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Abstract

Background: Correct segmentation is critical to many applications within automated microscopy image analysis.
Despite the availability of advanced segmentation algorithms, variations in cell morphology, sample preparation, and
acquisition settings often lead to segmentation errors. This manuscript introduces a ranked-retrieval approach using
logistic regression to automate selection of accurately segmented nuclei from a set of candidate segmentations. The
methodology is validated on an application of spatial gene repositioning in breast cancer cell nuclei. Gene
repositioning is analyzed in patient tissue sections by labeling sequences with fluorescence in situ hybridization (FISH),
followed by measurement of the relative position of each gene from the nuclear center to the nuclear periphery. This
technique requires hundreds of well-segmented nuclei per sample to achieve statistical significance. Although the
tissue samples in this study contain a surplus of available nuclei, automatic identification of the well-segmented
subset remains a challenging task.

Results: Logistic regression was applied to features extracted from candidate segmented nuclei, including nuclear
shape, texture, context, and gene copy number, in order to rank objects according to the likelihood of being an
accurately segmented nucleus. The method was demonstrated on a tissue microarray dataset of 43 breast cancer
patients, comprising approximately 40,000 imaged nuclei in which the HES5 and FRA2 genes were labeled with FISH
probes. Three trained reviewers independently classified nuclei into three classes of segmentation accuracy. In man
vs. machine studies, the automated method outperformed the inter-observer agreement between reviewers, as
measured by area under the receiver operating characteristic (ROC) curve. Robustness of gene position
measurements to boundary inaccuracies was demonstrated by comparing 1086 manually and automatically
segmented nuclei. Pearson correlation coefficients between the gene position measurements were above 0.9
(p < 0.05). A preliminary experiment was conducted to validate the ranked retrieval in a test to detect cancer.
Independent manual measurement of gene positions agreed with automatic results in 21 out of 26 statistical
comparisons against a pooled normal (benign) gene position distribution.

Conclusions: Accurate segmentation is necessary to automate quantitative image analysis for applications such as
gene repositioning. However, due to heterogeneity within images and across different applications, no segmentation
algorithm provides a satisfactory solution. Automated assessment of segmentations by ranked retrieval is capable of
reducing or even eliminating the need to select segmented objects by hand and represents a significant
improvement over binary classification. The method can be extended to other high-throughput applications
requiring accurate detection of cells or nuclei across a range of biomedical applications.
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Background
In this paper, a simple, fast, and highly accurate pat-
tern recognition technique is introduced to perform seg-
mentation assessment for the purpose of subsequently
quantifying gene repositioning. The term “segmentation
assessment,” as described here, refers to evaluation of
segmentations at the object level, as opposed to the
more commonly encountered task of segmentation evalu-
ation, where the goal is characterization of the pixel-wise
boundary accuracy [1]. Assessment is an important step
whenever accurate segmentation is critical to quantitative,
downstream analysis.Whether it is spatial analysis of gene
location, counting cells, or performing computer-aided
diagnosis on tissue samples, better starting segmentations
eliminate errors later in the analysis.
In order to understand the need for segmentation

assessment, it is helpful to understand its motivat-
ing applications. There are many high-throughput/high-
content applications which depend on proper segmenta-
tion. Often, these are problems for which there are more
imaged cells than necessary for quantitative evaluation of
the tissue. The gene repositioning application presented
in this manuscript is only one example; other applications
include HER2/neu expression in breast cancer progno-
sis [2], gamma-H2AX measurement for radiation expo-
sure [3], and DNA content analysis [4]. While this work
demonstrates segmentation assessment for the purpose
of gene repositioning, the general approach is applica-
ble to problems where ranking by segmentation quality is
advantageous to subsequent measurements.

Gene repositioning
Nuclear compartmentalization and the position of spe-
cific genes in the nucleus have been shown to impact gene
expression and cell function [5]. Nuclear organization is
thought to affect cellular activities such as replication,
repair, transcription, and breakage-rejoining events [6,7].
Spatial arrangements of chromatin in the nucleus play a
critical role in transcriptional regulation [8-11]. Similarly,
chromosome territories and chromosomal sub-regions
have been shown to have non-random radial nuclear dis-
tributions [12-15].
Recent studies focusing on the organization of indi-

vidual genes have illustrated the tendency of genes to
occupy specific spatial positions. Their transcriptional
activity sometimes correlates with location in the nucleus
and proximity to other nuclear bodies [16-21]. There
is evidence that spatial organization of individual genes
can potentially be used for detection of breast cancer
[22-24], though further work is necessary to determine the
suitability of gene repositioning to clinical applications.
High-throughput screening, which aims for automation
without sacrificing accuracy, will play a key role in this
research [25].

