) and independent
component analysis (ICA) [13,14] decompose the data
into separate “components” or "virtual sensors" whose
time course is computed as a weighted sum of the real
sensor output. These can be powerful techniques, but
there is no way to know a priori which component(s),
if any, will carry a particular experimental effect – it is
up to the user to identify the component(s) of interest,
and in most cases, the components that carry the most
variance are artifacts. This can be useful for isolating
and eliminating signal artifacts, such as eye blinks in
EEG data [15]. However, when the objective is to iso-
late the most relevant sources of variance, rather than
the most pronounced sources of variance, these methods
are not ideal.
Hypothesis-driven methods, such as the covariance

analysis [16,17] (not to be confused with the analysis of
covariance, or ANCOVA), partial least squares (PLS) re-
gression [18], and Fisher’s linear discriminant (FLD) try
to isolate sources of variance that correspond to differ-
ences between experimental conditions. Other relations,
however, such as interaction effects or correlation with
an experimental or behavioral parameter cannot readily
be addressed. Also, in the case of PLS, if more than two
conditions are involved, e.g. A, B, and C, then it is diffi-
cult to know a priori which differences will be associated
with each “latent variable” (the term used for "component"
or "source" in PLS parlance). For example one latent
variable might correspond to A versus B & C, and another
to B versus C, while none corresponds to A < B <C,
which, for the sake of argument, happens to be the effect
of interest.
The metric known as “global field power” (GFP) [19],

although technically not a spatial-filtering method, can
be used to summarize multi-sensor data in a single
time course, and can be applied to a derived measure
such as the difference between two means. This pro-
vides a useful summary measure, but it is strictly an ag-
gregate measure, and is not defined at the single-trial
level. More recently, multiple regression has been used
to track the time course of specific components of the
stimulus-locked response [6,20,21]. However, because
the regressors are derived empirically (from a separate
data set), multi-collinearity can sometimes preclude its
use (see Discussion). Two related methods, denoising
source separation (DSS) [22,23] and common spatial
patterns (CSP) [24,25], are also widely used, but pri-
marily in brain-computer interface (BCI) applications.
These methods are more complicated than the simple
matched-filtering approach advocated here, and, like all
of the methods discussed above (apart from GFP), are
oriented towards extracting signal components (or
sources) rather than experimental effects.
In the present study we propose a method capable of

revealing the time course of experimental effects at the
single-trial level and illustrate its potential by investi-
gating serial and parallel processing in the brain. The
algorithm presents several advantages compared to
standard methods applied in human electrophysiology:
EMS filtering (1) reduces high-dimensional data to one
dimension, functionally determined by experimental
conditions, (2) increases the SNR for single-trial data,
(3) avoids the problem of anatomical variability when
averaging across subjects, (4) is optimal in maximizing
the difference between the means of two experimental
conditions (see Appendix B), and (5) yields weight vec-
tors (spatial filters) that are directly interpretable as
topographies over the sensor array.
EMS filtering attenuates trial-specific noise by projecting

the data from each trial onto a matrix of spatial filters
derived from all of the other trials. In this sense EMS
filtering is analogous to the method of “sensor noise
suppression” (SNS) [26], except that it operates across
trials rather than across sensors. Thus it might also be
appropriate to refer to EMS filtering as a method of
“trial noise suppression” (c.f. A de Cheveigné and JZ
Simon [22]). An additional output of the method is a
matrix of spatial filters, one for each time point in the
trial epoch, whose topography and temporal evolution
are also informative. As a complement to the analyses
reported here, we also applied methods for identifying
and visualizing stable states and transitions in the
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temporal evolution of the spatial filters (Additional file
2 and c.f. D Lehmann, H Ozaki and I Pal [27]).
Applying EMS filtering to the data of Marti et al.

