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Abstract

Background: With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant
information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new
organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo
assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many
genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large
collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads
nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned
but non-overlapping read pairs from true overlaps.

Results: We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as
true or false prior to contig construction. We trained several different classification models within the Weka
framework using various statistics derived from overlaps of reads available from prior sequencing projects. These
statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics
score derived from mapping reads to multiple reference genomes. We show that in real whole-genome
sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging
phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the
genome or increasing the number of mis-assemblies.

Conclusions: Machine learning methods that use comparative and non-comparative features to classify overlaps as
true or false can be used to improve the quality of a sequence assembly.

Background
De novo whole-genome shotgun sequencing requires
three general steps: an initial sequencing step in which
the target genome is redundantly sampled at random,
producing reads via sequencing; assembly of the reads
into a draft sequence; and finally, finishing and annota-
tion of the genome. The second step in particular leads
to numerous algorithmic challenges, and a number of
approaches have been pioneered to deal with increas-
ingly short reads and/or large target sequences as the
capacity of sequencing facilities increases.
In general, two algorithmic approaches are currently

employed for genome assembly. The first, which we call

the overlap-contig-consensus (OCC) approach, is uti-
lized in assemblers such as the Celera Assembler [1],
Arachne [2], Atlas [3], and more recently CABOG [4]
and Edena [5]. Implementations of OCC first calculate
the overlaps between all pairs of reads, then use the
overlap information to produce contigs, and finally gen-
erate the consensus sequence for the contigs. The sec-
ond, which we call the de Bruijn approach, was first
adopted from prior algorithmic work on sequencing by
hybridization in the Euler-DB [6] assembler. This
approach and related approaches have been used in
assemblers such as Euler-SR [7], ALLPATHS [8], and
Velvet [9]. The de Bruijn approach creates some form of
“k-mer graph” from the reads and produces an assembly
by transforming and traversing the graph. It is still
unclear whether either of these paradigms is consistently* Correspondence: lance.palmer@siemens.com
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superior to the other. But in general the success of the
de Bruijn approach relies upon robust error detection in
the reads to be practical, while the OCC approach
requires fast and accurate overlap calculations. The lat-
ter problem is the focus of this work.
The OCC approach is best described by thinking of

the target genome as a large interval, and the reads as
being sub-intervals of the genome. This picture is over-
simplified because it does not model the presence of
errors and polymorphisms–particularly indels and struc-
tural polymorphisms–within the input reads, but is suf-
ficient to introduce the general concept. Dealing with
the presence of substantial polymorphisms in the con-
text of OCC has been addressed in other work [10].
It is worth noting a few properties of the OCC

approach. First, if the true overlaps between the reads
were somehow known exactly, then contig formation on
this ideal data set would be equivalent to Interval Graph
Realization, a trivial problem. The implication is that
overlapping is the more critical step. Second, overlap-
ping reads should have a perfect–or nearly-perfect in
the presence of sequencing errors–sequence alignment
between their overlapping regions, and this observation
is the fundamental basis for overlap detection algo-
rithms. Finally, when overlap detection algorithms make
errors, the most common and most damaging are false
positives due to the presence of repeat sequences that
create good alignments between reads even though
those reads do not represent overlapping intervals on
the genome. Incorporating such overlaps into contigs
produces mis-assemblies.
Because comparing all pairs of reads for overlaps is a

time-consuming process in large data sets, developers of
overlapping methods have focused on efficient methods
for finding alignments in large sequence collections.
They have then generally equated the resulting align-
ments with the overlap relationships between the reads,
despite the fact that the presence of an alignment
between the ends of two reads is necessary but not suffi-
cient evidence for an overlap. When this problem has
been considered, it has been addressed with simple
heuristics. For example, the Celera Assembler attempts
to avoid repeat-induced overlaps by screening for
known repeat sequences, and CABOG and the UMD
Overlapper [11,12] attempt to reduce false positives with
heuristic selection of “good” k-mers that are used to
seed (CABOG) or confirm (UMD Overlapper) overlaps.
Since adequate solutions exist for fast alignment