Current techniques used for studying the gene position
effect in cells involve analyzing multi-color fluorescence
images of DNA sequences of genes of interest, labeled
by FISH [7,26-28]. Because of natural variability in gene
positioning in nuclei, small positional changes cannot
be visually observed in individual nuclei. However, the
change may be observed as an ensemble phenomenon
when quantified across many nuclei per sample. Auto-
matic quantification requires accurate nuclear segmenta-
tion, identification of FISH signals, and localization rela-
tive to the nuclear boundary. Once the FISH signals are
localized, statistical hypothesis tests determine whether
the radial distance distribution of a test sample is different
than that of a control sample.
Since the radial position is a statistical quantity influ-

enced by several sources of error, the gene localization
process mandates a large number of nuclei. Tissue sec-
tioning creates one source of error by presenting a random
cross section of cell nuclei. The tissue also shears when
cut. Even under ideal preparation conditions and perfect
segmentation, a considerable amount of tissue will sim-
ply be unusable for spatial analysis due to cell clumping,
overlap of boundaries, and the presence of artifacts. It
is therefore not sufficient to have a strong segmentation
method by itself, since even the most reliable approaches
result in errors. Hence, there is need for an assessment
step to screen out objects that are not true nuclei or
have been improperly segmented. If gene repositioning is
deployed as a tool in a diagnostic setting, manual quality
control may be necessary to ensure correctness. Amethod
which can reduce this burden without sacrificing accu-
racy will save time and reduce tedium, resulting in fewer
mistakes.

Segmentation assessment
It is reasonable to ask why it is necessary to include a
step for segmentation assessment, as opposed to directly
improving the segmentation reliability. Why not focus
on eliminating errors early in the workflow, so that they
do not need to be detected later in the process? Robust
image segmentation often falls short of expectations,
due to the enormous sample variability encountered in
histopathological images. For example, Figure 1 shows
images from two different tissue microarray (TMA) cores
which have been processed under identical staining and
acquisition parameters. Such unpredictable variations in
sample appearance may require consensus approaches
using different algorithms, adaptive techniques, and dif-
ferent parameters to satisfactorily segment [29-31].
Methods that assess the performance of segmenta-

tion methods can partially overcome these limitations.
Along these lines, previous work on probabilistic assess-
ment of nuclear segmentation has been performed by Lin
et al. [29] and by Gudla et al. [32], albeit for use in the
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(a) Sample A (b) Sample B

Figure 1 (a,b) There are significant differences in sample appearance, even for tissue processed under identical conditions.

actual segmentation workflow, as opposed to a postlimi-
nary feedback step. Lin et al. used a Bayesian method to
assign a confidence score for merging multiple segmen-
tation models. Hill et al. [4] showed that a shape-based
filter improved the quality of results from high-content
screening using the SK-BR-3 cell line, a line which is
particularly difficult to automatically segment. Nandy et
al. [23] applied a postliminary binary classification via a
neural network to separate a subset of well segmented
nuclei.

Ranked retrieval
Segmentation assessment fits into the proposed workflow
as follows. After nuclei are segmented, feature extraction
is performed on the candidate nuclei and logistic regres-
sion used to assign a probability that a candidate seg-
mentation is correct. Nuclei are sorted according to this
probability, in order to generate a ranked list. Well seg-
mented nuclei are then used for gene localization analysis,
a process described in detail in the Methods section. An
illustrated overview of this process is provided in Figure 2.
The identification and selection of a comparatively small

number of well-defined/relevant objects from a much
larger set of poorly-defined/irrelevant ones is an applica-
tion which can be reliably addressed by ranked retrieval.
Instead of imposing a binary good/bad label on each
object, a probability leads to a relative ordering. From this
perspective, the goal is not only to minimize the global
classification error across the population of nuclei, but
also to sort nuclei according to a quality of segmentation.
This ranking should be based on a calibrated probability,
meaning that it represents the true probability that an
object is a well segmented nucleus. The Methods section
describes logistic regression and justifies its suitability to
high-throughput applications. Ranked retrieval addition-
ally suits a task such as gene localization because, despite
the low yield of usable nuclei per image, one can generally

compensate by acquiringmore images. A single TMA core
is generally sufficient to reach the number of usable nuclei
necessary for statistical hypothesis testing [23,24].
Given a set of nuclei sorted according to a probability

of being well segmented, there are several ways of select-
ing the nuclei usable for gene localization analysis (e.g. by
taking the top N nuclei per subject, taking nuclei above
a probability threshold, or using a weighted sum). Since
there is generally a surplus of nuclei, failure to identify
usable nuclei (false negatives) is generally tolerable, pro-
vided they are not biased in some way. This leaves false
positives as the problematic source of error. This is shown
visually in Figure 2c, where it is evident that, for local-
ization analysis, specificity (that the segmented nuclei are
correct) takes priority over sensitivity (that all the good
nuclei were found). In this study, we demonstrate that
the ranked retrieval is both more accurate than binary
classification and less burdensome for an expert to review.

