provided by Crossref

Generalized difference sequence spaces associated with a multiplier sequence on a real n-normed space

Şükran Konca* and Metin Başarır

*Correspondence:
skonca@sakarya.edu.tr Department of Mathematics, Sakarya University, Sakarya, 54187, Turkey

Abstract

The purpose of this paper is to introduce new sequence spaces associated with a multiplier sequence by using an infinite matrix, an Orlicz function and a generalized B-difference operator on a real n-normed space. Some topological properties of these spaces are examined. We also define a new concept, which will be called $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical A-convergence, and establish some inclusion connections between the sequence space $W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)$ and the set of all $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistically A-convergent sequences. MSC: Primary 40A05; secondary 40B50; 46A19; 46A45

Keywords: statistical convergence; multiplier sequence; generalized difference operator; infinite matrix; n-norm

1 Introduction

Let w, l_{∞}, c and c_{0} be the linear spaces of all, bounded, convergent and null sequences $x=\left(x_{k}\right)$ for all $k \in \mathbb{N}$, respectively.

Let X and Y be two subsets of w. By (X, Y), we denote the class of all matrices of A such that $A_{m}(x)=\sum_{k=1}^{\infty} a_{m k} x_{k}$ converges for each $m \in \mathbb{N}$, the set of all natural numbers, and the sequence $A x=\left(A_{m}(x)\right)_{m=1}^{\infty} \in Y$ for all $x \in X$.

Let $A=\left(a_{m k}\right)$ be an infinite matrix of complex numbers. Then A is said to be regular if and only if it satisfies the following well-known Silverman-Toeplitz conditions:
(1) $\sup _{m} \sum_{k=1}^{\infty}\left|a_{m k}\right|<\infty$,
(2) $\lim _{m \rightarrow \infty} a_{m k}=0$ for each $k \in \mathbb{N}$,
(3) $\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}=1$.

The idea of statistical convergence was given by Zygmund [1] in 1935. The concept of statistical convergence was introduced by Fast [2] and Schoenberg [3] independently for the real sequences. Later on, it was further investigated from a sequence point of view and linked with the summability theory by Fridy [4] and many others. The natural density of a subset E of \mathbb{N} is denoted by

$$
\delta(E)=\lim _{m \rightarrow \infty} \frac{1}{m}|\{k \in E: k \leq m\}|,
$$

where the vertical bar denotes the cardinality of the enclosed set.

Spaces of strongly summable sequences were studied by Kuttner [5], Maddox [6] and others. The class of sequences that are strongly Cesaro summable with respect to a modulus was introduced by Maddox [7] as an extension of the definition of strongly Cesaro summable sequences. Connor [8] has further extended this definition to a definition of strong A-summability with respect to a modulus, where $A=\left(a_{m k}\right)$ is a non-negative regular matrix, and established some connections between strong A-summability with respect to a modulus and A-statistical convergence.

Assume now that A is a non-negative regular summability matrix. Then a sequence $x=$ $\left(x_{k}\right)$ is said to be A-statistically convergent to a number L if $\delta_{A}(K)=\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k} \times$ $\chi_{K}(k)=0$ or, equivalently, $\lim _{m \rightarrow \infty} \sum_{k \in K} a_{m k}=0$ for every $\varepsilon>0$, where $K=\left\{k \in \mathbb{N}: \mid x_{k}-\right.$ $L \mid \geq \varepsilon\}$ and $\chi_{K}(k)$ is the characteristic function of K. We denote this limit by $s t_{A}-\lim x=L$ [9] (see also [8, 10, 11]).
For $A=C_{1}$, the Cesaro matrix, A-statistical convergence reduces to statistical convergence (see $[2,4]$). Taking $A=I$, the identity matrix, A-statistical convergence coincides with ordinary convergence. We note that if $A=\left(a_{m k}\right)$ is a regular summability matrix for which $\lim _{m} \max _{k}\left|a_{m k}\right|=0$, then A-statistical convergence is stronger than usual convergence [10]. It should be also noted that the concept of A-statistical convergence may also be given in normed spaces [12].

