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Abstract

Background: Evolutionary variations let us define a set of similar nucleic acid sequences as a family if these different
molecules execute a common function. Capturing their sequence variation by using e. g. position specific scoring
matrices significantly improves sensitivity of detection tools. Members of a functional (non-coding) RNA family are
affected by these variations not only on the sequence, but also on the structural level. For example, some
transfer-RNAs exhibit a fifth helix in addition to the typical cloverleaf structure. Current covariance models – the
unrivaled homology search approach for structured RNA – do not benefit from structural variation within a family, but
rather penalize it. This leads to artificial subdivision of families and loss of information in the RFAM database.

Results: We propose an extension to the fundamental architecture of covariance models to allow for several,
compatible consensus structures. The resulting models are called ambivalent covariance models. Evaluation on
several RFAM families shows that coalescence of structural variation within a family by using ambivalent consensus
models is superior to subdividing the family into multiple classical covariance models.

Conclusion: A prototype and source code is available at http://bibiserv.cebitec.uni-bielefeld.de/acms.

Keywords: RNA homology search, Covariance model, Consensus structure

Background
RNA family modeling in RFAM
The dominating source of information on non-coding
RNA families is the RFAM database [1]. The grouping
criterion of RFAM is a follows [2]:

The ideal basis for a new family is an RNA element that
has some known functional classification, is
evolutionary conserved, and has evidence for a
secondary structure.

For many RNA families, this secondary structure is con-
served and varies only to a limited degree, such as inser-
tion of unstructured sequence or loss of some base pairs
present in the secondary structure. For these families,
present-day modeling techniques work well.
But note that by the above definition, RFAM does not

strictly insist on a single common structure, strongly
conserved in the above sense. There are well known
examples with larger structural variations within a fam-
ily. The most prominent example is probably the tRNA
family (RF00005, RFAM release 10.1). It is known that a
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minority of the tRNA molecules form a stabilizing “vari-
able loop” in addition to the classical cloverleaf structure.
The WIKIPEDIA article on tRNA, which RFAM uses to
explain the family, does not fail to point to this fact. The
tRNA family comprises 967 members in total, of which a
minority of 147 members hold the variable loop. But this
“loop” is not just inserted, unstructured sequence, which
could be accommodated by present-day techniques. In
contrast to its name, nucleotides of the variable loop form
base-pairs, creating an extra helix which adds stability.
A plausible consensus structure for the 147 variable loop
members can be constructed by aligning those individual
predictions, e. g. with RNAFORESTER [3]. The extra helix
is a bona fide feature of the tRNA family.

Limitations of present family modeling
In the presence of structural variation like the one
described above, present-day techniques reach a limit.
Family models in RFAM are implemented as covariance
models (CMs), constructed by the tool INFERNAL [4].
RFAM constitutes the most important use-case for covari-
ance models, and in fact, curators of RFAM and develop-
ers of INFERNAL do closely cooperate. By construction,
INFERNAL’s CMs require all family member sequences to
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fold into a single, shared secondary consensus structure
(SScons) with only small deviations such as indels.
An optional structural feature such as the “variable loop”

cannot be accommodated. Replacing in our tRNA exam-
ple the original SScons with the variable loop enriched ver-
sion will have no effect on the CM actually built, because
the majority of 820 members has gaps at the variable
loop positions and therefore INFERNAL will model those
positions as insertions. In effect, the introduced variable
loop sub-structure is taken out off SScons, and informa-
tive covariance from base-pairs of this extra helix (where
present) cannot be captured.
One might also consider enforcing a five-helix SScons by

increasing the allowed gap ratio. Base pairs in the minor-
ity structures could now contribute. But this idea would
impose large deletion costs on the 820 majority mem-
bers when aligning to the new model. In either case, an
improvement can not be reached by providing an alterna-
tive alignment and a single SScons.

Allowing for structural variation in RNA families
The architecture of CMs has been remarkably stable for 20
years, serving its purpose very effectively. But for accom-
modating multiple structures, as shown above, one must
extend the classical definition and construction of CMs.
With the introduction of ambivalent Covariance Models
(aCMs), we provide such a generalization.
An aCM is a CM constructed from several consen-

sus structures, allowing sequences to fold into a set of
predefined alternatives without penalty, and exploiting
sequence conservation and covariance at all points.
The organization of this contribution is as follows: We

briefly recapitulate the technical background of CMs and
their INFERNAL implementation in Section ‘Introduction:
classical covariance models’. The classical architecture is
hard-wired in INFERNAL’s CMs. To be able to modify it,
we first re-create classical CMs in a rapid prototyping
framework in Section ‘Recreating the core of INFERNAL’,
where the model generation process can be described
on the abstraction level of context-free grammars.
Extending these grammars by extra rules that branch
between alternative consensus structures, we arrive at
aCMs in Section ‘Ambivalent covariance models’. Section
‘Evaluation’ is devoted to their evaluation, comparing
ambivalent models to classical models in the presence of
structural variation.

Recent alternative approaches to structural variability in
RNA
While our work is firmly based on the classical work on
CMs, there are other interesting approaches, not based on
CMs, which address structural variation in related RNA
sequences. Both approaches are very recent and have
appeared while this manuscript was in preparation.

Saffarian et al. suggest a combinatorial approach to
search for a predefined set of alternative structures, called
multi-structures, in RNA sequences [5]. They describe this
set as a formal grammar, on the granularity of a prede-
fined set of stable helices. This can be used to describe
RNA families with structural variation, but also interest-
ing suboptimal structures from the search space of the
same type of RNA. We will refer to an aspect of this work
in Section ‘Ambivalent covariance models’.
Reinkensmeier and Giegerich elaborate the approach

of thermodynamic machters to define the “cuckoo” RNA
family [6]. The characteristic cuckoo motif consists of 2 -
4 hairpins with no sequence conservation in the helices,
but exhibiting a conserved loop motif. Their approach
is based on the theromodynamic energy model, but in
principle, the energy rules can be replaced by stochastic
scoring, taking the approach closer to (extended) CMs.
Although also based on formal grammars, the approach is
semi-automatic, allowing the model designer careful tun-
ing of the generated matchers, which can be considered a
blessing as well as a burden.