Methods
Data preparation
A trained expert acquired over 1700 images from a
breast cancer TMA (Biomax). 4μm thick formalin fixed,
paraffin-embedded sections were imaged using an Olym-
pus IX70 microscope using a 60X, 1.4 oil objective lens
and an auxiliary magnification of 1.5. 3-D Z-stacks were
acquired with a step size of 0.5μm. The image size was
1024 x 1024, with a pixel size of 0.074μm per pixel
in both X and Y directions. Nuclei were stained with
4’,6-diamidino-2-phenylindole (DAPI) and the HES5 and
FRA2 genes labeled by FISH. For nuclear segmenta-
tion, maximum intensity projections of the original DAPI
(blue) channel were used, as previously described in [24].
The data comprised a cohort of 43 subjects aged 16 to
68, with 1 patient with hyperplasia, 2 fibroadenomas, 1
invasive papillary carcinoma, and 39 invasive ductal car-
cinomas. Both node negative and positive tumors were
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Figure 2 Overview of the automated steps to extract gene position information from images, which can then be employed for
high-throughput studies. (a) The fluorescence image is acquired. (b) A multistage watershed segmentation algorithm creates a set of candidate
segmentations. (c) A logistic regression assigns a probability to each candidate, screening out those with a low likelihood of being well segmented.
(d) Examples of highly ranked vs. poorly ranked segmented objects. Blue: true segmentations of nuclei. Red border: automatically deduced
candidate segmentations. Green/Red dots: FISH-labeled genes (e) Gene position measurements, such as the radial probability distributions, are
made using the correctly segmented nuclei borders. (f) A confusion matrix illustrating potential outcomes of a binary classification. The red dotted
line represents a candidate segmentation. False positives are the most critical source of error in a ranked retrieval of nuclei, potentially creating
incorrect gene position measurements.
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included in the invasive carcinomas, with grades from I
to III. Both AR+/-, ER+/-, PR+/-, P53+/-, KI67+/- and
HER2+/- tumors were included.
Automated segmentation was performed via a multi-

stage watershed algorithm followed by a tree-based hier-
archical merging procedure using shape models [33]. We
refer the reader to [23] for a detailed explanation of the
segmentation methodology. After segmentation, a total of
43,956 candidate nuclei were analyzed.

Manual annotation of segmented objects
Elimination of inter and intra-observer variability is a
significant benefit of automated image analysis, yet the
extent of this variability is seldom quantitatively mea-
sured. Human annotation serves two roles in this paper.
First, it provides the ground truth for the training and
performance characterization of the logistic regression.
Second, it estimates the baseline variability associated
with choosing properly segmented nuclei.
Humans assigned a label from one of three categories

for the segmentation of each nucleus, according to the
following criteria:

Good: 1 (usable for FISH localization) boundary is
almost perfect, not multi-nuclear, relatively
small inclusions/extrusions allowed,
nucleus is not occluded

Maybe: 0.5 (possibly usable for FISH localization)
boundary has minor errors, not
multi-nuclear, nucleus may be partially
occluded, clipped, or out of focus

Reject: 0 (not suitable for FISH localization)
boundary is incorrect, may be
multi-nuclear, occluded nuclei, nuclear
fragments, debris, background

Annotation was performed using a custom graphical user
interface, which displayed the mask, best-fit ellipse, con-
tour, and grayscale image of each nucleus, as well its
context in the image. The FISH signals of the specific gene
were not used in evaluating the segmentation, however
they were included as features in the automatic classifi-
cation. This is because the FISH signals had no influence
on the segmentation, but were useful for determining
which segmentations are genuine nuclei. For example, an
abnormally high number of FISH spots likely indicates
that multiple nuclei have been incorrectly segmented as
one object.

Feature extraction
Four categories of features were extracted and tested in
the automatic pipeline: morphological (relating to the
shape of the segmentation boundary), textural (relating to
the intensity inside the nucleus), contextual (relating to

the relative layout of the nuclei in an image), and gene-
based (relating to the number, distribution, and properties
of the labeled genes). The features ranged in complex-
ity from simple geometric and statistical descriptions,
to more advanced parameters relying on morphologi-
cal operations, elliptical Fourier coefficients [34], corner
detectors, and fractal dimension. Features are listed and
briefly summarized in Table 1. A more detailed explana-
tion of each is given in the Additional file 1.
A random forest [35] was run to determine the out-of-

bag importance of the individual features. In general, mor-
phological features ranked highest, followed by texture-
based, then FISH-based, and finally contextual features.
The most discriminatory features captured variations on
the perimeter-to-area ratio, whether measured directly
or through indirect quantities, such as the solidity or
fractal dimension. Contextual features were found to be
unreliable due to the variation in performance of the seg-
mentation algorithm on datasets of different quality. Due
to their poor performance, high cost of computation, and
the input/output burden to retrieve full images, contextual
features were omitted from subsequent analysis. Feature
extraction was implemented in a naively parallel way on a
cluster and took on the order of a few seconds per nucleus.