The notion of difference sequence space was introduced by Kızmaz [13]. It was further generalized by Et and Çolak [14] as follows: $Z\left(\Delta^{\mu}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta^{\mu} x_{k}\right) \in Z\right\}$ for $Z=$ l_{∞}, c and c_{0}, where μ is a non-negative integer, $\Delta^{\mu} x_{k}=\Delta^{\mu-1} x_{k}-\Delta^{\mu-1} x_{k+1}, \Delta^{0} x_{k}=x_{k}$ for all $k \in \mathbb{N}$ or equivalent to the following binomial representation:

$$
\Delta^{\mu} x_{k}=\sum_{v=0}^{\mu}(-1)^{v}\binom{\mu}{v} x_{k+v} .
$$

These sequence spaces were generalized by Et and Başarır [15] taking $Z=l_{\infty}(p), c(p)$ and $c_{0}(p)$.
Dutta [16] introduced the following difference sequence spaces using a new difference operator: $Z\left(\Delta_{(\eta)}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta_{(\eta)} x \in Z\right\}$ for $Z=l_{\infty}, c$ and c_{0}, where $\Delta_{(\eta)} x=\left(\Delta_{(\eta)} x_{k}\right)=$ $\left(x_{k}-x_{k-\eta}\right)$ for all $k, \eta \in \mathbb{N}$.

In [17], Dutta introduced the sequence spaces $\bar{c}\left(\|\cdot, \cdot\|, \Delta_{(\eta)}^{\mu}, p\right), \overline{c_{0}}\left(\|\cdot, \cdot\|, \Delta_{(\eta)}^{\mu}, p\right), l_{\infty}(\|\cdot, \cdot\|$, $\left.\Delta_{(\eta)}^{\mu}, p\right), m\left(\|\cdot, \cdot\|, \Delta_{(\eta)}^{\mu}, p\right)$ and $m_{0}\left(\|\cdot, \cdot\|, \Delta_{(\eta)}^{n}, p\right)$, where $\eta, \mu \in \mathbb{N}$ and $\Delta_{(\eta)}^{\mu} x=\left(\Delta_{(\eta)}^{\mu} x_{k}\right)=$ $\left(\Delta_{(\eta)}^{\mu-1} x_{k}-\Delta_{(\eta)}^{\mu-1} x_{k-\eta}\right)$ and $\Delta_{(\eta)}^{0} x_{k}=x_{k}$ for all $k, \eta \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$
\Delta_{(\eta)^{\prime}}^{\mu} x_{k}=\sum_{v=0}^{\mu}(-1)^{v}\binom{\mu}{v} x_{k-\eta v} .
$$

The difference sequence spaces have been studied by several authors, [15-34]. Bașar and Altay [35] introduced the generalized difference matrix $B=\left(b_{m k}\right)$ for all $k, m \in \mathbb{N}$, which is a generalization of $\Delta_{(1)}$-difference operator, by

$$
b_{m k}= \begin{cases}r, & k=m \\ s, & k=m-1 \\ 0 & (k>m) \text { or }(0 \leq k<m-1)\end{cases}
$$

Bașarır and Kayıkçı [36] defined the matrix $B^{\mu}=\left(b_{m k}^{\mu}\right)$ which reduced the difference matrix $\Delta_{(1)}^{\mu}$ in case $r=1, s=-1$. The generalized B^{μ}-difference operator is equivalent to the following binomial representation:

$$
B^{\mu} x=B^{\mu}\left(x_{k}\right)=\sum_{v=0}^{\mu}\binom{\mu}{v} r^{\mu-v} s^{v} x_{k-v}
$$

Related articles can be found in [35-41].
The concept of 2-normed space was initially introduced by Gähler [42] in the mid of 1960 s, while that of n-normed spaces can be found in Misiak [43]. Since then, many others have used these concepts and obtained various results; see, for instance, Gunawan [44], Gunawan and Mashadi [45], Gunawan et al. [46] (see also [47-54]).