searching, for example the algorithm of Rasmussen [13],
this work focuses specifically on answering the critical
follow-up question: given that an alignment exists
between two reads, do they really overlap? In contrast to
prior work, this question is approached as a formal clas-
sification problem. Alignment features are defined and

classifiers such as C4.5 decision tree, Naive Bayes and
Random Forest are trained and employed within the
Weka framework [14] (a Java-based machine learning
library) to label overlaps as either true or false. We
show that by culling out the false overlaps and thus pro-
viding an overlap set that is closer to ideal, we are able
to achieve longer contigs that cover a larger percentage
of the genome. Finally, yet perhaps most importantly,
since large-scale sequencing and finished genomes are
now ubiquitous, we show how we can leverage previous,
related sequencing projects, if available, in the de novo
assembly pipeline. While, other comparative assemblers,
such as AMOScmp [14] map the reads to a single refer-
ence genome, we show how multiple reference genome
sequences can be used to help assemble genomes.
Rather than produce a whole new genome assembler,

we demonstrate our method by introducing it as a mod-
ule into Minimus [15], which is part of the Modular
Open-source Assembler (AMOS) project. Although
Minimus is not as sophisticated as some other assem-
blers, AMOS is notable for being well-engineered and
specifically designed to accept external modules and is
thus an ideal test vehicle.

Results and Discussion
Evaluation of 454 Reads from E. coli
Overlap statistics
To determine if classification of overlaps can improve
the assembly of sequencing reads, 454 (GS20) sequen-
cing reads from Salmonella enterica serovar Typhi strain
E983139 were used to build training models within the
Weka framework, and 454 (GS FLX) reads from Escheri-
chia coli strain K12 substrain MG1655 were used as a
test set to assemble. The Salmonella reads represented
an approximately 8× coverage of the genome, while the
E. coli reads represented an 18× coverage. Reads from
both strains were mapped to their respective genomes
to determine the ground truth in regards to whether
any predicted overlaps were true or false overlaps.
Because the completed genome for strain E983139 was
not available, the S. enterica serovar Typhi Ty2 genome,
which shares approximately 96% identity with the
E983139 reads (data not shown), was used instead.
The AMOS hash-overlap [11] program was used to

identify potential overlaps. Various statistics for these
overlaps were calculated as described in the methods.
These statistics included the percent mismatch within
the overlap, the first, second, and third quartile k-mer
frequencies, and a comparative genomics score. The
quartile frequencies were derived by taking each k-mer
within an overlap and calculating a normalized fre-
quency of the k-mer within all reads. These frequencies
were sorted from low to high, and the value of the fre-
quency at each quartile of the distribution of frequencies

Palmer et al. BMC Bioinformatics 2010, 11:33
http://www.biomedcentral.com/1471-2105/11/33

Page 2 of 9



was calculated. The distributions of these statistics as a
function of the percentage of overlaps were calculated
for these features within E. coli MG1655(Figure 1) to
show that in fact these features could partially discrimi-
nate true from false overlaps. As a percentage of total
overlaps within the true or false categories, the false
overlaps had a larger tail for the percent mismatch score
(Figure 1a). Since there were a large number of true
overlaps compared to false overlaps (5,320,945 and
57,317 respectively), the total number of true overlaps
with having 1% to 2% mismatches was still higher than
false overlaps (Figure 1b). The k-mer distributions are
shown in Figure 1c-e. As expected, false overlaps tended
to have a greater k-mer frequency. To see if reads from
false overlaps tended to be in repetitive parts of the gen-
ome, BLAT [16], with a minimum score (matches-mis-
matches) of 50, was used to determine the number of
times each read mapped to the reference genome. Reads
from true overlaps mapped on average 1.15 times to the
reference genome, while reads from false overlaps
mapped on average 4.59 to the reference genome.
Finally a comparative genomics score was generated by
mapping the reads to a set of related E. coli genomes
(Figure 1F). A positive score was generated when the
top match of each read mapped to the same location
within a genome. A negative score was generated when
the top match of each read was not in the same location
within a genome. See Methods for a detailed description
of the comparative genomics score.
Classification accuracy
As true and false overlaps had different distributions for
the features that were tested, we next wanted to see if
these features could be used to train classifiers that
could be used to predict true and false overlaps. The
accuracy of various machine learning algorithms in dis-
tinguishing true and false overlaps was explored. For the
results shown in Table 1, both comparative and non-
comparative features were used. Salmonella reads were
used to generate the training models used below, and E.
coli reads were used as the test set. For the comparative
score, genomes with less than 91% identity to Salmo-
nella Ty2 or E. coli MG1655 were used. Accuracy was
defined as the number of correctly predicted overlaps
(both true and false), divided by the total number of
overlaps. The false positive rate was defined as the num-
ber of overlaps incorrectly predicted as positive, divided
by the total number of actual false overlaps. The false
negative rate was defined as the number of overlaps
incorrectly predicted as false divided by the total num-
ber of actual true overlaps. The J48 classifier had the
highest accuracy (99.28%) and the second lowest false
positive rate (37.7%). The Naïve Bayes classifier with
default parameters produced the lowest false postive
rate (12.2%) but had the highest false negative rate of