Logistic regression
After manual annotation of a training set and feature
extraction, a supervised machine learning algorithm was
introduced to perform the segmentation assessment.
Logistic regression is a form of generalized linear model
that models the posterior probability of a dichotomous or
continuous target variable [36]. To compute this probabil-
ity, regression is performed against the logarithm of the
odds ratio,

ln
(
p̂/(1 − p̂)

) = α + β1x1 + β2x2 + . . . + βmxm, (1)

where the xi are the input features and βi the regression
coefficients. Explicitly solving for the probability gives,

p̂ = eα+β1x1+β2x2+...+βmxm

1 + eα+β1x1+β2x2+...+βmxm
. (2)

Logistic regression has several theoretical and practical
properties which suit the task of segmentation assess-
ment for gene position analysis. Chiefly, it allows direct
comparison of probabilities across different training sets.
This is a desirable property that not all prediction meth-
ods share. For example, it has been established that
margin-based methods (e.g. boosted trees or support vec-
tor machines) and models such as Naive Bayes produce
distorted outputs, which require a calibration step to
align the ranking with the true class posterior probability
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Table 1 Four categories of features were extracted and tested in the automatic pipeline

Category Name Brief description

Morphological

Area Number of pixels in segmentation mask

Perimeter Length of segmentation boundary

Perimeter/Area Perimeter to area ratio

Solidity Ratio of area to the convex hull area

CH Perimeter / Perimeter Ratio of convex hull perimeter to object perimeter

Max Circle Ratio Ratio of the area of the largest inscribed circle to the total area

Ellipse Eccentricity Eccentricity of the ellipse that has the same second-moments as the mask

Ellipse Error Ratio Area difference between best-fit ellipse and boundary

Length Measure of elongation

Width Measure of breadth

Mean Pairwise Distance Mean all-pairs distance between points on perimeter

Polar Histogram Measures isotropy of border points at a given angle

Num. Severe Corners Number of strong corners in segmentation contour

Box-counting Dimension Fractal dimension of the perimeter

Erosion Profile Identifies segmentations with narrow passages separating large areas

Elliptical Fourier Number of elliptical Fourier coefficients to reconstruct the mask to within

10% area error

Texture

Mean Intensity Mean of grayscale intensity inside nucleus

Intensity Range Range of grayscale intensity inside nucleus

Entropy Global entropy of grayscale values inside nucleus

Gray-level Co-occurrence Statistics of the gray-level co-occurrence matrix

FISH

Num. FISH Number of FISH spots

FISH/Area Number of FISH spots normalized by area

FISH CH Area Ratio of convex hull area formed on FISH spots to total area

FISH Boundary Measures whether the FISH convex hull intersects the nuclear boundary

Mean FISH Distance Mean distance between FISH spots

Contextual

Num. Nuclei Number of candidate nuclei in the image

Intensity Ratio Mean intensity of band surrounding the nucleus compared to the mean intensity inside

Betweenness Centrality Betweenness centrality of nucleus in a graph connecting nuclei in the image

Number Neighbors Number of neighbors connected to the nucleus

Mean Edge Distance Mean edge distance to 1st-level neighbors

aSummarized here are brief descriptions of the features.

[37,38]. Conversely, the logistic regression output aligns
with the true class posterior probability and does not
necessitate a calibration step [38]. For this application, the
probability assigned via regression reflects the real proba-
bility that an object is a well segmented nucleus. In terms
of implementation, logistic regression is fast, conceptu-
ally simple, and scales to large data. One needs only to
save the regression coefficients for storage and future use.
The target variable can be a dichotomous outcome (e.g.,
whether to use or ignore a candidate segmentation), or, in
the case of multiple ground truths, a probability in [ 0, 1].
Each nucleus is treated as a separate data point in this
proposed method, yielding ample training data.

Ranked retrieval
The logistic regression was trained and applied in a leave-
one-out fashion. Each subject’s tissue samples were held
out and the regression trained on the remaining subjects.
Leave-one-out cross validation was chosen to approxi-
mate a clinical scenario, in which a given subject’s gene
position measurements would be compared to a group of
prior subjects with known outcomes. This process was
repeated for each of the 71 TMA cores from the 43 sub-
jects. Due to the difficulty of segmenting the images used
for this study, there were many more rejected segmen-
tations in the ground truth (84%) than well-segmented
nuclei (16%). The posterior probability ranking from the
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regression was scored against the averaged ground truth
from the three manual annotations.