(2012) revealed an event at around 200–300 ms after
T2, that matched the properties of a parallel perceptual
buffer as described by the router model of the PRP [7].
It was selective and time locked to the second target but
its duration was correlated with RT1. We also identified
a later component peaking around 700–900 ms that had
properties of a serial central stage: its onset was delayed
by the execution of the first task while its duration
remained unaffected. Hence, the use of EMS filtering
allowed us to reveal new experimental findings that pre-
viously could only be inferred indirectly.

Comparison with other methods
EMS filtering versus the ROI approach
Throughout the present paper, we have directly compared
the ROI approach to EMS filtering. It is important to note
that the use of one or the other depends on the scientific
question being addressed. If the question concerns a spe-
cific region of the brain, then an ROI or projection onto a
fixed anatomical source might be appropriate. However, if
the question is about a specific experimental effect, then
EMS filtering is a more appropriate tool because it tries to
maximally reveal that effect separately at each time point
by pooling over all sensors. We have shown that the
method significantly increases the signal to noise ratio, es-
pecially when the number of trials is relatively small. We
have also shown that a very simple univariate classifier
(GNB) can perform well at discriminating between the
lag-9 and control conditions, based only on the one-
dimensional output of EMS filtering, even without taking
the noise covariance into account.

EMS filtering versus multiple regression with spatial
templates
[5,20,28] used multiple regression in order to track the
time course of different “components” of the stimulus-
locked response on the very same data set. The topograph-
ies at specific peaks in the global field power for the lag-9
condition were used as regressors in a multiple regression
applied to the data from the other conditions. Multiple re-
gression becomes problematic when the same variance can
be accounted for by more than one regressor. However, if
there is no multicollinearity in the predictors, multiple re-
gression can potentially provide a better prediction of the
relationship between the variables compared to either sim-
ple regression or spatial filtering. In addition, in Marti et al.
(2012) the regression was performed only on the average
across trials. Because data from the lag-9 condition were
used to compute the regressor, they were not able to inves-
tigate results for the lag-9 condition, nor investigate
within-subject effects. In addition, this technique involves
fixed spatial templates, so it is not suitable for revealing the
time course of an experimental effect.

EMS filtering versus Fisher’s linear discriminant
EMS filtering is a matched spatial filtering technique: if
one is testing for a difference between two conditions,
then we compute the difference between their means and
use that as a filter (or template). Fisher’s linear discrimin-
ant (FLD) is a well-known technique that operates in a
similar way. In order to compute the weight vector for
separating two classes, FLD takes the difference between
the means of the two classes, and then multiplies this by
the inverse noise-covariance matrix. The latter step can
improve the separability of the two classes by taking ac-
count of non-uniformities in the noise distribution. How-
ever when the signal-to-noise ratio is low, trying to
account for both signal and noise can yield a weight vector
that is not representative of the difference between them.
A tradeoff between separability of the classes and re-

covery of the true underlying features (i.e. interpretabil-
ity) is common among machine-learning techniques
[29]. This tradeoff is primarily a function of the SNR,
number of training samples, and level of correlation
among the features. In the case of FLD, the dimensional-
ity of the features is also a factor: For high-dimensional
problems, it can become difficult to interpret the dis-
criminative pattern because the inverse covariance esti-
mate is especially sensitive to outliers [1]. As a general
rule, an estimate of the “forward model” (sometimes re-
ferred to as a “scalp projection” in EEG) [1] will be more
representative of the spatial distribution of activity over
the sensor array. However, in the simple case where w =
f(X,y) does not take the noise covariance into account,
the weight vector and the forward model are identical.
For the analysis of stimulus-evoked responses, it is con-

venient for both the topography of the weight vector, and
the resulting time course to be directly interpretable in
terms of the particular experimental effect under investi-
gation. Thus we have not incorporated the noise covari-
ance into EMS filtering by default (although the option is
available in our MatLab toolbox). Given that EMS filtering
yields a significant improvement in signal quality over the
most commonly-used techniques (single-sensor and ROI),
foregoing an additional margin of separability at the
single-trial level is a reasonable compromise in favor of
readily interpretable weight vectors. Computing the noise
covariance matrix also lengthens the computation time,
especially in the context of a LOO cross validation.