the machine learning classifiers (2.04% compared to
0.183% with the J48 classifier). Using kernel estimation
with Naïve Bayes improved the accuracy of the classifier
and had the lowest false negative rate. Confusion
matrices for the classifiers are shown in Additional
File 1, Tables S4 and S5. One example decision tree for
the J48 classifier using both comparative and non-com-
parative data is shown in Additional File 1, Table S7.
We wanted to compare the accuracy of our classifier
with other methods of curating overlaps, which are typi-
cally rule-based. The latest version of the UMD Over-
lapper program [12] uses a simple rule involving k-mer
frequencies to label overlaps as reliable and unreliable.
Although this classification is not intended to be utilized
for labeling overlaps as strictly true or false, it is similar
in spirit, and we evaluated how well the reliable and
unreliable categories aligned to true and false overlaps
respectively (See Additional File 1, Table S6). The over-
all accuracy of the reliability labeling was only 74.90%.
The false positive rate was 76.5% and the false negative
rate was 23.7%.
Assembly of E. coli sequencing reads
The features from the S. typhi training set were used to
generate several training models using classifiers such as
J48, Naïve Bayes and Random Forest within the Weka
framework. Overlaps from the E. coli reads were gener-
ated and classified using the training models. After
removal of overlaps predicted to be false, the reads were
assembled using Minimus. The N50 score and the per-
centage of the reference genome matched by contigs
were calculated for each assembly (Figure 2). The N50
score was defined as the maximum contig size where all
contigs of that size and larger covered 50% of the gen-
ome. A higher N50 score generally represents the pre-
sence of larger contigs and thus a better assembly of the
reads. As a control, we first assembled E. coli reads
without classification and removal of overlaps predicted
to be false. This assembly had an N50 score of 24,727
and 96.84% of the reference genome was matched.
While several classifiers were tested, including Naïve-

Bayes and Random Forest, the J48 classifier generally,
but not always, produced better assembly results based
on N50 scores and the percentage of the reference gen-
ome matched. We also attempted to use support vector
machines (SVM) within Weka, but the classifier failed
to finish due to the large number of overlaps involved.
The results presented here represent the values from
the J48 classification. The first set of training models
were built using the non-comparative features such as
mismatch percentage and the k-mer frequencies. The
J48 model produced an N50 size 32,733 and a percent
genome matched of 97.02%. The next model to be ana-
lyzed was built using comparative features alone. For
generating the comparative score within the test set, we
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excluded those strain that were highly similar (>97%
identity) to the test strain (See Additional File 1, Table
S1 for list of strains and percent identity). By using this
compartive score alone, the assembly produced contigs
with an N50 score of 47,155 and a percent match to the
reference genome of 97.26%. Assembling the reads using
both the comparative and non-comparative features
yielded an assembly with an N50 score of 47,084 and a
percent match to the reference genome of 97.16%. If we
reduced the allowable strains for the comparative

