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Abstract
In this paper, we propose a set of unbounded conditions, under which we are able to
solve nonlinear programming problems in a class of unbounded non-convex sets via
the combined homotopy interior point algorithm. We also obtain the global
convergence of the combined homotopy interior point algorithm and analyze the
implementation of this algorithm in detail.
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1 Introduction
Consider the constrained minimization problem:

min
x∈Rn

f (x)

s.t. ui(x) ≤ , i = , . . . ,m, ()

vj(x) = , j = , . . . , l,

where f : Rn → R, ui : Rn → R, i = , . . . ,m and vj : Rn → R, j = , . . . , l are three times
continuously differentiable.
We call a point x∗ is a Karush-Kuhn-Tucker (K-K-T) point of () and y∗, z∗ are the cor-

responding Lagrangian multiplier vectors if (x∗, y∗, z∗) satisfies

∇f (x) +∇u(x)y +∇v(x)z = ,

v(x) = ,

Yu(x) = , u(x) ≤ , y≥ ,

()

where y ∈ Rm, z ∈ Rl , ∇f (x) = (∂f (x)/∂x)T ∈ Rn, ∇u(x) = (∇u(x), . . . ,∇um(x)) ∈ Rn×m,
∇v(x) = (∇v(x), . . . ,∇vl(x)) ∈ Rn×l , u(x) = (u(x), . . . ,um(x))T ∈ Rm, v(x) = (v(x), . . . ,
vl(x))T ∈ Rl and Y = diag(y) ∈ Rm×m.
Since Kellogg et al. (see []) and Smale (see []) proposed the notable homotopymethod,

this method has become a powerful tool in dealing with various nonlinear problems, for

©2014 Su et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194662565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2014/1/281
mailto:mlsulynu@163.com
http://creativecommons.org/licenses/by/2.0


Su et al. Journal of Inequalities and Applications 2014, 2014:281 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/281

example, zeros or fixed points of maps (see [–], etc. and the references therein). How-
ever, the homotopy method has seldom been touched upon in constrained optimization
until , Megiddo (see []) and Kojima et al. (see []) discovered the Karmarkar interior
point method for linear programming was a kind of path-following method. From then
on, the central path-following methods for mathematical programming have become an
active research subject. Furthermore, it was extended to convex nonlinear programming
problems recently (see [–], etc.). But all their convergence results were obtained under
the assumptions that the logarithmic barrier function is strictly convex and the solution
set is nonempty and bounded.
Recently, a combined homotopy interior point method (denoted as CHIP method for

convenience) for nonlinear programming problems was presented in [, ] (detailed ab-
stract of them was announced in []). In [], compared with the central path-following
methods, the authors removed the convexity of the logarithmic barrier function and the
boundedness and nonemptiness of the solution set. This shows that the CHIP method
can solve the problems that interior path-following methods cannot solve. In [], by tak-
ing a piecewise technique, under the commonly used conditions, the polynomiality of the
CHIP method was given, which shows that the efficiency of the CHIP method is also very
well. In [], we introduced C functions αi(x) ∈ Rn, i = , . . . ,m and βj(x) ∈ Rn, j = , . . . , l
to extend the results in [, ] tomore general non-convex sets. However, there are no re-
sults reported in the literature about the work in [] extended to unbounded non-convex
sets. In this paper, we attempt to complete this work. To this end, by using some inequal-
ity techniques and the ideas of infinite solutions which were introduced in [, ], we
develop a set of new unboundedness conditions. Under these conditions, we obtain the
global convergence results of the CHIP method and therefore extend the work in [] to
unbounded non-convex sets.

2 Main results
In this section, the nonnegative and positive orthants of Rm are denoted as Rm

+ and Rm
++,

respectively. We also denote by B(x) = {i ∈ {, . . . ,m} : ui(x) = } the active set at x. In ad-
dition, let X = {x ∈ Rn : ui(x) ≤ , i = , . . . ,m, vj(x) = , j = , . . . , l} be the feasible set, let
X = {x ∈ Rn : ui(x) < , i = , . . . ,m, vj(x) = , j = , . . . , l} be the strictly feasible set and let
∂X = X\X be the boundary set of X.
In [], to solve (), the following homotopy was constructed:

H
(
w,w(),λ

)

=

⎛
⎜⎝
( – λ)[∇f (x) +∇u(x)y + λξ (x)y] + [∇v(x) + λ(η(x) –∇v(x))]z + λ(x – x())

v(x)
Yu(x) – λY ()u(x())