EMS filtering versus pattern classification
Technically speaking, EMS filtering is a method of dimen-
sionality reduction, and is not, by itself, a pattern classifier.
However, it can be used for pattern classification by apply-
ing a simple decision rule (e.g. nearest-mean or GNB) to
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its one-dimensional output. In Figure 2C we compared
the performance of this procedure (using a GNB decision
rule) with that of a linear support-vector machine (SVM).
The prediction accuracy of EMSf-GNB and the SVM were
comparable, although the SVM consistently performed
slightly better. Given this observation, one might ask
whether EMS filtering carries any advantage over a pat-
tern classification approach: i.e. one could examine the
time course of prediction accuracy of the classifier, or
examine the projection of the data onto the weight vectors
that are learned on each round of cross-validation. There
are three principal advantages of EMS filtering over pattern
classification – speed, interpretability, and versatility –
that should, for purposes of studying evoked responses, be
weighed alongside classification accuracy.
The decoding approach requires that the performance

of the decoder be estimated at each time point in the
epoch, and this can be computationally expensive given
that a cross validation must be performed for each esti-
mate. Even with only a five-fold cross validation (far
fewer rounds of cross validation than the leave-one-out
procedure used by EMS filtering) the SVM still took, on
average, more than 30 times longer to compute than
EMS filtering (~ 1 – 2 minutes per subject for the SVM
versus ~ 2 – 3 seconds per subject for EMS filtering; see
Results / Performance).
Also, while the SVM yields slightly better separability of

the two classes at the single-trial level, this may come at the
expense of the interpretability of the topography of the
weight vectors, as discussed above. In addition to the weight
vectors, the time courses output from EMS filtering are also
more readily interpretable. For a simple objective function
such as the difference between the means of two conditions,
the axis along which the surrogate time courses vary is sim-
ply (and exactly) “the axis defined by the difference between
the means of the two conditions in this data set” – in the ori-
ginal measurement units. The same cannot be said of a time
course expressed in units of “percent correct classification”,
even in the context of a two-class problem.
Finally, the pattern-classification approach (i.e. exam-

ining the time course of classification accuracy) is lim-
ited to questions concerning the difference between
experimental conditions, which is only one possible ob-
jective function that can be applied using EMS filtering.
Using EMS filtering one could, for example, project the
data onto “the correlation between signal amplitude and
reaction time” or “the difference in signal amplitude be-
tween t0-50 ms and t0-500 ms” (where t0 is the time of
a motor response). The latter objective function would
tend to capture activity that is changing prior to a move-
ment, such as the readiness potential [10]. In the
present treatment we have focused on the difference
between means as an objective function, but we provide
one example of the use of a different objective function
in Figures 6 and 7. Note however that, pending a more
general proof, optimality of the procedure for any func-
tion other than the difference between means cannot
be guaranteed. We note again, however, that “not
proven optimal” is not the same as “not useful”, espe-
cially when a provably optimal method with the same
capabilities is either not known or does not exist.

EMS filtering versus global field power (GFP) [19]
EMS filtering applied to the difference between means
gives as a solution the square-root of the total power of
the ERP difference, and is thus very similar to the GFP
of the ERP difference. However, GFP of the ERP differ-
ence is strictly an aggregate measure, and is not defined
at the single-trial level, whereas EMS filtering produces
one noise-suppressed time course per trial, and thus al-
lows for both aggregate and single-trial analyses.