Introduction: classical covariancemodels
A covariance model (CM) is a stochastic approach to
quantify homology of an RNA sequence to a family
of sequences. The family consists of an aligned set of
RNA sequences (MSA), which are believed to share the
same functionality, shape or other grouping properties,
together with one (pseudoknot free) consensus secondary
structure (SScons). The machinery follows the Bayesian
interpretation of probabilities, by updating family inde-
pendent expert knowledge (priors) with those frequencies
observed in the given family (posteriors). Amalgamation
of priors and posteriors is called “training” and has to be
done just once. Result of the training is a stochastic context
free grammar (SCFG), whose production rules are aug-
mented with transition and emission-probabilities. The
architecture of CMs can be described by an architecture
grammar, which is a grammar that can parse any RNA
secondary structure. The family model grammar is gener-
ated from the architecture grammar by specializing it to
SScons (for a tutorial exposition of this view see [7]), and its
parameters are trained from the multiple alignment.
Covariance models follow the principles of Hidden

Markov Models (HMMs) [8], but are more powerful in
order to account for distant but coupled positions, which
represent the base-pairs of SScons. While an HMM runs
through a linear sequence of states, the transition graph of
the CM “automaton” has a tree-like branching structure
that mimics SScons. For historical reasons, the classical
description of this technique [4] uses a mixture of HMM
(“state transition”) and grammar terminology (“bifurca-
tion rule”); here we try to stick to the latter, providing
translation of terminology where appropriate.
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The parses constructed by the family model gram-
mar for any sequence are very similar. Abstracting away
insertions and deletions, they all indicate the same struc-
ture, namely the given SScons. This unique abstract parse
tree is called a “guide tree” in INFERNAL terminology.
When we apply the CM to an RNA sequence, we can
obtain the probability of the most likely parse of the
given sequence. Since this probability tends to be very
small, it is scaled to a background model. This is done
in terms of a log odds ratio, which provides a bit-score,
which finally expresses homology between sequence and
family. It is up to the user to decide if the bit-score
suffices to accept the input sequence as a new family
member.

The INFERNAL software suite
Reference implementation
The INFERNAL software package [9], a product of 20 years
of careful software engineering, is the reference imple-
mentation of CMs. It does not only provide programs
for the above described tasks of training (CMBUILD) and
searching (CMSEARCH), but e. g. also tools to “calibrate”
the CM – basically to provide E- and P-values for the
bit-scores – or to align the new member to the existing
family.
Scoring a sequence s of length n to a family model of

lengthm takes O(n ∗ m3) time and O(n ∗ m2) space. Such
high computational cost arises from parsing with a con-
text free grammar which itself has a size proportional
to the length of the input. Much of the efforts spent in
the past twenty years aimed to lower these high compu-
tational demands. In 2002, Eddy introduced a memory-
efficient divide-and-conquer variant of the CYK (Cocke-
Younger-Kasami) algorithm [8,10]. An HMM pre-filtering
strategy was pioneered by Weinberg and Ruzzo in 2006
[11]. Since 2007, remaining candidate sequences of s are
scored with a heuristics, called “query dependent band-
ing” [12], which tightly restricts the search space while
hopefully retaining the most likely candidate. Wherever
possible, INFERNAL uses parallelization to further speed
up the run-time. For all these improvements, the basic
architecture of CMs remained untouched. Furthermore,
statistics are enhanced for training by sequence weighting
and expectation maximization. Sequence weighting is to
adjust for potential sub-grouping of the family members.
Expectation maximization should compensate for over-
fitting, by finding a suitable trade-off between priors and
posteriors. CMSEARCH can be run in glocal (aka “small in
large” or “free shift”) or local mode. The reported bit-score
might be either the probability of the most likely state-
path (the CYK algorithm, which is the analogue to the
“Viterbi” algorithm in HMMs), or probability sum of all
possible state paths (“inside” algorithm; HMM analogue is
called “forward”) [8].

Model construction
We review the model construction process in some detail,
as we are going to re-implement it from scratch before
extending it.
Before a query RNA sequence can be assessed for

homology to a family of interest, a covariance model
(CM) must first be built from the given family informa-
tion, namely the multiple sequence alignment (MSA of k
sequences) and the single consensus secondary structure
(SScons). This construction task is carried out by the pro-
gram CMBUILD of the INFERNAL package (see the reddish
box in Figure 1). CMBUILD takes MSA and SScons as its
inputs and finally produces a CM encoded as a table in a
flat-file. This table encodes the parser for the family model
grammar, while the underlying family model grammar is
not constructed explicitly. (However, it can be extracted
from the file by upward compilation [13]).
The complete procedure can be divided into the follow-

ing seven sub-processes:

1. Break pseudoknots: CMs cannot cope with
pseudoknots due to the restriction to context free
grammars. However, some RFAM families (89 of
2,208 in release 11.0) contain annotations for
crossing base-pairs. One of the crossing pairs is
annotated by standard brackets in SScons, the other
with upper- and lower- case letters for the opening
and closing partner, respectively. All bracket
annotated pairs must either be nested or adjacent to
all other bracket annotated pairs. To obtain a
pseudoknot free structure, all letters are simply
converted into unpaired bases.

2. Gap columnmasking: Integrating a further
sequence into a MSA with an insertion inevitably
causes new columns which hold gaps for the majority
of sequences. To counteract this effect, INFERNAL
tells apart “matching”-columns with a gap-ratio
below a certain threshold (50% by default) and
“insertion”-columns above this threshold. Only the
first column-type is reflected in the final architecture
of the CM. The structure SSmatch is SScons, where
“insertion”-positions are removed. If both columns of
a base-pair fall into different column-types, the pair
must be broken and only the partner below the
threshold appears in SSmatch as an unpaired base.

3. G1-parsing: To generate the family model SCFG,
SSmatch is parsed with the architecture grammar G1
to gain a guide-tree (gt) as an intermediate step. In
grammar terminology, this guide tree is the only
parse tree which the family model grammar can
generate without using rules for insertion or deletion.
The architecture grammar G1 is shown in Figure 2.
(Since the architecture grammar G1 to parse the
structure is syntactically ambiguous [14], the result is
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Figure 1 Flowgrams of INFERNAL (red, discussed here), our ADP re-implementation ALTERNAL (blue, explained in Section ‘Recreating the core of
INFERNAL’) and the extension to ambivalent consensus structures aCM (green, introduced in Section ‘Ambivalent covariance models’). Input is the
multiple sequence alignment(s)MSA and consensus structure(s) SScons for the construction of a model and RNA for homology search. Blue colored
items are ADP components like grammars or algebras. The white box in aCM shall indicate that those operations are performed for each sub-family.

not unique. One of the parses must be chosen as the
guide tree according to a specific set of objectives.
The online Additional file 1 informs about these
objectives in detail.)