⎞
⎟⎠

= , ()

where w = (x, y, z) ∈ Rn+m+l , w() = (x(), y(), ) ∈ X × Rm
++ × Rl , and Y () = diag(y()) ∈

Rm×m.
In this section, we utilize the concept of infinite solutions [, ] and hence give a new

set of unboundedness conditions. The nonlinear programming problem is said to have a
solution at infinite, if there exists a sequence {x(k)} satisfying {x(k)} ⊂ X, ‖x(k)‖ → ∞ as
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k → ∞, and for any given ζ ∈ X, there exist y(k) ∈ Rm
+ and z(k) ∈ Rl such that

lim
k→∞

(
ζ – x(k)

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

) ≥ .

Then we assume that there exist smooth mappings ξi(x) ∈ R, i = , . . . ,m and ηj(x) ∈ R,
j = , . . . , l such that:

(A) X is nonempty; nonlinear programming problems have no infinite solutions.
(A) ∀x ∈ X , if

∑
i∈B(x)

(
yi∇gi(x) + αiξi(x)

)
+∇v(x)z + η(x)β = , yi ≥ ,αi ≥ , z ∈ Rl,β ∈ Rl,

then yi = , αi =  and z = β = , ∀i ∈ B(x).
(A) ∀x ∈ X , we have

{
x +

∑
i∈B(x)

yiξi(x) + zη(x) : yi ≥ , i ∈ B(x), z ∈ Rl
}

∩X = {x},

where η(x) = (η(x), . . . ,ηl(x)).
(A) ∀x ∈ X , ∇v(x) is of full of column rank and ∇v(x)Tη(x) is nonsingular.

However, only applying the infinite solution technique to the items ∇f (x), ∇u(x), and
∇v(x), we cannot extend the results in [] to unbounded cases because of the existence
of the items ξ (x) and η(x). So for the items ξ (x) and η(x), we need to use other techniques.
In this paper, we still need the following assumption:

(A) ∀ζ ∈ X ,

ui(ζ )T –ui(x)T ≥ (ζ – x)Tξi(x)yi, i = , . . . ,m, v(ζ )T – v(x)T ≥ (ζ – x)Tη(x).

For a given w(), rewrite H(w,w(),λ) as Hw() (w,λ). The zero-point set of Hw() is

H–
w() () =

{
(w,λ) ∈ X × Rm

+ × Rl × (, ] :Hw() (w,λ) = 
}
.

The inverse image theorem tells us that, if  is a regular value of the map Hw() , then
H–

w() () consists of some smooth curves. The regularity of Hw() can be obtained by the
following lemma.

Lemma . (Parameterized Sard theorem) Let V ⊂ Rn, U ⊂ Rm be open sets, and 	 : V ×
U → R(k) a Cr map, where r > max{,m – k}. If  ∈ R(k) is a regular value of 	, then for
almost all a ∈ V ,  is a regular value of 	a ≡ 	(a, ·).

Lemma . Let H be defined as in (). In addition, let assumptions (A)-(A) hold, let
ui(x), i = , . . . ,m and vj(x), j = , . . . , l be C functions, and let ξi(x), i = , . . . ,m and ηj(x),
j = , . . . , l be C functions. Then, for almost all w() ∈ X × Rm

++ × Rl ,  is a regular value
of Hw() , and H–

w() () consists of some smooth curves, among which there exists a smooth
curve 
w() that starts from (w(), ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/281
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Lemma . Let H be defined as in (). In addition, let assumptions (A)-(A) hold, let
ui(x), i = , . . . ,m and vj(x), j = , . . . , l be C functions, and let ξi(x), i = , . . . ,m and ηj(x),
j = , . . . , l be C functions. Then, for almost all w() ∈ X × Rm

++ × Rl , the projection of the
smooth curve 
w() onto the x-plane is bounded.