Dataset quality
There are three hierarchical levels into which nuclei may
be grouped: each nucleus belongs to a patient, a tissue
sample from that patient, and an image from that tis-
sue sample. While the distinction of which nuclei fall into
which image is at the discretion of the microscopist, the
other groupings impose real, practical constraints on the
data analysis. For example, the quality and quantity of
tissue across different specimens may produce vastly dif-
ferent datasets, one with plentiful, easy-to-segment nuclei
and the other with scant, clumping nuclei buried in back-
ground fluorescence. Even though the end goal is the same
(an adequate number of well-segmented nuclei), there is
no fixed number of images necessary to arrive at this end.
The varying yield of good nuclei across different tis-

sue sections is accommodated by introducing a measure
of dataset quality using the aggregate posterior probabili-
ties of the logistic regression. The probabilities are sorted
and normalized by the number of candidate segmenta-
tions in each dataset. The area under this curve yields a
number in [ 0, 1], roughly corresponding to the propor-
tion of the dataset assigned a highly correct segmentation
probability, 1

N
∑

i∈S p̂i, with p̂ the estimated probability, N
the number of total candidate segmentations, S, across all
images belonging to the subject. Example quality curves
are plotted in Figure 3c. This quality number is proposed
to guide the microscopist regarding the usability of the
specimen under examination. Datasets which are difficult
to segment have a low quality score, signaling a poor suc-
cess rate of segmentation and the need to acquire more
images. Although the concept of quality/yield is a pro-
cedural matter affected by numerous, unrelated causes
(underlying pathology, histology, sample prep, acquisition
settings), it must be accommodated in order to automati-
cally segment nuclei in statistically meaningful numbers.

Measuring gene centrality
We introduce three successive methods to measure gene
centrality, each incorporating a varying degree of global
shape information. Let the set cij ∈ C be the points com-
prising the segmentation contour and xij ∈ M the set of
points enclosed by the contour (the mask). The euclidean
distance is denoted by d(·). The nuclei screened by the
aforementioned methods were used for gene localization.

EDT (local)
The Euclidean distance transform (EDT) [39,40] is defined
as the smallest distance from the point of interest to any
point on the perimeter,

edt(xij) = min
C

d(xij,C). (3)

Points on the boundary have a value of zero. Unlike
more primitive methods, which employed a radial dis-
tance from a central point, the EDT is shape invariant and
does not impose a circular/ellipsoidal assumption on the
cells. However, to facilitate comparisons across different
cells, it is desirable to have a centrality measure which is
both scale and shape invariant.

Normalized EDT (local/global)
The standard method to achieve scale invariance is by
dividing the EDT by the largest EDT value of any point
in the mask. This results in a value of zero at the periph-
ery. Although the literature often uses this convention, it
is useful to use one minus this quality so that the central
points (“the origin”) take a value of zero and the periphery
a value of one,

nedt(xij) = 1 − edt(xij)
maxM,Cd(M,C)

. (4)

A similar approach employs an average radial distance
for normalization, computing the radius of a circle with
equal area to the segmentation [41]. The normalized EDT
(nEDT) is partially shape and scale invariant, but is not
without drawbacks. The maximum EDT value provides
only a rough correction for object size, meaning the nor-
malized EDT is not directly comparable for objects of
different shape [27,42]. This can be corrected by express-
ing the distribution of the interior points as a cumulative
frequency.

Cumulative EDT (global)
A scale and shape invariant centrality measure is con-
structed by using the empirical cumulative probability
distribution from the nEDT values given by Eqn. 4. This
describes the empirical probability that points in the
nucleus have a nEDT value less than or equal to a given
value,

cedt(xij) = P
[
nedt(M) ≤ nedt(xij)

]
. (5)

This method was used by Schwarz-Finsterle et al. [28]
and later by Andrey et al. [43] to characterize relative dis-
tances of FISH distributions within cells. The cumulative
EDT (cEDT) does not rely on an a priori shape model.
Therefore, this approach is appropriate for highly irreg-
ular shapes, can easily be extended to three dimensions,
and does not require specification of spatial parameters.

Results
Manual agreement
Three human reviewers independently annotated the
dataset with one of three labels, {good, maybe, reject},
as described in the Methods section. The three labels
were averaged and used as a continuous target variable for
performing regression. With three label values (0, 0.5, 1)
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Figure 3 (a) ROC curves for each leave-one-out experiment trial, with the ground truth taken from all three reviewers (b) ROC
performance as a function of the number of reviewers (c) Sorted values of the posterior probability values for each dataset, scaled to the
domain [ 0, 1]. The area under these curves is a representation of the yield of well segmented nuclei from the dataset. (d) The effect of training set
size on the regression performance, reported for 500 repetitions.

and three annotations (y1, y2, y3), there were five possible
aggregate label values: 1, 2/3, 1/2, 1/3, 0.
Significant variation was observed in the labels assigned

by the human reviewers. As a more concise measure of
agreement, Receiver-Operator characteristic (ROC) curve
areas of manual labels were constructed by averaging
two as ground truth and scoring the third against those
two (Table 2). A detailed confusion matrix is provided in
Additional file 1. The mean ROC agreement was approxi-
mately 0.9, indicating subjective differences in the opinion
of what constitutes a well segmented nucleus, as well as a

Table 2 ROC values of manual labels were constructed

Ground truth Predicted ROC area

(y1 + y2)/2 y3 0.868

(y2 + y3)/2 y1 0.905

(y1 + y3)/2 y2 0.936

aROC areas for the manual agreement (N = 43, 956).

high level of difficulty in the segmentation task. This value
is provided as a baseline ROC area for comparison with
the automated ranking on this dataset. Note that agree-
ment was computed in an object-wise fashion, which is
related to but not the same as the pixel-wise segmentation
error.