4. Construction: The family model grammar is now
extended with productions providing for insertions
in the query sequence. These are always considered
unpaired bases. And it is extended by productions
providing for deletions from SScons, where unpaired
bases as well as paired bases can disappear.

The result of at this point is a the family model grammar,
which reflects the unknotted, “insertion”-column masked
consensus structure SSmatch. To turn this grammar into a
CM, all transitions and emissions must be associated with
probabilities, which are inferred from the MSA via the
following processes:

5. Sequence weighting: The MSA might be
subdivided into several sub-groups. Due to different
biological interests, different levels of experimental
difficulties or other reasons, the MSA might have
many representatives for one sub-group, but only a
few for the other. Since the CM should be able to
detect both sub-groups with equal strength,
INFERNAL uses different weights for training with the
MSA sequences of both sub-groups. Version 1.0.2 of
INFERNAL uses the “Gerstein / Sonnhammer /
Chothia tree weights” [15] to turn a MSA into a
weighted alignment (wMSA).

6. Expectation maximization: In order to avoid
overfitting, INFERNAL uses a rudimentary expectation
maximization process to balance the influence of
priors and posteriors. The theoretical background is
given in [16] and its application in INFERNAL in [17].

Figure 2 Architecture grammar G1 to parse SSmatch to generate INFERNAL style CMs. The axiom is A. Terminal symbols are colored blue, algebra
functions green and filters magenta. Terminal ε is the empty word; < and > denotes the opening and closing bases of a pair and * is the unpaired
base. The magenta subscript ≥ 1 requires the affected non-terminals to parse at least one character from the input, i. e. the branches of a bifurcation
cannot be empty.
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Taking only the “matching”-columns of wMSA into
account, given by SSmatch, sequence weights are
re-normalized to a value keff ≤ k to form nwMSA.
The value keff is the result of an optimization
problem, where the alignment entropy shall
approximate a pre-defined “target” value.

7. Training: Finally, the MSA is used to count how
often which production rules of the family model
grammar are used in parsing the data and which
nucleotide are produced by the terminal symbols in
the grammar. The occurrences do not contribute
equally, but are weighted according to nwMSA.
Priors for emissions pemit and transitions in a G1
model ptransG1

are added to the counts before
probabilities are computed. Furthermore, emission
probabilities are contrasted with a simple background
model bg0, where unpaired and paired emissions are
equally distributed. There is no background model
for the transitions. The resulting SCFG is saved in a
CM-file, which encodes the parser for the stochastic
family model grammar in a tabular form.

The program CMSEARCH of INFERNAL reads the model
from the CM-file, takes a query RNA sequence as second
input and computes the CYK bit-score for matching the
sequence against the model: Process matching CYK in
Figure 1.
Our generalization of CMs to aCMs touches the core

aspects of this construction process. In particular, we
will have to change model architecture and family model
grammar. Presently, they are concepts which explain the
approach, but are not constituents of the INFERNAL soft-
ware or its output that we can get our hands on, take out
and change. Hence, we re-create INFERNAL in a more flex-
ible framework, in order to venture on to our extension.

Recreating the core of INFERNAL

Overview
As the first step to our extension towards aCMs, we
will produce a software named ALTERNAL, which re-
implements the INFERNAL approach, but with a different
architecture and an explicit construction of the fam-
ily model grammars. As the construction of the family
model grammar entails parsing SScons with the archi-
tecture grammar, and running the family model means
dynamic programming, a programming system that com-
bines both techniques on a high level of abstraction is
highly useful for our effort.
In this section, we first review the technique of alge-

braic dynamic programming, and use it to reconstruct
INFERNAL in a way that we can extend towards aCMs
in Section ‘Ambivalent covariance models’. Asymptotic
run-times in ALTERNAL remain the same as reported for
Infernal, e.g. scoring a sequence s of length n to a family

model of length m takes O(n ∗ m3) time and O(n ∗ m2)
space. The speed-up techniques provided with INFERNAL
are not re-implemented. Please keep in mind that the soft-
ware ALTERNAL serves as an intermediate step; it is not
intended to go out and compete with INFERNAL.

ADP and the BELLMAN’S GAP system
Algebraic Dynamic Programming (ADP) [18] is a disci-
pline to formulate algorithms for sequential problems. Its
high level of abstraction allows for a clear separation of
concerns. (i) A combinatorial search space is generated by
a regular tree grammar G. (ii) Each candidate of the search
space is evaluated by an evaluation algebra A. (iii) The
“best” candidate is determined by an objective function.
Evaluating a search space described by grammar G and

input sequence x, using evaluation algebra A, is simply
denoted by

G(A, x).

Normally, this will return the optimal candidate in the
search space. When G is the family model grammar,A the
stochastic scoring algebra, and x the query sequence, we
obtain the best alignment of the query to the model. But
the search space may be small and the “score” need not be
a number: When G is the architecture grammar, x is some
SSmatch, and the scoring functions in A compute gram-
mar rules, the resulting “score” will be the family model
grammar. Wait and see.
In ADP, components of a problem specification can be

easily replaced or even combined in algebra products [19]
to tackle new challenges without low-level reprogram-
ming. For a detailed exposition of the formal concepts of
ADP see [18]. In our experience, when one has to modify
a nontrivial dynamic programming algorithm, it is often
easier to re-implement it in ADP rather than to tinker with
the existing source code.
The BELLMAN’S GAP system is a recent implementa-

tion of ADP, which we rely on for the present project
[20]. Covariance model generation as well as application
are formulated in the language GAP-L, and translated into
C++ code by the GAP-C compiler.
The software ALTERNAL (blue box in Figure 1) is our

re-implementation of INFERNAL with BELLMAN’S GAP,
where many processes are replaced by ADP versions
(blue font/borders). It mimics INFERNAL as described in
Section ‘Model construction’, but comes with two funda-
mental modifications: First, the replacement of the archi-
tecture grammar and second the way to obtain the counts
for training. Notably, the search spaces of CMs, either cre-
ated by INFERNAL or by ALTERNAL, are identical. Both
implementations will consider the same possible align-
ments of a query sequence to the model. In principle, this
should be true for the bit-scores of the search process as
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well. The processes break pseudoknots, gap column mask-
ing, sequence weighting and expectation maximization
remain untouched for the moment.