feature to those less than 91% identity, the N50 score
and percent match for the comparative features alone
dropped to 35,182 and 97.09%. Using both comparative
and non-comparative features increased these values to
38,904 and 97.13%, respectively. In addition to using the
N50 statistic, we examined the N statistic for a range of
N with several of the assemblies (Additional File 1,
Figure S1). Again, the assembly using both comparative
(using genomes with less than <91% identity) and non-
comparative features provided the best results for most
of the values of N between 1 and 99. Additional File 1,
Figure S2 shows the range of N statistics for assemblies
using genomes <97% identical.
For some genome sequencing projects, there may not be

a large number of related genomes, as there are for E. coli
and Salmonella. Therefore, the assembly was repeated
using only two related genomes for the training and test
set. For Salmonella Ty2, S. enterica serovar Paratyphi
strain ATCC9150 (91.6% identity to Salmonella Ty2) and
S. enterica serovar Typhimurium LT2 (89.6% identity to
Ty2 and 87.9% identity to ATCC9150) were used as
related genomes. For the MG1655 test assembly, E. coli
strains ATCC8739 (92.6% identity to MG1655) and
E24377A (92.1% identity to MG1655 and 90.0% identity to

Table 1 Overlap classification accuracy

Classifier Accuracy1 False Pos. Rate2 False Neg. Rate3

J48 99.28% 37.7% 0.183%

NaïveBayes 97.82% 12.2% 2.04%

NaïveBayes (-K) 4 99.24% 44.5% 0.127%

Random Forest 99.20% 45.9% 0.149%

UMD Overlapper 74.90% 76.5% 23.3%
1Accuracy is defined as the number of true positive and true negative
overlaps divided by the total number of overlaps
2The false positive rate is defined as the number of false positive overlaps
divided by the number of false overlaps
3The false negative rate is defined as the number of false negative overlaps
divided by the number of true overlaps
4NaïveBayes with kernel estimation

Figure 1 Overlap statistics for E. coli MG1655 reads. The percent mismatch of the alignment between the two reads (a, b), the first quartile
k-mer frequency of k-mers within the overlap (c), the median k-mer frequency (d), the third quartile k-mer frequency (e), and the comparative
overlap score (f) are plotted for both true and false overlaps. The results are normalized for percentages of total overlaps for each of the true
and false overlaps (a, c, d, e, f) or by overall count (b). The number of total true overlaps with 0 mismatches is 5,209,686.
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ATCC8739) were used as related genomes. For the J48
classifier the N50 score was 40,597 and the percentage of
the reference genome matched by the contigs was 97.13%.
If only Ty2 for Salmonella and ATCC8739 for E. coli were
used as related genomes, the N50 score for J48 decreased
to 35,164 and the percentage of the reference genome
matched fell to 3.06. These results suggest that there does
not need to be a large number of related genomes
required for comparisons. See Additional File 1, Figure S3
for a graph of these values.
Analysis of assembly quality
DNADIFF was used to identify gross mis-assemblies of
the E. coli sequencing reads [17]. We focused on the
assembly using non-comparative features combined with
the comparative feature using strains less than 97%
identity. DNADIFF reported two potential misjoins and
a single tandem deletion for both the uncorrected and
corrected assemblies. As a qualitative view of the assem-
blies, we used MAUVE [18] to align assembled contigs
that had been ordered by SNAPPER [19] to the finished
reference genome. Figure 3 shows the alignment of the
uncorrected (Figure 3). Figure 4a shows the uncorrected
assembly, while 3b shows the assembly after overlaps
predicted to be false by the J48 classifier were removed.
For both 3a and 3b, the assembled contigs are shown
mapped to the reference sequence. Contig boundaries
are shown by vertical red bars. Different colored blocks
represent regions where contigs are in the correct order.
Breaks in the correct order of the contigs with respect