Retrieval results
Retrieval accuracy was quantified by ROC analysis, scor-
ing the posterior probability from each hold-out trial
against the ground truth. The mean ROC area perfor-
mance across all 71 logistic regression trials was 0.95,
with a worst case of 0.89 and a best of 0.99 (Figure 3a).
The automated approach consistently outperformed the
mean human ROC scores. The leave-one-out experiment
was run using all permutations of the three sets of man-
ual labels in order to test the effects of using multiple
training annotations (Figure 3b). The best performance
came from using all three sets, though the performance
was only marginally better than using just two, or even a
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single set of annotations. In particular, the ground truth
from reviewer #2 alone scored well in both the mean ROC
area, as well as having smaller variance across the different
data folds.
Counterintuitively, dataset quality was negatively

associated with the ROC area (r = −0.32). Visual inspec-
tion confirmed that for the low quality, “messy” images,
the segmentation made such egregious mistakes that
the pattern recognition could more easily identify well
segmented nuclei. These tended to be ellipsoidal-shaped
nuclei surrounded by background. The steep decay in
the majority of the quality curves (Figure 3c) reflects the
difficulty of the automated segmentation task and cor-
responds to the high percentage of objects rejected by
manual annotation.
Both random forests and linear kernel support vector

machines (SVM) were tested in addition to logistic regres-
sion. The posterior probability from the random forests
yielded similar performance to logistic regression, but at
the cost of increased runtime. The SVM proved too slow
to use for the 71-fold holdout experiment and addition-
ally did not perform as well on smaller subsets of the data
(data not shown). For all three methods, using a ranked
probability outperformed binary classification, due to the
ability to assign an order within each class. We hypoth-
esize the comparable results between methods to be the
consequence of an expressive feature space, one which
makes the classes separable without the need for kernel
tricks or excessively complicated learning strategies. Scat-
ter plots of the data (not shown) indicated clustering of
the good/maybe nuclei in feature space.

Effect of ground truth size on accuracy
Another experiment was performed to determine how
many nuclei must bemanually annotated in order to reach
the asymptotic best performance. Random subsets of sizes
ranging from 8 to 1024 nuclei were selected as a training
set, with the remaining nuclei used as the test set. Logis-
tic regression was performed and the ROC area recorded.
This was repeated 500 times for each subset size, using a
new random training set each time. Results showed that
as few as 256 training points are necessary to reach near-
optimal performance (Figure 3d). Including more than
256 training points reduced the variance introduced by
drawing random data subsets, thus making the training
set more likely to be a representative sample of the total
population.

Comparison to manual analysis
In order to validate the efficacy of the regression-based
nuclear screening method, FISH localization results of the
FRA2 and HES5 genes for 13 datasets were compared
to those obtained by an independent, complete manual
analysis (in which cells were selected, segmented, and
the FISH spots marked by hand). Because it was infea-
sible to process the entire TMA by hand, a subset of 13
datasets was chosen. Table 3 indicates the 13 test datasets
along with their tissue type and the number of nuclei
screened by the regression-based ranking with a posterior
probability greater than 0.1. This threshold was manually
determined by visual examination in order to demonstrate
proof-of-concept. While such a threshold seems intu-
itively low, this is because the distribution of segmentation

Table 3 Comparison of the automatedmethod withmanual analysis shows acceptable agreement

Dataset Type # Nuclei Manual FRA2 Auto FRA2 Manual HES5 Auto HES5 Agree FRA2 Agree HES5

D1 NCBD 63 0.1132 0.1918 0.1363 0.1321 � �
D2 Cancer 164 0.2689 0.4360 0.0000 0.0000 � �
D3 Cancer 115 0.0050 0.0001 0.0003 0.0000 � �
D4 Cancer 133 0.0000 0.0001 0.0000 0.0000 � �
D5 Cancer 188 0.0237 0.0000 0.0000 0.0000 X �
D6 Cancer 147 0.0004 0.0182 0.5239 0.5019 X �
D7 Cancer 63 0.0000 0.0000 0.0724 0.0013 � X

D8 Cancer 174 0.0002 0.0000 0.3017 0.3576 � �
D9 Cancer 120 0.0000 0.0000 0.0000 0.0000 � �
D10 Cancer 117 0.0001 0.0005 0.0157 0.0201 � �
D11 Cancer 87 0.0001 0.0007 0.0000 0.0286 � X