Change 1: replacing the architecture grammar
The architecture grammar of INFERNAL is G1, depicted
in Figure 2. For ALTERNAL, we replace the architecture
grammar by G5, see Figure 3. The advantage is three
fold: First, it is guaranteed that the G5-parsing process of
SSmatch will exactly yield one parse (guide tree in INFER-
NAL terminology). Selecting a specific one from several
alternatives by ad-hoc criteria is avoided. Second, the
construction-process in ALTERNAL can be described by
evaluating SScons with the evaluation algebra ACFG (see
Figure 4). The “scoring” functions of this algebra ACFG
do not compute scores. Rather, they compute the produc-
tions that make up the family model grammar. And third,
compared to a G1 architecture CM, the number of pro-
duction rules is roughly reduced four-fold in a G5 archi-
tecture (see Additional file 1 for details), while exactly
keeping the same search space. Thus, the training has to
infer fewer parameters. The result of the ACFG-evaluation
is another grammar — the family model grammar
GCM which captures the family specific architecture of
the CFG:

GCM = G5(ACFG, SSmatch).

An example is given in Figure 5. Panel A) shows the
MSA with k = 5 sequences. The consensus structure
SScons is given as the top row. The third column is shaded,
because it holds more gaps than bases and will be mod-
eled as an insertion. Due to this gap, SSmatch is << ∗ ><>>,
which is different from the initial SScons. The single guide-
tree which results from parsing SSmatch with the architec-
ture grammar G5 is given in Panel B) of Figure 5. Panel
C) presents the final CM grammar, which is the result
of evaluating the guide-tree with ACFG. See the online
Additional file 1 for further details.

Change 2: gaining posteriors
Once the architecture of a CM is fixed, posteriors from
the MSA can be inferred. Aligning a query sequence to a
model becomes an optimization problem over many dif-
ferent derivations, because we do not know the best situa-
tion relative to the consensus structure for each nucleotide

in advance (This is the best scoring parse, called state
path in HMM terminology). But we do know the sin-
gle correct derivation for training, because the training
sequences are already aligned. And thus, we have only
one candidate in the search space if we force a (train-
ing) sequence into a concrete derivation. We can do so
by providing this derivation as a second input, besides the
nucleotide sequence itself.We need a third, family specific
ADP grammar Gtrain to simultaneously parse one MSA
row and a secondary structure. This grammar is created
by evaluating gt again, but this time with the evaluation
algebraAtrain (see Figure 4):

Gtrain = G5(Atrain, SSmatch).

To gain the desired counts in the training process, every
MSA row must be parsed together with SStraink which is
a slightly modified version of SScons: If according columns
are marked as “insertion-columns”, unpaired positions
become gaps, and partnering positions become unpaired
bases. Mapping a single row ofMSA to SStraink might pro-
duce columns consisting of a gap in sequence and model:
〈-̇〉. These columns must be removed from both inputs.
This mapping shall be indicated by the ⊕-operator in
Figure 1.
An enumeration algebra Aenum is a generic representa-

tion of candidates of the search space, which can auto-
matically be produced by the BELLMAN’S GAP compiler.
It records which algebra functions were called with which
parts of the inputs, but gives no hint about the used non-
terminals, i. e. the grammar production rules. The trace
of the algebra functions is exactly what we need for train-
ing, because they give rise to the derivation through the
CM and the sub-words of the nucleotide input, i. e. sin-
gle bases inform us about the concrete emissions. By
creating enum-representations for all training pairs, con-
sisting of the MSA rows and SStraink , and accumulating
the occurrence count of each algebra function, we sim-
ply get the desired counts. As in INFERNAL, counts do
not equally contribute, but are weighted according to
nwMSA. The resulting probabilities of this training pro-
cess will be used to generate a family specific CYK algebra
ACYK .
Due to our shift to a G5 architecture in ALTERNAL, we

cannot re-use the priors of INFERNAL for the G1 transi-
tions ptransG1

. Instead, we once need to derive a set of

Figure 3 Architecture grammar G5 to parse SSmatch to generate ALTERNAL style CMs. Here, the ε terminal parser in ADP returns the input position
where the empty word was recognized, for eventual use in other evaluation functions.
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Figure 4 Evaluation algebrasACFG andAtrain to generate family specific grammars for homology search and model training. Non-terminals and
algebra functions of the generated grammars must be indexed by their position in SSmatch . The position is provided by the special terminal parser of
nil and propagated to all other algebra functions via the first component of the return type. The second component holds a string representation of
the generated grammar rules.

transition priors ptransG5
from a trusted set of families. We

do so with the same set as used for INFERNAL, which is
described in [12].
Finally, for the search process, a query RNA sequence

x can now be parsed by GCM. With GCM and ACYK

coded in GAP-L, BELLMAN’S GAP will compile this
into a program instance for the call of GCM(ACYK , x)
for any x. All candidates of the search space will be
evaluated by ACYK and the maximal score will be
reported.

Figure 5 Example for ALTERNAL CMs: InputMSA and SScons is given in A. The guide-tree for SSmatch is shown in B. The G5-style CFG of the model is
shown in C. Terminal parser b reads one base from the input sequence, while r0 consumes a potentially empty region of consecutive bases. The
first rule facilitates a glocal alignment.
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Approving faithful re-implementation
To approve that ALTERNAL is a faithful remake of INFER-
NAL, wemust show that it considers the same search space
and scores candidates in a similar way.
To verify our statement that the search spaces of INFER-

NAL and ALTERNAL are identical, we performed the fol-
lowing experiment: The CM flat files, as the product of
CMBUILD from the INFERNAL package, contain the mod-
els G1-architecture as well as all transition and emission
probabilities. The upward compiler described in [13] can
parse these files and construct an equivalent ADP gram-
mar. We use the same idea to produce grammars GG1

CM
coded in GAP-L. Again, a counting algebra Acount can
automatically be generated by BELLMAN’S GAP. Thus,
we can easily determine and compare the search spaces
sizes of GG1