Proof If not, then there exists a sequence of points {(x(k), y(k), z(k),λk)}∞k= such that ‖x(k)‖ →
∞ as k → ∞.
It is easy to show that the following inequality holds:

‖x – ζ‖ – ∥∥x() – ζ
∥∥ ≤ (x – ζ )T

(
x – x()

)
. ()

By the homotopy equation (), we have

H
(
w(k),w(),λk

)

=

⎛
⎜⎜⎜⎝
( – λk)[∇f (x(k)) +∇u(x(k))y(k) + λkξ (x(k))(y(k))] + λk(x(k) – x())

+ [∇v(x(k)) + λk(η(x(k)) –∇v(x(k)))]z(k)

v(x(k))
Y (k)u(x(k)) – λkY ()u(x())

⎞
⎟⎟⎟⎠

= . ()

Multiplying the first equation in () by (x(k) – ζ )T , we get

( – λk)
(
x(k) – ζ

)T∇f
(
x(k)

)
+ ( – λk)

(
x(k) – ζ

)T∇u
(
x(k)

)
y(k)

+ ( – λk)λk
(
x(k) – ζ

)T
ξ
(
x(k)

)(
y(k)

) + (
x(k) – ζ

)T∇v
(
x(k)

)
z(k)

+
(
x(k) – ζ

)T
λk

(
η
(
x(k)

)
–∇v

(
x(k)

))
z(k) + λk

(
x(k) – ζ

)T(
x(k) – x()

)
= , ()

i.e.,

λk
(
x(k) – ζ

)T(
x(k) – x()

)
= –( – λk)

(
x(k) – ζ

)T∇f
(
x(k)

)
– ( – λk)

(
x(k) – ζ

)T∇u
(
x(k)

)
y(k)

– ( – λk)λk
(
x(k) – ζ

)T
ξ
(
x(k)

)(
y(k)

)
–

(
x(k) – ζ

)T[∇v
(
x(k)

)
+ λk

(
η
(
x(k)

)
–∇v

(
x(k)

))]
z(k)

= –( – λk)
(
x(k) – ζ

)T∇f
(
x(k)

)
– ( – λk)

(
x(k) – ζ

)T∇u
(
x(k)

)
y(k)

– ( – λk)λk
(
x(k) – ζ

)T
ξ
(
x(k)

)(
y(k)

) – ( – λk)
(
x(k) – ζ

)T∇v
(
x(k)

)
z(k)

– λk
(
x(k) – ζ

)T
η
(
x(k)

)
z(k). ()

So

λk
(∥∥x(k) – ζ

∥∥ –
∥∥x() – ζ

∥∥)
≤ λk

(
x(k) – ζ

)T(
x(k) – x()

)
= –( – λk)

(
x(k) – ζ

)T∇f
(
x(k)

)
– ( – λk)

(
x(k) – ζ

)T∇u
(
x(k)

)
y(k)

http://www.journalofinequalitiesandapplications.com/content/2014/1/281
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– ( – λk)λk
(
x(k) – ζ

)T
ξ
(
x(k)

)(
y(k)

) – ( – λk)
(
x(k) – ζ

)T∇v
(
x(k)

)
z(k)

– λk
(
x(k) – ζ

)T
η
(
x(k)

)
z(k)

= –( – λk)
(
x(k) – ζ

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
+ ( – λk)λk

(
ζ – x(k)

)T
ξ
(
x(k)

)(
y(k)

) + λk
(
ζ – x(k)

)T
η
(
x(k)

)
z(k)

≤ –( – λk)
(
x(k) – ζ

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
+ ( – λk)λk

(
u(ζ )Ty(k) – u

(
x(k)

)Ty(k)) + λk
(
v(ζ )Tz(k) – v

(
x(k)

)Tz(k)). ()

Since u(ζ )T ≤  and y(k) ≥ , then u(ζ )Ty(k) ≤ . Besides, by the third equation in (), we
have u(x(k))Ty(k) = λku(x())Ty(), thus the following inequality holds:

λk
(∥∥x(k) – ζ

∥∥ –
∥∥x() – ζ

∥∥)
≤ –( – λk)

(
x(k) – ζ

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
– ( – λk)λku

(
x(k)

)Ty(k)
= –( – λk)

(
x(k) – ζ

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
– ( – λk)λ

ku
(
x()

)Ty(). ()

Then by (), we have

(
ζ – x(k)

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
≥ λk

( – λk)
(∥∥x(k) – ζ

∥∥ –
∥∥x() – ζ

∥∥) + λ
ku

(
x()

)Ty(). ()

When ‖x(k)‖ → ∞, by (), we have

lim
k→∞

(
ζ – x(k)

)T(∇f
(
x(k)

)
+∇u

(
x(k)

)
y(k) +∇v

(
x(k)

)
z(k)

)
≥ lim

k→∞
λk

( – λk)
(∥∥x(k) – ζ

∥∥ –
∥∥x() – ζ

∥∥) + λ
ku

(
x()