Topography of the spatial filters
One might also want to ask “what sensors in the topog-
raphy show a significant effect?”, but this is a different
question from the one addressed by EMS filtering. In
the context of EMS filtering, the significant effect, if
there is one, is in the amplitude of the resulting time
course at a particular time point – the “topography” at
that time point is simply the vector onto which the ori-
ginal data were projected in order to reveal that signifi-
cant effect. To make this point more clear, consider that
it is possible to construct a topography such that all co-
efficients have the same absolute value (no sensor being
weighted any more or less heavily than any other), and
yet the vector of coefficients exposes a significant effect
when the data are projected onto it. One could, however,
statistically compare the spatial filter associated with a
given experimental effect to that associated with a differ-
ent effect (using correlation, for example), and one can
also compare the spatial filter at a given time point with
the spatial filter at a different time point, as illustrated in
Figure 1C. To sum up this point, in the context of EMS
filtering the approach is to make an assertion of the fol-
lowing form: “here we find a significant effect, and here
we show the topography of the spatial filter that revealed
the effect.”
It can, of course, be informative to examine the tem-

poral evolution of the spatial filters. In Additional file 1 we
illustrate some analyses for visualizing the stability of the
spatial patterns over time and highlighting transitions be-
tween stable topographical patterns (c.f. D Lehmann, H
Ozaki and I Pal [27]). One could also apply inverse
source-modeling to the average spatial filter within a
time-window of interest, but an appropriate method
would have to be chosen that is valid when applied to a
derived measure, such as the difference between two
conditions.



Figure 6 EMS filtering with linear regression using a temporally defined predictor based on reaction-time data, applied to a single subject.
For this analysis, the objective function used by EMS filtering performed a linear regression on the data from each sensor (i.e. a matrix of trials x samples),
and returned the beta weight. The predictor variable (shown in panel A) was constructed by coding each sample with a −1 if it was in the
range 200 ms before to 50 ms after RT1, a +1 if it was in the range 200 ms before to 50 ms after RT2, and a zero otherwise. Since task 1 responses and
task 2 responses were made with opposite hands (left and right, respectively, for this particular subject) then this regressor should reveal response-
related activity that is different for right-handed and left-handed responses. The topography of the resulting spatial filter (magnetometers) is shown in
panel B, and is clearly lateralized, consistent with the coding of the regressor. Panels C and D show the surrogate time courses sorted by RT1 and RT2,
respectively, with the reaction time marked by black dots. The color map goes from blue (negative) to green (zero) to red (positive). Response-related
activity is plainly visible in the form of a bluish vertical band at ~ 100 to 600 ms and a reddish vertical band at ~ 1400 to 2000 ms, and shows a clear
relationship with the reaction time by which the data were sorted. Panels E and F show the mean over the surrogate time courses when the trials
were aligned to RT1 and RT2, respectively. Data were arbitrarily aligned to the median reaction time in each case, which is marked by a thin vertical
line. A confidence boundary equal to one standard error of the mean is shown in a lighter shade of blue.
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Contribution of EMS filtering to the dual-task literature:
testing the sensory buffer hypothesis
The router model of the PRP [7] proposes the existence
of a sensory buffer whose properties are related to the
recurrent connections within a hierarchical sensory cor-
tex. In a single-task situation, the target stimulus is
processed in the sensory cortex and rapidly accesses the
serial central stage. In a dual-task situation, T2 triggers
the activation of the sensory buffer, but it cannot access
the central stage before the completion of task 1. Thus,
according to the model, T2 sensory information slowly
decays until a decision is reached for task 1. Testing this
hypothesis directly can be done by examining T2 sen-
sory integration within subjects at the single trial level.
Once T2-related activity was isolated for each trial, it
was possible to decompose this activity into different
events and to look at the properties of each one of these.
We found that the duration of the early event, but not
its latency, was influenced by RT1. Conversely, the la-
tency but not the duration of the late event was
influenced by RT1. These results suggest that the infor-
mation related to T2 is held in a sensory buffer until the



Figure 7 Same as Figure 6, but with the reaction times replaced by random values, resulting in a random model. A, predictor variable
(same as in Figure 6, but scrambled). B, topography of the resulting spatial filter. C, output sorted by RT 1; D, output sorted by RT2; E, mean
aligned to RT1; F, mean aligned to RT2.