CM(Acount , r) and GCM(Acount , r). In fact, they
are in all test cases identical (data not shown). To proof
that the upward compiled versions are identical to INFER-
NAL, we measured a shift of bitscores and found that
the median shift is 0.000 for “original” and “shuffled”
sequences.
To access the capability of ALTERNAL to reproduce

the scoring results of INFERNAL, we set-up the following
experiment for each of the 2,208 families in the RFAM
11.0 release: First, a traditional CM is generated from the
RFAM seed alignment MSA which includes the consen-
sus structure SScons with the CMBUILD software (version
1.0.2) using default parameters. Next, a single “original”
row from MSA is randomly chosen, gaps are removed
and the thus gap-freed sequence is globally aligned to the
previously built CM with the program CMALIGN (version
1.0.2) from the INFERNAL package with parameters set
to -no-null3 -1 -cyk -nonbanded. The resulting
bit-score constitutes our base-line. We prefer CMALIGN
over CMSEARCH at this step, because only the first one
is able to compute global alignments. Another base-
line score for negative test cases is computed by align-
ing a di-nucleotide “shuffled” (by the program USHUF-
FLE [21]) version of the previously used sequence to
the same CM. Second, we compile a GCM(ACYK , r)
instance with ALTERNAL for the family and run this
instance with the exact same two sequences r (original
and shuffled) as used before. By subtracting the base-
line value from the bit-score computed by GCM(ACYK , r)
we obtain the bit-shift between INFERNAL and ALTER-
NAL. The bit-shifts for all 2,208 families are depicted
as boxplots in Figure 6. Except for those seven families
where SSmatch exceeds 750 bases which causes memory
overflows.
We observe small but significant shifts of bit-scores

between the two programs, which cannot be explained
by rounding errors. Positive test cases show a median
shift of −2.2 bits, negative ones a shift of −9.4 bits. If
we force both programs to separately report bit-scores

originating from emissions and transitions, we see that
these differences only stem from shifts in the transitions
and not from emissions (data not shown). The reason is
the change of the underlying architecture from G1 to G5.
In consequence, building two CMs from the same fam-
ily leads to two fundamentally different grammars, which
still have the same semantic meaning. Emissions are not
affected by this change, they are only associated at differ-
ent non-terminals. But there is no possible mapping for
the transitions between those two models, which causes
divergent posteriors at training and different numbers and
values of single transitions for parses of those models at
the alignment step.
Figure 7 shows an illustrative example. The same tiny

family with three sequences in a four-column alignment
and a simple hairpin as consensus structure is translated
into a G1 model (on the left) and a G5 model (on the right).
Let us assume that the highest scoring alignment for both

models would be
〈
UaAA
<-∗>

〉
. The corresponding parses are

coloured blue in both models. While G1 requires only four
transitions, the parse of G5 needs twice as many, also with
different values. Thus, the alignment with the exact same
meaning gains −1.585 bits from G1 and only −2.415 bits
from G5.
The tendency of G5 for more single transitions results

in lower bit-scores as shown in Figure 6. Fortunately, this
trend hits negative cases harder than positive ones, which
means that G5 models have a stronger discriminative
power.
Thus, we conclude that ALTERNAL is a faithful re-

implementation of INFERNAL, close enough such that the
improvements achieved by our pending generalization
can also be expected from analog extensions to INFERNAL.

Ambivalent covariancemodels
We must define aCMs, specify the input for aCM con-
struction, and describe the generation process. The eval-
uation of the new approach will be given in Section
‘Evaluation’.

Problem definition and input format
aCMs extend classical CMs by modeling for RNA
sequence families that fold into a predefined set of con-
sensus structures. Mathematically, aCMs are stochastic
context free grammars, generated from a G5 architecture
grammar, and with parameters trained as with classical
CMs.
The input to aCM construction is a multiple RNA

sequence alignment in Stockholm format, which indicates
several consensus structures. The creator arranges the
alignment rows according to different structural features
and supplies one consensus structure for each sub-family.
To distinguish the n different sub-families in the input
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Figure 6 Bit-shift of global CYK scores between INFERNAL and ALTERNAL for positive (original) and negative (shuffled) test cases in terms of absolute
difference of CYK bit-scores. For example, a sequence scoring 40 bits with INFERNAL and 44 bits with ALTERNAL would have a bit-shift of +4.

file, one must prefix the sequence names and the mul-
tiple SS_cons lines for the consensus structures with
an arbitrary sub-family name, followed by an “@” delim-
iter character. Here, for the purpose of exposition, we use
colours instead.
Let us re-use the previous example alignment of

Figure 5, which is here sub-divided into the red sub-family
of the first two sequences and a purple sub-family hold-
ing the remaining three sequences (n = 2), see Panel A) in
Figure 8. The consensus structure for the red sub-family
SSredcons remains unchanged. To honor the mutations in col-
umn 7 for the purple sub-family, the consensus structure
SSpurplecons is slightly different, i. e. the base-pair is converted
into two unpaired bases.
The SScons rows in the alignment must represent a cor-

rect multiple structure alignment. This condition is not
easily checked by a human curator, and our approach
applies such a check to the input.

Overview of the aCM generation process
The construction of an aCM (greenish box in Figure 1)
follows the ideas of constructing a classical CM with

ALTERNAL. The task becomes more difficult, because we
not only have to deal with several consensus structures
SSicons yielding different guide trees gti (indicated by the
white box in Figure 1), but we also have to combine all
n of them into one ambivalent guide forest F . Once F
is found, generation of the topology defining grammar
is done by evaluating F with a corresponding generating
algebra AaCFG. In the following sections, we give expla-
nations about processes in aCM that have to be modified
compared to ALTERNAL:

1. Compatibility check: Check for compatibility
(defined below) of the consensus structures.

2. G5s-parsing: Parsing each consensus structure with
G5s to gain individual guide trees.

3. Merge: Combine all guide trees into one ambivalent
guide forest.

4. Index: Distribute non-terminal indices in a
depth-first manner in the ambivalent guide forest.

5. AaCFG-evaluation: Generate grammar rules for the
aCM by parsing the indexed ambivalent guide forest
in a top-down fashion.