)Ty() ≥ , ()

which contradicts assumption (A). �

Theorem . Let H be defined as in (), let f (x), ui(x), i = , . . . ,m and vj(x), j = , . . . , l be
three times continuously differentiable functions, let assumptions (A)-(A) hold, and let
ξi(x), i = , . . . ,m and ηj(x), j = , . . . , l be twice times continuously differentiable functions.
Then for almost all w() ∈ X × Rm

++ × Rl , there exists a C curve (w(s),λ(s)) of dimension 
such that

H
(
w(s),w(),λ(s)

)
= ,

(
w(),λ()

)
=

(
w(), 

)
. ()

When λ(s)→ , w(s) tends to a point w∗ = (x∗, y∗, z∗). In particular, the component x∗ of w∗

is a K-K-T point of problem ().

http://www.journalofinequalitiesandapplications.com/content/2014/1/281
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Proof By Lemma ., there must be a C curve (w(s),λ(s)) of dimension  (denoted by

w() ) such that

H
(
w(s),w(),λ(s)

)
= ,

(
w(),λ()

)
=

(
w(), 

)
.

By the classification theorem of one-dimensional smooth manifolds, 
w() is diffeo-
morphic either to a unit circle or to a unit interval. For any w() ∈ X × Rm

++ × Rl ,
∂Hw() (w(), )/∂w is nonsingular, so 
w() cannot be diffeomorphic to a unit circle. That
is, 
w() is diffeomorphic to a unit interval.
Let (w∗,λ∗) be a limit point of 
w() . If (w∗,λ∗) ∈ X × Rm

++ × Rl × (, ), because  is a
regular value of Hw() , (w∗,λ∗) ∈H–

w() (), and the Jacobian matrix of H at (w∗,λ∗) is of full
row rank, then by the implicit function theorem, 
w() can be extended at (w∗,λ∗). This
result contradicts the fact that (w∗,λ∗) is a limit point of 
w() .
Let (w∗,λ∗) = (x∗, y∗, z∗,λ∗). Thus, (w∗,λ∗) ∈ ∂(X × Rm

+ × Rl × (, ]) and the following
three cases are possible:
(a) (w∗,λ∗) = (x∗, y∗, z∗,λ∗) ∈ X × Rm

+ × Rl × {}.
(b) (w∗,λ∗) = (x∗, y∗, z∗,λ∗) ∈ X × Rm

++ × Rl × {}.
(c) (w∗,λ∗) = (x∗, y∗, z∗,λ∗) ∈ ∂(X × Rm

+ × Rl)× (, ].
Since the equationH(w,w(), ) =  has a unique solution (w(), ) in X ×Rm

++ ×Rl ×{},
case (b) is impossible.
By the homotopy equation (), we have

( – λk)
[∇f

(
x(k)

)
+∇u

(
x(k)

)
y(k) + λkξ

(
x(k)

)(
y(k)

)] + λk
(
x(k) – x()

)
+

[∇v
(
x(k)

)
+ λk

(
η
(
x(k)

)
–∇v

(
x(k)

))]
z(k) = , ()

v
(
x(k)

)
= , ()

Y (k)u
(
x(k)

)
– λkY ()u

(
x()

)
= . ()

Let

I(x) =
{
i = , . . . ,m : lim

k→∞
y(k)i = +∞

}
, J(x) =

{
j = , . . . , l : lim

k→∞
z(k)j = +∞

}
.

If J(x) �= ∅, then

( – λk)
[
∇f

(
x(k)

)
+

∑
i /∈I(x)

(∇ui
(
x(k)

)
y(k)i + λkξi

(
x(k)

)(
y(k)i

))]

+ λk
(
x(k) – x()

)
+

[(∇v
(
x(k)

)
+ λk

(
η
(
x(k)

)
–∇v

(
x(k)

)))
z(k)

+ ( – λk)
∑
i∈I(x)

(∇ui
(
x(k)

)
y(k)i + λkξi

(
x(k)

)(
y(k)i

))] = . ()

Because X and (, ] are bounded, by assumption (A), the third part on the left-hand
side of () tends to infinity as k → ∞, but the other two parts are bounded, this is impos-
sible. Hence we conclude that the projection of the smooth curve 
w() onto the z-plane is
also bounded.