Schurger et al. BMC Neuroscience 2013, 14:122 Page 15 of 19
http://www.biomedcentral.com/1471-2202/14/122
response to T1 is executed. Once the motor response to
T1 is executed, T2 information can access a second
stage which is strictly serial (i.e. delayed during the
PRP), and absent in unseen trials (Marti et al., 2012).

Objective functions other than the difference between
means
Direct comparison between two experimental conditions
is a very simple, common, and powerful analysis, and this
is why we have focused on the difference between means
as an objective function for the purpose of demonstrating
the method. However, as an algorithm EMS filtering is in-
dependent of the particular objective function that is used.
The minimum requirement is that the function return a
vector of coefficients, one for each sensor. As one extreme
(and useless) example, the objective function could return
a vector of random numbers – highly unlikely to reveal
any interesting effects in the data, but technically a valid
objective function. Correlation with a behavioral variable
such as reaction time is an example of a potentially in-
formative objective function. Although in principle any
objective function can be used, note that the interpretabil-
ity of the results will depend, at least in part, on the choice
of objective function. Note also that the magnitude and
direction of the skew introduced by the LOO procedure
[9] might not be the same for all objective functions, but,
again, this is only a concern when doing statistical testing
on data from a single subject, in which case a resampling
test should be performed anyway.
In order to illustrate the use of EMS filtering with an

objective function other than the difference between
means, we used the reaction-time data from [5] to con-
struct a temporal regressor, and then applied an object-
ive function that returned the fit, at each sensor, of this
regressor to the MEG data. The temporal regressor
highlighted the time interval from −200 ms to +50 ms
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with respect to each response, with the opposite sign
(−1/+1) for responses made with the left and right
hands, respectively (responses to task 1 were all made
with the same hand, and responses to task 2 were always
made with the opposite hand, with the assignment of
hands counterbalanced across subjects). We anticipated
that this would reveal motor-related activity and high-
light the difference between right- and left- hand re-
sponses, and the results are striking (Figures 6 and 7).

Conclusions
We have presented a method for reducing multi-variate
time series data to a single time course by projecting the
data onto a single vector that is chosen so as to reveal a
given experimental effect. A leave-k-out procedure en-
sures that each filter is independent of the trial/s that is/
are projected onto to it. Although we have presented the
method primarily using the example of a difference be-
tween two experimental conditions, we reiterate that
other objective functions – such as correlation with a
dependent or independent variable, or a temporal differ-
ence within a single experimental condition – can also
be used, and this capability has been implemented in the
freely-available computer code. However, the properties
of any function other than the difference between two
means would have to be worked out independently. We
used MEG data to illustrate the method, but the method
can be applied to any kind of multivariate time-series
data, such as slow event-related functional magnetic res-
onance imaging (fMRI), or data from domains outside of
neuroimaging. We have demonstrated the effectiveness
of the method in dramatically improving the quality of
single trial data vis-à-vis a given experimental effect, and
specifically in revealing the time course of the psycho-
logical refractory period. An implementation of the
method is freely available as a MatLab toolbox at http://
bitbucket.org/emsf/emsf_matlab.

Endnotes
aA clarification on the use of the term "spatial filter": A

spatial filter can be two-dimensional, taking into account
the relative spatial locations of each of the individual vari-
ables (pixels or sensors). In this case a two-dimensional
convolution is used for filtering, as in the example of
detecting faces in photographs. However, even when we
treat the data as a one-dimensional vector (as is the case
here), the term "spatial filter" is still commonly used be-
cause the data (across sensors, at a single time sample) are
in the spatial domain rather than the time domain. When
we refer to a "spatial filter" we are always referring to a
one-dimensional vector in sensor space (and hence a one-
dimensional filtering operation).