to the reference genome are shown by the boundaries
between colored block, and by the crossing colored
lines. While there are several cases of contigs not being
in the correct order (shown by the colored lines cross-
ing), manual inspection of the breaks show that these
occur in repetitive regions and do not represent true
errors, only differences between alignment algorithms of
SNAPPER and MAUVE. We were not able to detect
any gross mis-assemblies from the alignments.
Evaluation of Sanger Reads from S. aureus
To determine if classification of overlaps could be applied
to other types of data sets, we next analyzed Sanger reads
from Staphylococcus aureus. Reads from strain JH9 were
used as a training set and reads from strain JH1 were used
in the test set. Both sets of reads represented an approxi-
mately 9× coverage of their respective genomes. The
assembly of JH1 using uncorrected overlaps produced
contigs with an N50 score of 37,070 that matched 96.23%
of the reference genome (Figure 4). Using non-compara-
tive features produced little improvement (39,777 N50
score and 96.25% coverage of the reference genome). With
comparative feature using all S. aureus strains except JH1
and JH9, the assembly was improved (63,138 N50 score
and 96.51% coverage), while including non-comparative
features reduced the assembly quality slightly (62,953 N50
score and 96.45% coverage). However when only strains
with less than 94% identity to JH1 and JH9 were used
for the comparative score, the results of using both non-
comparative and comparative features were better than
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Figure 2 Assembly of E. coli strain MG1655. Statistics from overlaps derived from S. typhi training reads were used to train a J48 Weka model.
Overlaps from the MG1655 test data were classified based on this model and any overlaps predicted to be false were removed. The remaining
overlaps were used in the assembly of MG1655. The N50 contig length of the final assembly as well as the percentage of the reference MG1655
genome matched by the contigs are plotted. Within parenthesis, the percent cutoff for strains to be analyzed with the comparative score is
shown. For the ‘One related genome’ and ‘Two related genomes’ data, only one (ATCC8739 for the test set) and two (ATCC8739 and E24377A
for the test set) related genomes, respectively, for the training and test sets were used.
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comparative features alone (51,723 N50 and 96.4% cover-
age for comparative features alone vs 56,014 N50 score
and 96.45% coverage for both comparative and non-com-
parative features). The a plot of the N statistic for range of
N is shown in Additional File 1, Figure S3.

Conclusions
By providing a more accurate approximation of the true
overlap structure of the input reads, overlap classification
can simplify the task of contig construction and thereby
create superior assemblies. In particular, the addition of
information from related genomes strengthens the quality
of the assembly, without sacrificing the flexibility of the de
novo framework for a purely comparative assembly pro-
cess with a single reference genome such as provided by
AMOScmp [14]. Use of related genomes can potentially

be generalized to other aspects of de novo assembly,
including the de Bruijn approach where this information
can be used to resolve pairs of branches. From the results
shown here, if highly similar genomes are available, a
purely comparative approach will likely yield better results.
However, if these sequences are not available, using a
machine learning approach using non-comparative and
comparative features from more distantly related reference
genomes can improve sequence assembly.
The overlap classification implementation described

here was tested in a rather simple genome assembler, and
may produce a smaller percentage improvement of the
N50 length if placed in more sophisticated assemblers. On
the other hand, the bacterial genomes utilized as test cases
are not particularly repetitive; it is hypothesized that the
results could be even stronger in repeat-rich genomes.

Figure 3 Visualizing alignments of contigs. Contigs of assembled E. coli MG1655 reads from the uncorrected (top) and J48 corrected (bottom)
overlaps were mapped to the MG1655 genome using SNAPPER and ordered in respect to their position. MAUVE was used to visualize
alignments of assembled contigs to the reference genome. Each segment represents a matching alignment between the contigs and reference
genome. There may be more than one segment per contig. Red vertical lines represent contig boundaries. Colored blocks represent regions
where contigs are in the correct order. Colored lines connect corresponding blocks between the reference genome and the assembled contigs.
White spaces within the blocks within the reference genome indicate regions not represented within a contig.
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In our experiments, the size of the training set did not
have an impact on the results (assuming basic suffi-
ciency) (data not shown), allowing the use of smaller
training sets than test sets. Once trained, the decision
tree can be quickly applied to new overlaps, and thus
the computational time taken by the overlap correction
module was in line with other modules in the assembly
process. The alignment statistics should be computed
during the overlap process to maximize efficiency and
the reads must be searched for high-quality hits to refer-
ence genome(s), but neither of these presents an exces-
sive computational burden compared to other phases of
genome assembly. It should therefore be possible to
apply overlap correction to larger genomes.