http://www.journalofinequalitiesandapplications.com/content/2014/1/281
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In case (c), first, we prove that y∗ /∈ ∂Rm
+ . If y∗ ∈ ∂Rm

+ , then there exist i ∈ {, . . . ,m} and
a sequence of points {(w(k),λk)} ⊂ 
w() such that y(k)i → y∗

i =  as k → +∞. From (), we
have

y(k)i ui
(
x(k)

)
= λky()i ui

(
x()

)
. ()

Because X and (, ] are bounded, when k → +∞, the left-hand side of () tends to .
At the same time, the right-hand side of () tends to λ∗y()i ui (x

()), which is strictly less
than . This fact results in a contradiction.
Thenwe only need to prove that the remainder of case (c) is impossible. If not, then there

exists a sequence of points {(w(k),λk)} ⊂ 
w() such that ui(x(k)) →  for some i ∈ {, . . . ,m}
as k → +∞. From (), we obtain ‖y(k)‖ → +∞. Because X and (, ] are bounded, there
exists a subsequence of points (denoted also by {(w(k),λk)}) such that x(k) → x∗, ‖y(k)‖ →
+∞, z(k) → z∗, and λk → λ∗ as k → +∞.
When λ∗ > , from (), the active index set is B(x∗) = I(x∗). When λ∗ = , the index set

I(x∗) ⊂ B(x∗).
() When λ∗ = , from (), by the fact that y(k)i is bounded for each i /∈ I(x∗), assump-

tions (A)-(A), we conclude that limk→+∞( – λk)y(k)i =  and limk→+∞( – λk)(y(k)i ) = y∗
i .

Therefore, when k → +∞, () becomes

η
(
x∗)z∗ +

∑
i∈I(x∗)

ξi
(
x(k)

)
y∗
i + x∗ = x(), ()

which contradicts assumption (A).
() When  < λ∗ < , rewrite () as

∑
i∈I(x)

(∇ui
(
x(k)

)
y(k)i + λkξi

(
x(k)

)(
y(k)i

)) + λk

 – λk

(
x(k) – x()

)

= –∇f
(
x(k)

)
–

∑
i /∈I(x)

(∇ui
(
x(k)

)
y(k)i + λkξi

(
x(k)

)(
y(k)i

))

–


 – λk

(∇v
(
x(k)

)
+ λk

(
η
(
x(k)

)
–∇v

(
x(k)

)))
z(k). ()

Let y(k)I be a vector with components (y(k)i ), i ∈ I(x∗). Then set

ρ
(k)
i =

(y(k)i )

‖y(k)I ‖ , i ∈ I
(
x∗). ()

Note that  ≤ ρ
(k)
i ≤ ; then there exists a subsequence of {ρ(k)

i }, still denoted by {ρ(k)
i }, such

that ρ(k)
i → ρ∗

i for each i ∈ I(x∗) as k → +∞. Furthermore, the vector with components ρ∗
i ,

i ∈ I(x∗) is denoted by ρ∗; thus, ‖ρ∗‖ = . Dividing both sides of () by ‖y(k)I ‖ and letting
k → +∞, we have

∑
i∈I(x∗)

λ∗
i ρ

∗
i ξi

(
x∗) = ,

which contradicts assumption (A).
()When λ∗ = , because the nonempty index set I(x∗) ⊂ B(x∗), the proof of () is similar

to that of ().

http://www.journalofinequalitiesandapplications.com/content/2014/1/281
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From the discussion above, we conclude that (a) is the only possible case. Hence, the
x-component of w∗ is a K-K-T point of (). �

3 Algorithmic analysis
For almost all w() = (x(), y(), ) ∈ X × Rm

++ × Rl , by Theorem ., the homotopy gener-
ates a C curve 
w() , by differentiating the first equation in (), we obtain the following
theorem.

Theorem. The homotopy path
w() is determined by the following initial value problem
to the ordinary differential equation:

DHw()
(
w(s),λ(s)

)(
ẇ(s)
λ̇(s)

)
= ,

(
w(),λ()

)
=

(
w(), 

)
, ()

where s is the arc length of the curve 
w() .

As for how to trace numerically the homotopy path, there have been many predictor-
corrector algorithms, see [], etc. for reference. Hence we omit them in this paper. In the
implementation of the algorithm, generally we need to be devoted to finding the positive
direction of the tangent vector at a point on 
w() which keeps the sign of the determinant∣∣DHw() (w,λ)

pT
∣∣ invariant. On the first iteration, the sign is determined by the following lemma.