D12 Cancer 153 0.0009 0.0048 0.0000 0.0130 � X

D13 Cancer 37 0.0000 0.0004 0.0526 0.9827 � �
Total: 11/13 10/13

84.60% 76.90%

a13 test datasets with their tissue type (NCBD = non-cancerous breast disease) and the number of nuclei screened with a probability above 0.1.
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probabilities was concentrated near zero, an indication
that most objects had some attribute penalized by the
logistic regression. The NCBD dataset corresponded to a
benign breast disease for which the spatial localization of
the above genes had a high degree of similarity to that of
normal tissue samples. The remainder of the table shows
the probability of similarity in gene distribution for both
FRA2 and HES5 between the pooled normal dataset vs.
the manually/automatically screened nuclei. Green text
indicates statistical significance.
The number of nuclei analyzed was required to be

approximately 100 or above for a statistically significant
result. A sufficient number of nuclei was screened in most
of the datasets, the exceptions being D1, D7 and D13.
Manual inspection of these datasets indicated nuclei clus-
tering was causing a poor quality segmentation. Thus,
the shortage of usable nuclei was not due to algorithmic
insensitivity, but was rather a result of too few quality can-
didate segmentations. More images should be acquired in
such a situation.
The spatial localization statistics for both the genes

obtained manually and automatically were compared to
that of a pooled normal dataset, which contained the
statistics of nine normal samples aggregated together and
have been published previously [24]. Comparison was
done using the Kolmogorov-Smirnov test with a signif-
icance level of α = 0.01 (a test sample was considered
to be different from the control group if the probability
of it not being significantly different was less than 1%).
Table 3 shows the probability of similarity in gene dis-
tribution for both FRA2 and HES5 between the pooled
normal dataset vs. the manually/automatically screened
nuclei. The automatic results differed from the manual
result in only two cases for FRA2 and 3 cases for HES5
(red X’s). This demonstrates the efficacy of the automatic
method with respect to an entirely manual analysis and
compares favorably to previous results reported in [23].

FISH centrality is stable
Demonstrating stability of gene position measurements in
the presence of segmentation noise is a necessary require-
ment for automation. If the position measurements are
highly susceptible to small perturbations in the segmen-
tation contour, then it is difficult to evaluate the effective-
ness of the ranked retrieval. To demonstrate agreement,
1086 randomly selected nuclei were manually segmented
using a tablet device. The cumulative and normalized gene
position measurements were computed for FISH signals
for both the manual and automatic segmentations. For
the normalized EDT values, the man-machine correlation
coefficient was r = 0.91 (p < 0.05) with a mean absolute
error of 0.065. For the cumulative EDT values, the man-
machine correlation coefficient was r = 0.90 (p < 0.05)
with a mean absolute error of 0.070. This agreement was

found to give satisfactory results for localization. Scatter
plots of both are shown in Figure 4. We refer the reader
to the Additional file 1 for further discussion on spatial
errors in the cumulative EDT.

Discussion
Expert agreement
Part of the variation in the human agreement is
attributable to justifiable, subjective opinion differences.
Such disagreement forms a theoretical ceiling on the best
performance expected from a supervised method. The
other portion of the error, that attributable to human mis-
takes such as fatigue, mood, varying tolerances, or the
influence of memory and context, does not affect the
computer’s performance.
It is tempting to attribute the low manual agreement

to a lack of expertise, namely that a panel of patholo-
gists would show more consensus than less experienced
reviewers. While this is certainly a question worthy of
further experimentation, we note that the task of identi-
fying segmented DAPI nuclei at high magnification is not
one that requires particular histological expertise, in addi-
tion to being too time consuming to reasonably expect
a pathologist to handle. For example, manual annotation
of the 43,956 nuclei in this experiment required several
months of full-time work per reviewer, even with a dedi-
cated software interface to expedite the job. Results from
training on subsets of the three annotations indicated
that multiple annotations gave diminishing returns for the
effort invested. The best training set came from all three
reviewers, but the advantage was modest and did not
indicate thatmultiple reviewers were vital to performance.
It is possible the majority of the observed differences

in annotation were the result of variability in qualitative
opinions, such as how much of a nucleus was occluded,
how much of a nucleus needed to be in the focal plane to
be labeled usable, and howmuch accuracy is necessary for
the segmentation boundary. It remains an open question
of how these ROC values would change under different
reviewers.