Figure 7 Impact of different model architectures on transition caused bit-scores. The family is translated into CMs of the G1 type (left) and G5

(right). Aligning the same sequence results in different scores even if the alignment have the same semantic meaning, e. g. the outer bases U and A
match the pair, a is an insertion relative to the model and the second to last Amatches the unpaired position.
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Figure 8 Example for aCMs: InputMSA is split into red and purple sub-families. Their consensus structures are given as first and last row in A. The
individual guide trees for red and purple and their ambivalent guide forest are shown in B. For simplicity, we omit terminal symbols for bases and
skip-nodes – described below – in the trees. That is why subscript 3, pointing to the “insertion”-column, does not appear in the guide trees. The
G5-style CFG of the ambivalent model is shown in C.

Check for compatibility of consensus structures
Two requirements are imposed on the structures in the
input alignment: a) base-pair persistence and b) global
nesting. Taking the two requirements together, we call this
compatibility of consensus structures.
The base-pair persistence property demands that ifMSA

columns k and l are paired in consensus structure i those
two positions must either be paired with each other in all
other consensus structures, or may be unpaired, or maybe
deleted. But neither k nor l are allowed to form pairs with
other alignment columns than each other. For example, we

think that the two consensus structures
〈
<<- ∗ > ∗∗>
<<- ∗ >-->

〉

can explain a common evolution up to the point where
two additional unpaired bases are inserted into the upper

consensus. The double gapped column
〈
-
-

〉
is allowed to

enable inclusion of rare sequences intoMSA, which holds
insertions relative to both consensus structures. But we
disallow alternative base-pair partners, like

〈
<<∗∗>>
<∗<∗>>

〉
.

Base-pair slippage in this example must be modeled via
insertions.
The global nesting property ensures that the multiple

consensus structures do not exhibit crossing base pairs. To
exclude pseudoknots in a singe secondary structure, every
two base-pairs of the structure must either be adjacent to

each other or be nested within each other. With several
structures, it is not sufficient that each structure satisfies
this criterion. We transfer this property as global nesting
to the alignment of n consensus structures by demand-
ing that the union of all base-pairs from all n consensus
structures must be either adjacent or nested.
To check if all n consensus structures satisfy base-pair

persistence and global nesting, we parse every
(n
2
)
pairs of

two consensus structures with the two-track ADP gram-
mar Gali_SS, see Figure 9. Parsing one pair of consensus
structures of length m with Gali_SS requires a run-time
of O(m3). Thus, checking all

(n
2
)
pairs needs O(m3 · n2)

time. Should one consensus structure pair be un-parsable
by Gali_SS, an error message is issued and the construction
task is aborted.

Parsing individual guide trees
As in classical CMs, a guide tree rules the topology of
the aCM to be built. For aCMs, we individually infer one
guide tree for each consensus structures. First, columns
containing a majority of gaps are removed. This insertion
masking process operates individually on each subfam-
ily, the resulting SSimatch can have different lengths. For
example, SSpurplematch is one position shorter than SSredmatch, due
to a majority of gaps in column 7 for the three purple
sequences. The remedy to remain the same alignment
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Figure 9 Two-track ADP grammar Gali_SS to align two consensus structures. Please note that non-terminal x is composed of two tracks, x1 and x2.

coordinates in the different consensus structures is the
introduction of gaps in SSimatch. This is accomplished by
parsing SSimatch with a gapped version of G5s, see Figure 10.
The resulting guide trees for both consensus structures of
the example are depicted in Panel B) of Figure 8.

Ambivalent guide forest
The ambivalent guide forest is a tree that encodes several
guide trees. Common parts of the guide trees are shared.
Where the guide trees diverge, the ambivalent guide for-
est contains an extra fork node, which has the diverging
substructures from different guide trees as its subtrees.
We need to merge all individual guide trees gti from
the G5s-parsing process in a progressive fashion into one
ambivalent guide forest F . The progressive merge process
operates top-town.
Two guide trees for compatible consensus structures

like
〈
<>
∗∗

〉
can differ directly at their root nodes, imme-

diately requiring a fork node. In general, the ambivalent
guide forest places the fork nodes as low as possible, to
keep the aCM – and thus run-time of the aCM – as
small as possible. During construction, we also have to
make sure that no unseen combinations become possible,

e. g.
〈
<<∗>∗-->
<---∗<>>

〉
shall not not allow for model structure

<---∗-->.

The overall idea when merging two guide trees is to
overlay them and identify identical parts. When both
guide trees start to diverge, a fork for both alternatives
is be introduced in F . Identical parts are identified by
simultaneously traversing both guide trees top-down. The
coupled traversal starts at both root nodes, e. g. at the red
pair1 and the purple pair1 of Panel B in Figure 8. If the
current nodes of both guide trees are of the same type (nil,
pair, open or skip) and refer to the same alignment posi-
tions, a new node of this type is introduced in F (right
hand side pair1 in Figure 8) and the coupled traversal is
simultaneously applied to all children. If either the types
or the alignment positions of the nodes under considera-
tion differ (e. g. red pair6 and purple open6), the complete
sub-trees, which are rooted by these nodes, are added to
F under a fork node.
An aCM should be able to hold more than two con-

sensus structures. Thus, it is necessary to progressively
add further guide trees to F . The coupled traversal must
be modified in the sense that a node of the guide tree is
compared not to a single node in F , but to all guide trees
already encoded in F , only inducing a fork if it brings in a
new subtree.
The ambivalent guide forest for the red and purple guide

trees of the example is depicted on the right hand side of
Panel B) in Figure 8. Nodes shared by both guide trees
are colored in black. The right child of pair2 is not a

Figure 10 Grammar G5s to parse a gapped consensus structure. It is identical to G5 (Figure 3), but has a forth alternative production rule to parse
gap characters _.
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single tree, but a forest for the divergent red and purple
sub-trees.
The more similar a set of guide trees are, the larger are

those parts of the trees that can be jointly represented in
the F . In the worst case, there are no common parts in
all gt at all. This means that n individual guide trees, each
with a number of leaves that is linearly proportional tom,
will cause a F with n·m nodes. Depth-first traversal of such
F requires O(n · m) time and has to be repeated during
the progressive construction of F itself n-times. Thus, the
worst-case overall run-time for merging n guide trees into
one ambivalent guide forest is O(n2 · m).
The construction of the ambivalent guide forest leaves

room for improvement by recognizing shared substruc-
tures. The multi-structure parsing of Saffarian et al. [5]
makes use of shared subgrammars for shared substruc-
tures. This keeps the grammar smaller and avoids extra
tables in the CYK-type parser. Such sharing works for
combinatorial matching as well as for energy minimiza-
tion, as all instances of a shared subgrammar undergo the
same scoring. At first glance, it appears not to be applica-
ble with stochastic models, because shared subgrammars
have their parameters trained from different sub-families.
Scoring shared substructures in different ways, of course,
requires separate dynamic programming tables. However,
in practice parameters may be tied together in the train-
ing phase anyway, or may come out of the training quite
similar. In this situation, subgrammar sharing may be a
good pragmatic decision. We leave this topic for future
research.

