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Abstract
We give a new proof that the elliptic curve y2 = x3 + 27x – 62 has only the integral
points (x, y) = (2, 0) and (x, y) = (28,844,402,±15,491,585,540) using elementary
number theory methods and some properties of generalized Fibonacci and Lucas
sequences.
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1 Introduction
Let P and Q be non-zero integers with P + Q �= . The generalized Fibonacci sequence
(Un(P,Q)) and the Lucas sequence (Vn(P,Q)) are defined by the following recurrence re-
lations:

U(P,Q) = , U(P,Q) = , Un+(P,Q) = PUn+(P,Q) +QUn(P,Q) for n≥ 

and

V(P,Q) = , V(P,Q) = P, Vn+(P,Q) = PVn+(P,Q) +QVn(P,Q) for n≥ .

Un(P,Q) is called the nth generalized Fibonacci number and Vn(P,Q) is called the nth
generalized Lucas number. Also, generalized Fibonacci and Lucas numbers for negative
subscripts are defined as

U–n(P,Q) =
–Un(P,Q)
(–Q)n

and V–n =
Vn(P,Q)
(–Q)n

for n≥ , (.)

respectively. Taking α = (P +
√
P + Q)/ and β = (P –

√
P + Q)/ to be the roots of the

characteristic equation x –Px–Q = , we have the well-known expressions named Binet’s
formulas

Un(P,Q) =
(
αn – βn)/(α – β) and Vn(P,Q) = αn + βn (.)

for all n ∈ Z. Instead of Un(P,Q) and Vn(P,Q), we use Un and Vn, respectively. For P =
Q = , the sequence (Un) is the familiar Fibonacci sequence (Fn) and the sequence (Vn)
is the familiar Lucas sequence (Ln). If P =  and Q = , then we have the well-known Pell
sequence (Pn) and Pell-Lucas sequence (Qn). For Q = –, we represent (Un) and (Vn) by

© 2013 Karaatlı and Keskin; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194665377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2013/1/221
mailto:okaraatli@sakarya.edu.tr
http://creativecommons.org/licenses/by/2.0


Karaatlı and Keskin Journal of Inequalities and Applications 2013, 2013:221 Page 2 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/221

(un) and (vn), respectively. Thus u = , u = P and un+ = Pun –un– and v = , v = P and
vn+ = Pvn – vn– for all n≥ . Also, it is seen from Eq. (.) that

u–n = –un(P, –) and v–n = vn(P, –)

for all n≥ . For more information about generalized Fibonacci and Lucas sequences, one
can consult [–].
There has been much interest in determining the problem of the integral points on el-

liptic curves, and many advanced methods have been developed to solve such problems
(see [, ] and []). In , Don Zagier [] proposed that the largest integral point on the
elliptic curve

y = x + x –  (.)

is (x, y) = (,,,±,,,). Then the same problemwas dealt with by some
authors. In [], Zhu and Chen found all integral points on (.) by using algebraic num-
ber theory and p-adic analysis. In [], Wu proved that (.) has only the integral points
(x, y) = (, ) and (,,,±,,,) using some results of quartic Diophan-
tine equations with elementary number methods. After that, in [], the authors found
the integral points on (.) using similar methods to those given in []. In this paper,
we determine that the largest integral point on the elliptic curve y = x + x –  is
(x, y) = (,,,±,,,) by using elementary number theorymethods and
some properties of generalized Fibonacci and Lucas sequences. Our proof is extremely
different from the proofs of the others.

2 Preliminaries
In this section, we present two theorems and some well-known identities regarding the
sequences (un) and (vn), which will be useful during the proof of the main theorem.
We state the following theorem from [].

Theorem . Let P > . If un = cx with c ∈ {, , , } and n > , then (n,P, c) = (, , )
or (, , ).

The following theorem is a well-known theorem (see []).

Theorem . Let m ≥  and n≥ . Then (um,un) = u(m,n).

The well-known identities for (un) and (vn) are as follows:

un = unvn, (.)

vn = un+ – un–, (.)

uk+ –  = ukvk+. (.)

Moreover, if P is even, then

un is even ⇔ n is even, (.)

un is odd⇔ n is odd. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/221
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3 Proof of themain theorem
The main theorem we deal with here is as follows.

Theorem . The elliptic curve y = x +x– has only the integral points (x, y) = (, )
and (,,,±,,,).

Proof Assume that (x, y) is an integral point on the elliptic curve y = x + x– . It can
be easily seen that x > . On the other hand, obviously, the elliptic curve y = x + x–
has only the integral point (x, y) = (, ) with y = . Hence, we may assume that y �= . Let
k = x – . Substituting this value of k into y = x + x – , we get

y = k
(
k + k + 

)
. (.)

Since y �= , it is obvious that y > .On the other hand, since k +k+ = (k+) + > ,
we conclude that k > . Clearly, d = (k,k + k + ) = , ,  or . So, we get from (.)
that

k = da, k + k +  = db, y = ±dab (.)

for some positive integers a and b.
If d = , then from (.) we get a +a + = b. Completing the square gives (a +) +

 = b. This implies that [b– (a + )][b+ (a + )] = . It can be easily shown that there
are no integers a and b satisfying the previous equation.
If d = , then from (.) we obtain a + a +  = b. Completing the square gives

b – 
(
a + 

) = . (.)