Dataset quality
The quality measure proposed in this manuscript may act
as a useful tool when acquiring images at the microscope.
Quality was found to correspond to the difficulty of seg-
mentation across different images. Since the regression
performs with high specificity, multiplying the dataset
quality by the number of candidate objects gives a rough
estimate of the nuclei yield. For example, if 200 nuclei are
necessary for a given screening application, images can
be acquired, segmented and ranked immediately, until the
desired number of usable nuclei are captured. For benign
epithelial tissue packed into tight glands with touching
cells, this may require 40 images. For a disorganized
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Figure 4 (a) Scatterplot of the normalized man vs. machine EDT. This is a comparison of the nEDT vs. cEDT values between fully manual and
machine segmentation of 1086 nuclei, comprising 3720 gene markers. (b) Normalized EDT error as a function of position within the nucleus (0 =
center, 1 edge) (c) Scatterplot of the cumulative man vs. machine EDT. (d) Cumulative EDT error as a function of position within the nucleus. FISH
spots close to the periphery have larger error for cEDT, while those for nEDT are not position dependent. The red line is the median, the box extends
to the 25th and 75th percentiles, the whiskers are the most extreme data points not considered outliers, outliers are plotted as red “+”s. Outliers
above 0.3 not shown to improve visualization.

population of scattered tumor cells, it may require only
10 images.
Standard fluorescence confocal images (neglecting the

Z-stack) are a 2D slice of three-dimensional structures
into two dimensions, meaning the observed radial distri-
butions are not necessarily the true radial distributions. In
the most simple approximation, one where the nuclei are
modeled as spheres, a 2D projection has the effect of shift-
ing the distribution towards the center (a boundary point
may falsely appear at the center, but a center point can-
not shift towards the boundary). However, no such general
claim can be made for the case of non-spherical shapes.
We therefore adopt the assumption that the nuclei do not
have a preferred orientation, or equivalently, that the bias
introduced by the projection is averaged out over a large-
enough sample. Onemight try to avoid this assumption by
analyzing 3D images, however the practical difficulties of
sectioning, staining, acquiring, and analyzing such images

are currently prohibitive.While it is possible that informa-
tion in the third dimension may be less useful than rapidly
imaging a larger sample size of 2D images [27], this deter-
mination depends on the application and must be made
on a case-by-case basis.

Reviewing localization results
The benefit of ranking segmentations according to a
probability is apparent when viewed in the context of a
high-throughput workflow. Here, the investigator must
choose one of four options for studying gene position.
In order of decreasing manual burden, they are: fully
manual nuclei selection and segmentation, automatic seg-
mentation followed by manual selection, automatic seg-
mentation followed by automatic binary classification,
and finally, automatic segmentation followed by rank-
ing. The choice to rank the output provides a natural
means to review the segmentations, stepping down the list
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and manually discarding the worst false positives until a
satisfactory sample or cutoff point is reached. Data points
farthest from the decisionmargin aremore likely correctly
classified, which makes reviewing the ranked output less
cumbersome than dealing with an unsorted, binary class
label. The probabilistic output may also alleviate the need
pick a fixed number of nuclei for analysis, whether by
number or threshold. For example, the contribution of an
individual FISH marker to the position distribution could
be weighted by the object’s posterior probability, thereby
discounting the position measurements from incorrectly
segmented nuclei. Software using the ranking methodol-
ogy is currently under evaluation.
Future experimentation is necessary to determine if the

nuclei selected by an automatic or manual method are
unbiased, meaning they are statistically representative of
the cell population under study. It was observed that the
automatic method presented in this paper ranked perime-
ter/area among the most salient attributes of a proper seg-
mentation. This preference was also observed in the nuclei
selected by the human reviewer, who tended to choose
convex, round nuclei. A larger study is necessary to answer
whether there is a reproducible bias towards round nuclei,
whether the human and machine are similarly biased,
and whether the radial distributions are altered due a
biological process affecting the nuclear shape.
It is beyond the scope of this work to describe the

specific features which capture the full range of ways in
which different segmentation methods can fail. Instead,
the methodology is offered as segmentation-agnostic
approach to quality assessment. The features most useful
for discrimination are, in part, dependent on the segmen-
tationmethod used in each specific application. For exam-
ple, a classifier trained to distinguish properly segmented
images with the watershed transform is not expected to
perform ideally on different images segmented with active
contours. However, given a feature space captures the
variance between acceptable and unacceptable segmenta-
tions, ranked retrieval by logistic regression is a suitable
way to exploit this variance and quality check the results.

Conclusions
While many quality segmentation methods are available
to find nuclear borders, these methods do not ensure that
the selected population is usable for localization analysis.
The heterogeneity in microscopic images makes segmen-
tation assessment necessary to achieve this end. In this
paper, a ranked retrieval approach using logistic regres-
sion was introduced as a means to perform segmentation
assessment. This approach was shown to outperform the
inter-observer human agreement on a breast cancer TMA
dataset containing over 40,000 candidate nuclei, with a
mean ROC area of 0.95 when trained in a leave-one-
subject-out fashion. These results indicated gene position

could be both automatically and precisely measured.
When compared to a completely manual analysis, the
automatic results agreed with manual measurement in
21 out of 26 statistical comparisons of cancer tissue and
non-cancer breast disease tissue to a pooled normal distri-
bution. Due to its generality, this ranked retrieval method
could be applied to other high-throughput applications
that rely on accurate segmentation of cells or nuclei.

Additional file

Additional file 1: Spatial Errors in the Cumulative EDT, a detailed
confusion matrix for the human reviewers, and a description of
features used in the analysis.
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