Provide indices in the ambivalent guide forest
We have two objectives for the design of aCM topolo-
gies: On the one hand, we want to enable alternative
parses through the aCM, reflecting the ambivalent con-
sensus structures. We have to take care that transitions
are forbidden that are not indicated by the set of con-

sensus structures:
〈
<<∗>∗-->
<---∗<>>

〉
shall not impose model

structure <---∗-->. We do so by using ambivalent guide
forests, which introduce branches as soon as two sub-
trees differ. This effects the allowed transitions within the
model, i. e. the grammar. On the other hand, an aCM
should capture as much shared alignment parts as possi-

ble: The ambivalent guide forest for
〈 ∗∗<->∗

∗<<∗>>
〉
branches

into two independent sub-trees for ∗<->∗ and <<∗>>.
However, the base-pair from position 3 to 5 is shared
between both consensus structures. Counting the emitted
nucleotides should be in a sub-family combined fashion
for those positions, which are torn apart by the ambiva-
lent guide forest. To combine both objectives, we use two
types of indices: One for the non-terminals of the gram-
mar, affirming correct transitions and another one for

the CYK algebra to share common emission probabili-
ties. The grammar indices are given as superscripts left
of the nodes for the example in Panel B) for Figure 8,
while algebra indices are subscripts right of the nodes.
Please note that grammar indices are unique. Algebra
indices can be shared, e. g.O6 and P6. By construction and
using common alignment coordinates the algebra index
is directly inherited from the individual guide trees. To
obtain grammar indices, we need to distribute a new set
of successive numbers to the ambivalent guide forest in a
depth-first like strategy. The indexing of a list of ambiva-
lent guide forests starts with depth-first indexing of the
complete first tree and then continues with the rest of the
list.

Generate aCM grammar
The final step to obtain the aCM grammar is to eval-
uate the ambivalent guide forest with the function gen,
given in Figure 11. A simple structural recursion on F per-
forms this evaluation and returns the family model gram-
mar. An example grammar is illustrated in Panel C) of
Figure 8.

Evaluation
We now evaluate aCMs by considering several RNA fam-
ilies whose structural variation can only be expressed
unsatisfactorily in RFAM. We take a look at the tRNA,
U5 spliceosomal RNA, RNAse-P, and IRES families. The
tRNA application is discussed in detail, where we also
compare to implementing families as two separate models
with classical CMs. For the others, we mainly report the
results.

The tRNA family as an aCM
Let us come back to the initial example of the tRNA
family from RFAM (ID: RF00005, release 10.1). We sub-
divide the 967 sequences of the seed alignment with
respect to the presence or absence of the variable fifth
helix. Thus, we obtain the “cloverleaf” sub-family with
820 members and the famous cloverleaf as its consen-
sus structure SScloverleaf , as stored in RFAM, as well as
the sub-family “varloop”, which holds the remaining 147
sequences. The consensus structure of “varloop” is better
described by SSvarloop, which contains the additional helix.
The consensus SSvarloop is constructed by aligning individ-
ual structure predictions from TRNASCAN-SE [22] with
RNAFORESTER [3].
We create four different classical CMs with ALTERNAL:

1. all cloverleaf: MSA contains all 967 sequences;
consensus structure is SScloverleaf . This is the original
model.

2. all varloop: MSA contains all 967 sequences;
consensus structure is SSvarloop.
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Figure 11 Algebra like function gen that evaluates a list of ambivalent guide forests into a set of grammar rules. Rules with identical indexed
non-terminals will be combined as alternative right hand sides. The function g(x) returns the grammar index of the root node of an ambivalent
guide forest x. Index tuple (a, g) holds algebra and grammar index, respectively. Remember that xs and ys are lists of ambivalent guide forests.

3. only cloverleaf: MSA contains 820 “cloverleaf”
sequences; consensus structure is SScloverleaf .

4. only varloop: MSA contains 147 “varloop”
sequences; consensus structure is SSvarloop.

The performance of these models is shown in Figure 12.
The four blue shaded columns present the results when
matching all 967 members of the family to the four dif-
ferent CMs via the CYK algorithm. The lower part of the
figure informs about the input for the model creation. The
box depicts the input alignment, the curve represents the
consensus structure. “cloverleaf” sequences or consensus
structures are addressed in green. “varloop” components
are red. There are three box-plots in each column: The
green box-plot corresponds to those bit-scores that stem
from sequences of the sub-family “cloverleaf” and the red
box-plot is exclusively for the “varloop” sequences. The
blue box-plot is the union of the two sub-families and
represents all bit-scores.
The median bit-score (brown horizontal line) for all

tRNAs with the original model (leftmost blue shaded col-
umn: “all cloverleaf”) is ≈ 52.0. When we differentiate
between both sub-families, we see that in fact the “var-
loop” sequences (red box-plot) get penalized for the addi-
tional bases of the variable loop. Their median (≈ 40.1)
is significantly lower than the median of the green “clover-
leaf” group (≈ 55.2). Our second CM (“all varloop”) was
constructed from a different consensus structure input
(SSvarloop instead of SScloverleaf ), but due to the gap col-
umn masking process it gives an identical guide-tree

when compared to the original “all cloverleaf” model. And
indeed, we do not observe any changes in the bit-scores.
Different SSmatch and guide-trees can only be achieved

by also using different parts of the MSA, as done for
the last two models “only cloverleaf” and “only varloop”.
Training only with the cloverleaf sub-family results in no
significant shift of the overall bit-scores (blue box-plot);
median is reduced by ≈ 0.3 bits. A closer look reveals that
the “varloop” sequences, which are now left out for train-
ing, perform even worse (median decreases by ≈ 4.3 bits),
while the “cloverleaf” sequences get a tiny bonus of ≈ 0.2
bits for their median. Good scores for “varloop” sequences
can be obtained if we use the “only varloop” model. Their
median is now at ≈ 53.3 bits. As to be expected, per-
formance for the “cloverleaf” majority of the sequences
nosedives (median at ≈ 17.0 bits).
Should we be able to a priori use the correct sub-model