bOne can show analytically, that the expected mean of
this LOO procedure is zero. However, for low dimensional
data (D<10) the distribution is far from the Normal distri-
bution and thus one can not use the conventional t-test
for the mean (as the variance will be over-estimated and
thus one looses statistical power). Non-parametric tests
for zero-median are also not adequate as the distribution
is skewed and thus it has a non-zero median. To establish
statistical significance one has to resort therefore to ran-
dom shuffle statistics. The problem may be less severe for
high-dimensional data in which case the distribution is ap-
proximately Normal and a simple t-test may suffice. (LC
Parra, personal communication). [Note that the above is
not a concern when performing statistics across subjects,
as long as the means are normally distributed].

Appendix A
EMS filtering – formal description
Abbreviations and notation
In all formulae, X.j refers to the jth column of matrix

X, and Xi. refers to the ith row. Where X is a three-
dimensional data matrix, X..k is equivalent to “every row
and every column where the third index is k”, or more
formally ∀i, ∀j, ∃kXijk.
The EMS filtering algorithm
Let X be a data matrix of size m x n x p, where m is

the number of sensors, n is the number of samples in
each epoch, and p is the number of trials. These are
indexed by i, j, and k, respectively. There is also a vector
y, of condition labels of size p x 1 (i.e. one for each trial).
Let f be a function that takes as parameters the data at a
single time point in X (i.e. X.j., a 2-D matrix of size m x p),
and a set of condition labels, y, of size p x 1, and returns a
set of coefficients of size m x 1, i.e. one per sensor. We refer
to f as the “objective function”, since we are interested in
maximizing this function over the output of the algorithm.
If the objective is to maximize the difference between

two experimental conditions, then f simply computes the
difference between the average (across trials) for condition
y = 1 and the average (across trials) for condition y = 2.
This difference is computed individually for each sensor.
Each element in the resulting vector, d, can be thought of
as a coefficient whose sign and magnitude correspond to
the sign and magnitude of the difference between condi-
tions y = 1 and y = 2 at that sensor, at that time point. In
the event that different sensors have different units (as with
gradiometers and magnetometers in MEG), then either the
data must be converted to Z scores (separately for each
subset of sensors) prior to EMS filtering, or data from the
different sensor types must be filtered separately. Since we
will use d as a spatial filter, we set it to unit length by divid-
ing by its norm (the square root of the sum of the squared
values), in order to preserve the units of the data that will
be projected onto it.
Given only the data matrix, X, and the condition labels,

y, the most appropriate spatial filter for revealing a given

http://bitbucket.org/emsf/emsf_matlab
http://bitbucket.org/emsf/emsf_matlab
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experimental effect at time t is the one derived based on
the data at time t. Hence we define a new function, F, that
simply computes f independently at each time point in X,
resulting in a distinct spatial filter for each time point in
the trial epoch (Figure 1C). Thus the function F, instead of
returning a single vector d, returns a matrix D, where each
column is a spatial filter (dt) derived based on the data at
the corresponding time point (t) in X.
We could simply compute D based on X and then pro-

ject the data at each time sample of each trial in X onto
its corresponding column in D, resulting in one time
course per trial.

D ¼ F X; yð Þ

Sjk ¼ ∑
i
DijkXijk

Each time point (t) in each resulting time course in S
would reflect the projection of the data onto the mean dif-
ference between condition y = 1 and y = 2 at time t in our
data. However, this would introduce circularity in the data
analysis, a common error that can lead to exaggerated or
spurious experimental effects [8,9]. This is because the
data that are projected onto each template in the set are
the same data used to derive the template. In order to
avoid this, we iteratively replace each trial with its projec-
tion onto the spatial filter derived based on all of the other
trials – a simple leave-one-out procedure. If the number
of trials per condition is balanced, then a leave-one-out-
per-condition (LOOPC) procedure can be used, and if the
algorithm is applied across subjects, rather than within
subject, then a leave-one-out-per-subject (LOOPS) proced-
ure should be used. [Note that although the LOO proced-
ure may give the best estimate of the template for filtering
the left-out trial, it may not be optimal vis-à-vis aggregate
measures applied to the resulting time courses. The aver-
age (of averages) over a five- or ten-fold cross validation
may give a better estimate (our MatLab implementation
allows for k-fold cross validation).]
For the simple case where f takes the difference be-

tween the means of two experimental conditions, the
formal solution is as follows:
Let