Lemma . If 
w() is smooth, then the positive direction p() at the initial point (w(), )

satisfies sign
∣∣DHw() (w

(),)

p()T
∣∣ = (–)m+l+.

Proof Let

a = –∇f
(
x()

)
–∇u

(
x()

)
+ ( – λ)ξ

(
x()

)(
y()

), b = –Y ()g
(
x()

)
,

then

∂Hw() (w(), )
∂(w,λ)

=

⎛
⎜⎝

I  η(x()) a
∇v(x())T   

Y ()∇u(x())T diag(u(x()))  b

⎞
⎟⎠ = (M,M),

where M ∈ R(n+m+l)×(n+m+l), M ∈ R(n+m+l)×. The tangent vector p() of 
w() at (w(), )
satisfies

(M,M)p() = (M,M)

(
p()

p()

)
= , ()

where p() ∈ Rn+m+l , p() ∈ R.
It is easy to get p() = –M–

 Mp() , then

∣∣∣∣∣DHw() (w(), )
p()T

∣∣∣∣∣ =
∣∣∣∣∣ M M

p()
T

p()
T

∣∣∣∣∣ =
∣∣∣∣∣ M M

–MT
 M–T

 

∣∣∣∣∣p()

= |M|p()
(
 +MT

 M
–T
 M–

 M
)
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=

∣∣∣∣∣∣∣
I  η(x())

∇v(x())T  
Y ()∇u(x())T diag(u(x())) 

∣∣∣∣∣∣∣p
()


(
 +MT

 M
–T
 M–

 M
)

=
∣∣diag(u(

x()
))∣∣

∣∣∣∣∣ I η(x())
∇v(x())T 

∣∣∣∣∣p()
(
 +MT

 M
–T
 M–

 M
)

= (–)l
∣∣diag(u(

x()
))∣∣∣∣∇v

(
x()

)T
η
(
x()

)∣∣p()
(
 +MT

 M
–T
 M–

 M
)
.

Since u(x()) < , ( +MT
 M–T

 M–
 M) > , and p() < , so the sign of

∣∣∣∣∣DHw() (w(), )
p()T

∣∣∣∣∣
is (–)m+l+. �

The following pseudocode describes the basic steps of a generic predictor-corrector
method.

Algorithm . (Euler-Newton method)
Step . Provide an initial guess (w(), ), an initial step length h > , and three small

positive numbers ε > , ε > , and ε > . Set k = .
Step . Compute the direction θ (k) of the predictor step.
(a) Compute a unit tangent vector p(k).
(b) Determine the direction θ (k) of the predictor step as follows:

If the sign of the determinant
∣∣DHw() (w

(k),λk )

p(k)T
∣∣ is (–)m+l+, then θ (k) = p(k).

If the sign of the determinant
∣∣DHw() (w

(k),λk )

p(k)T
∣∣ is (–)m+l , then θ (k) = –p(k).

Step . Compute a corrector point (w(k+),λk+).

(
w̄(k), λ̄k

)
=

(
w(k),λk

)
+ hkθ (k),(

w(k+),λk+
)
=

(
w̄(k), λ̄k

)
–DHw()

(
w̄(k), λ̄k

)+Hw()
(
w̄(k), λ̄k

)
.

If ‖Hw() (w(k+),λk+)‖ ≤ ε, then let hk+ =min{h, hk}, and go to Step .
If ‖Hw() (w(k+),λk+)‖ ∈ (ε, ε), then let hk+ = hk , and go to Step .
If ‖Hw() (w(k+),λk+)‖ ≥ ε, then let hk+ =max{–h, (hk/)}, k = k+, and go to Step .
Step . If λk+ ≤ ε, then stop. Otherwise, k = k + , and go to Step .

4 Conclusions
In this paper, we present a set of unboundedness conditions, under which, we are able to
solve nonlinear programming problems on a class of unbounded non-convex sets via the
combined homotopy interior point algorithm. The main advantage of the algorithm pre-
sented in this paper is that it is a globally convergent algorithmwhose initial points can be
chosen more easily than the locally convergent algorithms. Since nonlinear programming
problems have wide applications in engineering, management, economics, and so on, our
results may be useful to propose a powerful solution tool for dealing with these nonlinear
problems. In future, we devote our efforts to proposing new techniques to solve nonlinear
programming problems in a broader class of unbounded non-convex sets.
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