Working on modulo  shows that (.) is impossible.
If d = , then from (.) we immediately have a +a + = b. Completing the

square gives

(
a + 

) – b = –. (.)

Working on modulo  shows that (.) is impossible.
Lastly, we consider (.) for the case when d = . If d = , then from (.) we get k =

a and k +k+ = b. Substituting k = a into k +k+ = b and completing
the square give

(
a + 

) +  = b. (.)

This equation is of the form

u – v = –. (.)

Let xn + yn
√
 be a solution of the equation x – y = . Since the fundamental solution

of this equation is α =  + 
√
, we get xn + yn

√
 = αn, and therefore xn = (αn + βn)/

http://www.journalofinequalitiesandapplications.com/content/2013/1/221
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and yn = (αn –βn)/
√
, where β = –

√
. It can be easily seen that xn = vn(,–)/

and yn = un(,–). Equation (.) has exactly two solution classes and the fundamental
solutions are  +

√
 and  –

√
. So, the general solution of (.) is given by

an + bn
√
 = ( –

√
)(xn + yn

√
), (.)

an + bn
√
 = ( +

√
)(xn + yn

√
), (.)

with n≥ , respectively []. Considering first Eq. (.), we readily obtain an = xn – yn.
Since xn = vn/ and yn = un, it follows that

an = (vn – un)/.

From (.), if we write un+ –un– instead of vn and rearrange the above equation, then we
get an = –un – un–. This means that a +  = –un – un– by (.). Dividing both
sides of the equation by  gives a +  = –un – un–. However, this is impossible for
a +  >  and n≥ . Another possibility is that –a –  = –un –un–, implying that

a +  = un + un–. (.)

It can be shown by the induction method that

un ≡
{
–n(mod ) if n is even,
n(mod ) if n is odd

(.)

and

un ≡ n(mod). (.)

So, working on modulo  and using (.) in Eq. (.) lead to a contradiction.
Now, we consider Eq. (.). Then we immediately have an = xn + yn. Since xn = vn/

and yn = un, it follows that an = (vn + un)/. In view of (.), we readily obtain an =
un+ + un. By (.), we get a +  = un+ + un, implying that

a +  = un+ + un. (.)

Assume that n is odd. By using (.), we get

un+ + un ≡ –n –  + n≡ –(mod ),

a contradiction by (.). So, n is even. Now, let us assume that a is odd in Eq. (.). Then
using (.) gives

un+ + un ≡ n +  + n≡ n +  ≡ (mod),

i.e.,

n≡ (mod),
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which is impossible. So, a is even, and therefore a = m for some positive integerm. Sub-
stituting a = m into (.), we get

m +  = un+ + un. (.)

In the above equation, if m is odd, then from (.) we get

un+ + un ≡ n +  + n≡ n +  ≡ (mod),

which implies that

n≡ (mod).

But this is impossible since n is even. As a consequence, m is even and therefore we con-
clude that |a. We now return to (.). Since n is even, n = r for some r > . Then (.)
becomes

a = ur+ –  + ur .

By (.) and (.), it can be seen that ur+ –  + ur = urvr+ + urvr = ur(vr+ + vr)
and therefore

a = ur(vr+ + vr).

By using (.), we get a = ur(ur+ – ur + ur+ – ur–). In view of the recurrence
relation of the sequence ur , we immediately have

a = ur(,ur – ur–).

Dividing both sides of the above equation by  and rearranging the equation gives

a = ur(ur – ur–).

Since |a, it follows that

(a/) = ur(ur – ur–).

By Theorem ., since (ur ,ur–) = , clearly, (ur , ur – ur–) = . This implies that either

ur – ur– = c (.)

or

ur = c (.)

for some positive integer c, where ur = ur(,–). By (.) and (.), it can be seen that
ur – ur– is always odd. Therefore (.) is impossible. By Theorem ., (.) is impos-
sible for the case when r > . Hence, we have r ≤ . On the other hand, since ur = c is

http://www.journalofinequalitiesandapplications.com/content/2013/1/221
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even, from (.), it follows that r is even. Since r is even and n = r, we get n = . Substi-
tuting this value of n into (.), we obtain

a +  = u + u.

Since u = ,, and u = ,, a simple computation shows that a = . More-
over, since k = a and x = k + , we get k = ,, and therefore x = ,,.
Substituting x = ,, into y = x + x –  gives y = ±,,,. Hence,
the theorem is proved, the elliptic curve y = x + x –  has only the integral points
(x, y) = (, ) and (x, y) = (,,,±,,,), which is the largest integral point
on it. This completes the proof of the main theorem. �
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13. Mignotte, M, Pethő, A: Sur les carrés dans certanies suites de Lucas. J. Théor. Nr. Bordx. 5(2), 333-341 (1993)
14. Ribenboim, P: An algorithm to determine the points with integral coordinates in certain elliptic curves. J. Number

Theory 74, 19-38 (1999)
15. Nagell, T: Introduction to Number Theory. Wiley, New York (1981)

doi:10.1186/1029-242X-2013-221
Cite this article as: Karaatlı and Keskin: Integral points on the elliptic curve y2 = x3 + 27x – 62. Journal of Inequalities and
Applications 2013 2013:221.

http://www.journalofinequalitiesandapplications.com/content/2013/1/221

	Integral points on the elliptic curve y2=x3+27x-62
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Proof of the main theorem
	Competing interests
	Authors' contributions
	Acknowledgements
	References