M1
ijk ¼

X
k 0∈cond1
k 0≠k

n1

Xijk 0

n1
ð1Þ

be the mean for condition y = 1, with the kth trial left
out, where n1 is the number of trials belonging to condi-
tion y = 1.
Let

M2
ijk ¼

X
k 0∈cond2
k 0≠k

n2

Xijk 0

n2
ð2Þ

be the mean for condition y = 2, with the kth trial left
out, where n2 is the number of trials belonging to condi-
tion y = 2.
Then

Dijk ¼ M1
ijk−M

2
ijk ð3Þ

is the matrix of spatial filters, one for each sample (j) of
each trial (k),

D̂:jk ¼ D:jk=∥D:jk∥

is the matrix of spatial filters after normalizing each filter
to unit length, and

Sjk ¼ ∑
i
D̂ijkXijk ð4Þ

is the resulting matrix of surrogate time courses.
For the general case where f is some function other

than the above (see Discussion), for each k∈[1,2,…,p] we
let X(k) = X with the kth trial left out and let y(k) = y with
the kth trial-label left out, and define Sk, the kth surrogate
time course, as follows:

Sk⋅ ¼ ∑
i
XijkD̂ijk

� �
ð5Þ

Where

D̂⋅jk ¼ D⋅jk=∥D⋅jk∥

and

D⋅⋅k ¼ f X kð Þ; y kð Þ
� �

ð6Þ

Recall the formal definition of a matched filter as a
“known template” that we correlate with an unknown
(and noisy) signal. In the context of EMS filtering we do
not know what the template is (i.e. the real underlying
difference between two experimental conditions), and so
we estimate it from the data itself. This means that per-
formance of the filter will depend in part on the accur-
acy of the estimate. If the estimate is optimal, then this
is the best that can be done given only the data at hand
(without using a more nuanced model of the noise). For
the difference between two means the estimate is known
to be optimal a-priori, and so iid-optimality follows
by virtue of this being a matched filter. For objective
functions other than the difference between two means,
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the procedure may or may not be iid-optimal, contin-
gent on the accuracy of the estimate of the template.
Our MatLab implementation uses function handles (i.e.
pointers) in order to support user-defined objective
functions. This allows one to perform analyses that
would be difficult or impossible using other methods
(see Figures 6 and 7).
Filtering with a stationary-template
Although we present EMS filtering as a method for re-

vealing the time course of an experimental effect, it is
often useful to examine the time course of a fixed spatial
filter e.g. the mean around the peak of an evoked poten-
tial of interest. While conceptually different from the
procedure described above, its implementation is very
similar. Consider an experimental effect that is expected
to appear at a specific latency (e.g. ~200 ms) with re-
spect to a certain event – e.g. the onset of a stimulus or
the issuance of a motor response – to which the data
epochs are aligned (t0). We define a temporal window of
interest, w, which is a list of sample indices in our data
epochs corresponding to, for example, +180 to +220 ms
with respect to t0. f is a function that takes as parame-
ters the data matrix, X, the set of trial labels, y, and the
list of sample indices, w, and returns a set of coefficients
of size m x 1 (i.e. one per sensor). In the simplest case, f
simply takes the average over the temporal window spe-
cified by w, and then returns the difference between the
average (across trials) for condition y = 1 and the average
(across trials) for condition y = 2.
So for each k ∈ {1,2,…,p}, we let X(k) = X with the kth

trial left out and y(k) = y with the kth trial-label left out,
and define Sk , the kth surrogate time course, as follows:

Sk: ¼ X ::k½ �T • d̂ k
h iT

ð7Þ

Where d̂k ¼ dk=∥dk∥ and

dk ¼ f X kð Þ0y kð Þ0w
� �

ð8Þ

is the spatial filter computed on the kth iteration. In the
example given above, f simply computes the difference
between the mean of trials belonging to condition y = 1
and the mean of trials belonging to condition y = 2, in
the time window specified by w. Although the algorithm
itself is independent of the specific function that is used,
we reiterate that the performance of the procedure is
contingent on the accuracy of the estimate that the func-
tion computes.
Since the average signal at time(s) t ∈ w was used to

derive the spatial filter d, then projection onto d is an
appropriate choice for maximizing the separation be-
tween the mean signal amplitude for condition y = 1
versus condition y = 2, at time(s) t ∈ w. If there is in fact
a detectable difference in the data at time(s) t ∈ w, then
we expect it to be apparent in the average over the sur-
rogate measures in that same time window. If a differ-
ence is also apparent at some other time in the trial, this
would imply that a very similar topography also appears
at this time in the course of the trial. Thus, in addition
to being useful for estimating the latency of a signal
event at the single-trial level (Figure 5), this approach
can also be used to reveal the re-appearance of a par-
ticular topographical template at different times in the
trial epoch [5]. These are two inferences that one can
reasonably draw when using a fixed (stationary) template
for the entire trial epoch. To follow the time-course of
an experimental effect, a different template should be
computed for each time point in the trial epoch.

Appendix B
Derivation of the weight vector for the difference between
two means
In the Methods section we introduced X, the data matrix,

as having dimensions m x n x p, where m is the number of
sensors, n is the number of time samples in the epoch, and
p is the number of epochs (or trials). Since the fundamental
operation of EMS filtering is independent for each time
sample in the epoch, then for the mathematical derivation
we consider a matrix X with only one time sample, i.e. with
dimensions m x p (# of sensors by # of trials).
y is a vector of trial labels of size p x 1, where y = 1/NA

if the corresponding trial belongs to condition A, and
y = −1/NB if the corresponding trial belongs to condition
B, and NA and NB are the number of trials belonging to
conditions A and B, respectively.

Find the vector w ¼ argmax
w s:t:∥w∥¼1

∑
k
yk Xk ;w
� � ð9Þ

Where ⟨χ,y⟩ denotes the scalar product, or dot prod-
uct, often written as χ. y.
The straightforward solution to this problem is:

ŵ ¼
∑
k
ykXk

∥∑
k
ykXk∥

ð10Þ

Note that the numerator in (10) above is equivalent to
the vector labeled d in section 2.1.1 (i.e. the difference
between the mean over condition A and the mean over
condition B), and when repeated for each time sample in
the epoch is equivalent to the matrix labeled D in Appendix
A, equation (3). Note also the norm of w plays no role in
the problem – it is simply a global scaling factor, and must
simply be fixed at some value. You can thus fix ||w|| = 1
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without loss of generality. Having ||w|| = 1 is useful in order
to preserve the measurement units in the output.
Cross validation
The accuracy of the model is simply the dot product

of the discriminative vector w with the weighted obser-
vations, y;Xð Þ→∑

k
yk Xk ;w
� �

To discount over-fitting effects in the accuracy esti-
mate, we replace it by a cross-validated estimate,

f ¼ ∑
k
yk Xk ;w

kð Þ
D E

where w(k) =w derived as above, but based on X(k) and
y(k), where the superscript (k) means “with the kth trial
left out”.

Additional files

Additional file 1: Projection onto the difference between two
means with LOO cross— validation on guassian random data.

Additional file 2: Visualizing the temporal evolution of the spatial
filters.
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