for each sequence, or run both models in every case and
cherry-picking the better score, we would gain the theo-
retical median score of ≈ 55.0 bits (magenta horizontal
line), which is ≈ 3.0 bits better than the original model.
Splitting the family into two separate sub-families seems
to be worth it. This summarizes what can be achievedwith
tRNA by using classical CMs.
Applying our aCM approach relieves the creator to arti-

ficially decompose her data into two or more sub-families
in order to suit the underlying scoring algorithm. The
relationship of all sequences can be kept in one align-
ment, now enriched by sub-family annotations and addi-
tional consensus structures. With this evaluation setup,
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Figure 12 Evaluation of different ways to construct individual CMs for sub-families for the tRNA family, compared with one aCM for both
sub-families. Detailed explanations are in the main text.

we expect a properly built aCM at best to return the same
bit-scores for the sequences of the various sub-families
as a cherry picking of the results from several sub-family
specific CMs would do.
The right green shaded column in Figure 12 shows the

results for such an aCM for the tRNA example. It is built
from both consensus structures (SScloverleaf and SSvarloop)
and trained with the total alignment (all 967 sequences).
A rough inspection attests the targeted effect: A single
model can both lift the “varloop” sequences to a niveau
close to the overall median and simultaneously keep the
good scores for the “cloverleaf” group.
Surprisingly, the aCM is doing even better than the

theoretical cherry picking. As one can see by examina-
tion of the red and green box-plots in the green shaded
column of Figure 1, not only the scores for the “var-
loop” sequences are lifted to a reasonable amount, also
the “cloverleaf” sequences benefit from this information
enrichment. The median score of the aCM is ≈ 55.9 bits
(purple horizontal line) and thus ≈ 0.9 bits better than
the theoretical optimum. The explanation is that aCMs
contain more information than a set of sub-family specific
CMs. Common sub-structures stronger deviate from the
background model and predetermined sub-structures do
not get penalized. Themedian score of negative sequences
between the original CM and the aCM raises by +1.7 bits
(data not shown). Thus, the discriminatory power (as the

difference between median bit score of positive and nega-
tive test cases) can be increased by 2.1 bits, which means
that even those true candidates can get positive scores,
which fall below the threshold of an individual CM.

U5 spliceosomal RNA as an aCM
An aCM can also be constructed for more than two sub-
families: TheU5 spliceosomal RNA is a widespread family.
Its concrete secondary structure changes over the differ-
ent taxa. We used the original alignment from [23,24]
identified six taxa, grouped the sequences, and defined
according consensus structures. Figure 13 is the result of
the same kind of analysis as shown in Figure 12; negative,
i. e. di-nucleotide shuffled sequences, are included here. In
conclusion, the mean bit-score could be increased by 27%,
compared to the original CM, while bit-scores for nega-
tive sequences remain low, thus improving discriminatory
power.
The tRNA and U5 RNA families illustrate that the con-

cept of aCMs can protect real families of being artificially
torn apart and thus preserve existing relations. We might
even render already conducted break-ups unnecessary
and merge separate families of an RFAM clan.

Merging RNAse-P RNA families
RNAse-P RNA is a difficult family. Despite sharing a sig-
nificant structural core, some RNAs may differ locally
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Figure 13 Evaluation of different ways to construct individual CMs for sub-families for the U5 family, compared with one aCM for all six sub-families.

Figure 14 Evaluation of the effect of merging all four separate families of RNAseP.
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Figure 15 Evaluation of the effect of merging the two individual IRES families RF00061 (“Hepatitis C virus internal ribosome entry site”) and RF00209
(“Pestivirus internal ribosome entry site”) of RFAM via one aCM.

to such a degree that their representation as one multi-
ple sequence alignment would lead to an unmanageable
“horizontal expansion”, i. e. a large proportion of gaps, as
reported in [25]), and has led the curators of RFAM to
construct sub-alignments, organized in clans. One exam-
ple is the RNAse-P clan, which is represented in RFAM
by six individual families. The success of a joint aCM for
RNAse-P heavily depends on the quality of an unifying
alignment, which must capture similar regions and allow-
ing for local structural alternatives. For a preliminary eval-
uation, we resort to the expertise of the authors of [26],
who provide an semi-automatically generated RNAse-P
alignment for a subset of current RFAM sequences in the
clan. The sequences are organized in four sub-groups,
each with its own consensus structure. From this align-
ment, the aCM is generated. The results are shown in
Figure 14.
While the median bit-score of aCMs is below the theo-

retical optimum for cherry-picking from individual CMs,
it is much better than median bit-scores for any combined
traditional CM. The discriminatory power is improved by
≈ 58 bits.
There is much space for further improvement for

RNAse-P, since the used alignment has large horizon-
tal expansions. Of the 1,669 alignment columns in total,
979 columns are masked as gap-columns in all four sub-
groups and there are only 91 positions where all sub-
groups agree in having a match-column.

Merging IRES families
A second use-case for themerging capabilities of aCM can
be the 27 internal ribosome entry site (IRES) families of

RFAM. We determined RF00061 and RF00209 as the two
closest IRES families, by computing their link-score with
CMCOMPARE [27]. We then structurally aligned their
consensus structure and sequence with RNAFORESTER
and finally mapped the individual alignment columns
to a unifying alignment with two sub-groups. The
results of our evaluation setup are given in Figure 15.
Despite the poor quality of the completely automati-
cally created alignment, the according aCM performs
as well as a theoretical cherry picking of both single
families.

Conclusion
The RFAM database contains several families that cross
the limitations of a single consensus structure. The new
concept of an RFAM “clan” is a set of closely related fam-
ilies. It seems to be a workaround to cope with several
consensus structures within one former family, which is
now torn apart. Our evaluation shows that a segmenta-
tion of a family impedes homology analysis. Based on
our implementatio and evaluation of aCMs, we suggest to
extend present practice of RNA family modeling to hold
multiple consensus structures to keep up with biologically
motivated family definitions.
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