Methods
The importance of an accurate set of overlapping reads
for the quality of subsequent sequence assembly meth-
ods has been examined by Roberts et al. [11,12] by
showing a significant improvement of both error rate
and coverage. In this paper we propose a supervised
classification framework to discriminate between true
and false overlaps, using machine learning techniques.
In what follows, we will define our approaches and
describe the employed features.
A summary of our complete overlap correction pipe-

line is shown in Additional File 1, Figure S5.
DNA Sequences
Sequencing reads (GS FLX) from Escherichia coli strain
K12 substrain MG1655 were downloaded from the
NCBI short read archive (SRA000156) [20], while

sequencing reads for Salmonella typhi strain E98319
were retrieved from the European Read Archive
(ERA000001) [21,22]. Sequencing reads from Staphylo-
coccus aureus strains JH1 and JH9 were downloaded
from the NCBI trace archive. The S. aureus reads were
sequenced by standard Sanger sequencing, while the
E. coli and S. typhi reads were sequenced with the
Roche/454 GS FLX sequencer. Reference genome
sequences for all available E. coli, S. typhi, and S. aureus
genomes were obtained from NCBI Genbank (See Addi-
tional File 1, Tables S1, S2 and S3 for lists of all
sequences used and their accession numbers). Paired
end data for the sequencing reads was not used.
Sequencing reads were quality trimmed and vector
trimmed using the CABOG Gatekeeper program [4].
Reads were mapped to their corresponding reference
genome using SNAPPER [19], and the coordinates were
used to calculate the ground truth in terms of whether
the overlaps generated by the hash overlapper were true
or false overlaps. The reads were converted to the
AMOS bank format for assembly.
Generating Overlap Features
The AMOS hash-overlap program with a minimum
overlap length of 30 bases and a maximum read dis-
agreement rate of 6% was used to calculate overlap can-
didates. A number of statistics were then calculated
from the alignment of each overlap. Basic overlap statis-
tics included the percent identity of the overlap, defined
as the number of matches over the length of the overlap
region; the length of the overlap; the number of mis-
matches; and the number of gaps of any length. An
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Figure 4 Assembly of S. aureus strain JH1. Statistics from overlaps derived from the JH9 training reads were used to train a J48 Weka model.
Overlaps from the JH1 test data were classified based on this model and any overlaps predicted to be false were removed. The remaining
overlaps were used in assembly of JH1. The N50 contig length of the final assembly as well as the percentage of the reference JH1 genome
matched by the contigs are plotted. Within parenthesis, the percent cutoff for strains to be analyzed with the comparative score is shown.
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additional set of k-mer statistics were calculated by first
counting the frequency of all k-mers in the input set of
reads (k = 17 for E. coli and 16 for S. aureus in our
tests). These included the first, second and third quartile
frequencies of each k-mer from each read within the
overlap region, relative to the expected sequence cover-
age; the percentage of k-mers above the threshold
(1.5*mean frequency), which we call overrepresented k-
mers, relative to the total number of k-mers in the over-
lap region; and the number of k-mers with a frequency
of exactly 1 (these are more likely to be sequencing
errors than true disagreements in the reads). For the
results shown in this study, only the number of mis-
matches/overlap length and the quartile k-mer frequen-
cies were used for non-comparative features.
For each overlap, a comparative genomics score was

also generated. Reads were mapped using SNAPPER to
strains similar to the genome being trained or tested
(See Additional File 1, Tables S1, S2, and S3). For the
Salmonella typhi training set, all strains with the excep-
tion of the reference genome Ty2 were used. For all
other sets, strains with less than the percentage specified
in the results were used for training or testing. When
executing SNAPPER, the mersize parameter was set to
16, minmatchidentity was set to 80, and minmatch-
coverage was set to 80. For each genome to be com-
pared, each pair of overlapping reads were mapped to
the genome sequence. All possible combinations of loca-
tions were compared, and the maximum overlapping
and maximum non-overlapping scores were calculated.
For example, if Reads A and B overlapped and each
mapped twice to a reference genome at positions X and
Y, there would be two overlapping combinations (A at
X, B at X and A at Y, B at Y) and two non-overlapping
combinations (A at X, B at Y and A at Y, B at X). For
each combination of reads, the total number of bases
matching each of the reference genomes represented the
score. For the entire set of genomes that the overlapping
reads were mapped to, the top overlapping and top non-
overlapping scores were determined. The final compara-
tive score was calculated as log2(|max sovl - max snon-ovl
+ 1|), if max sovl > max snon-ovl and log2(max snon-ovl -
max s-ovl + 1) otherwise where max sovl denotes the top
overlapping score and max snon-ovl the top non-overlap-
ping score respectively. The final score was 0 if the top
overlapping score was equal to the top non-overlapping
score. The score was undefined if one or both of the
reads did not map.
Overlap Classification
Let P = {p1, p2, ..., pN} be a set of read pairs, where N
denotes the number of read pairs and each read pair pi
is represented by a feature vector xi. A training set S is
defined as S = {(x1, y1), (x2, y2), ..., (xN, yN)} where yi is a
binary value representing the true label of the ith read

pair. In the learning procedure a classification function
C: x ® y(x) maps the input feature vector x to the out-
put feature vector y(x). Instead of formulating a suitable
mathematical function C explicitly as in the UMD Over-
lapper [11,12], we used a machine learning approach to
learn this function based on existing data. We attempted
to use four different machine learning algorithms within
the Weka framework (a Java-based machine learning
library) [23]. These classifiers included support vector
machines, J48, Random Forest and NaïveBayes. A classi-
fier based on support vector machines failed due to
memory issues with the large number of features. Two
types of classifiers based on decision trees (DT) were
used. These were the J48 implementation of C4.5 [24]
and the Random Forest classifier, which uses multiple
DT. A DT is best described by an acyclic graph in
which the interior nodes specify testing of a single attri-
bute of a feature vector and the nodes indicate the class
of the decision. The tree structure is learned by recur-
sively splitting the sample set, with each subset giving
rise to one new vertex connected with an edge to its
parent. This procedure continues until all samples at
each leaf belong to the same class. The working flow of
DT is similar to a logical tree structure that starts from
the topmost node, and every decision of the node deter-
mines the direction of next node movement until the
end of the tree branch node is reached. The last classi-
fier used was the NaïveBayes (NB) classifier. The NB
classifier uses a probabilistic model for classification.
The classifier assumes that all features for classification
are independent. The NB classifier was used with default
values, which assumes a normal distribution of values,
and with the -K value which uses a kernel density esti-
mator and does not assume a normal distribution.
For training and testing the classifiers, the overlap sta-

tistics for each training set were calculated and the data-
set generated was utilized to train classifiers.
Subsequently for each test set, the overlapping reads
and their statistics were generated as described above.
The trained model was then plugged into the Minimus
pipeline and used to classify each overlap as true or
false. Overlaps predicted to be false were removed from
the AMOS bank and excluded from the subsequent
assembly process.
Performance Evaluation
The performance of the overlap correction approach
was evaluated two-fold. First, it was assessed based on
its predictive performance in terms of true positives (the
number of overlapping read-pairs classified as overlaps),
false positives (the number of non-overlapping read-
pairs classified as overlaps) and false negatives (the
number of overlapping read-pairs classified as non-over-
lapping). Secondly, performance was assessed based on
the N50 length (the shortest contig size where all contig
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sizes greater than or equal to this length sum up to 50%
of the reference genome length) from the final assembly
and the percentage of matched sequence relative to the
reference. The DNADIFF [17] program was used to
determine the percentage of the published genome that
is covered by the assembly and the number of mis-
assemblies. For visualization of the assemblies, contigs
were mapped to the reference genome using SNAPPER
and ordered according to position. Contigs were conca-
tenated with 10 ‘N’s added between each. The combined
sequence was written to a FASTA formatted file.
MAUVE [18] was used to align the resulting sequence
to the reference genome.

Additional file 1: Supplementary Information. This file contains
supplementary figures, list of strains, and confusion matrices for testing
machine learning algorithms.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
33-S1.PDF ]
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