2 Definitions and preliminaries

Let n be a non-negative integer and let X be a real vector space of dimension $d \geq n \geq 2$. A real-valued function $\|\cdot, \ldots, \cdot\|$ on X^{n} satisfies the following conditions:
(1) $\left\|x_{1}, \ldots, x_{n}\right\|=0$ if and only if x_{1}, \ldots, x_{n} are linearly dependent,
(2) $\left\|x_{1}, \ldots, x_{n}\right\|$ is invariant under permutation,
(3) $\left\|\alpha x_{1}, \ldots, x_{n-1}, x_{n}\right\|=|\alpha|\left\|x_{1}, \ldots, x_{n-1}, x_{n}\right\|$ for any $\alpha \in \mathbb{R}$,
(4) $\left\|x_{1}, \ldots, x_{n-1}, y+z\right\| \leq\left\|x_{1}, \ldots, x_{n-1}, y\right\|+\left\|x_{1}, \ldots, x_{n-1}, z\right\|$.

Then it is called an n-norm on X and the pair $(X,\|\cdot, \ldots, \cdot\|)$ is called an n-normed space. A trivial example of an n-normed space is $X=\mathbb{R}^{n}$ equipped with the following Euclidean n norm: $\left\|x_{1}, \ldots, x_{n}\right\|_{E}=\left|\operatorname{det}\left(x_{i j}\right)\right|$, where $x_{i}=\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \in \mathbb{R}^{n}$ for each $i=1, \ldots, n$. The standard n-norm on X, where X is a real inner product space of dimension $d \geq n$, is defined as

$$
\left\|x_{1}, \ldots, x_{n}\right\|_{S}:=\left|\begin{array}{ccc}
\left\langle x_{1}, x_{1}\right\rangle & \cdots & \left\langle x_{1}, x_{n}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle x_{n}, x_{1}\right\rangle & \cdots & \left\langle x_{n}, x_{n}\right\rangle
\end{array}\right|^{\frac{1}{2}}
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product on X. If $X=\mathbb{R}^{n}$, then this n-norm is exactly the same as the Euclidean n-norm $\left\|x_{1}, \ldots, x_{n}\right\|_{E}$ as mentioned earlier. Notice that for $n=1$, the n-norm above is the usual norm $\left\|x_{1}\right\|_{S}=\left\langle x_{1}, x_{1}\right\rangle^{\frac{1}{2}}$ which gives the length of x_{1}, while for $n=2$, it defines the standard 2 -norm $\left\|x_{1}, x_{2}\right\|_{S}=\left(\left\|x_{1}\right\|_{S}^{2} \cdot\left\|x_{2}\right\|_{S}^{2}-\left\langle x_{1}, x_{1}\right\rangle^{2}\right)^{\frac{1}{2}}$ which represents the area of the parallelogram spanned by x_{1} and x_{2}. Further, if $X=\mathbb{R}^{3}$, then $\left\|x_{1}, x_{2}, x_{3}\right\|_{S}=\left\|x_{1}, x_{2}, x_{3}\right\|_{E}$ represents the volume of the parallelograms spanned by x_{1}, x_{2} and x_{3}. In general $\left\|x_{1}, \ldots, x_{n}\right\|_{S}$ represents the volume of the n-dimensional parallelepiped spanned by x_{1}, \ldots, x_{n} in X.

A sequence $\left(x_{k}\right)$ in an n-normed space $(X,\|\cdot, \ldots, \cdot\|)$ is said to converge to some $L \in$ X in the n-norm if for each $\varepsilon>0$ there exists a positive integer $n_{0}=n_{0}(\varepsilon)$ such that $\left\|x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|<\varepsilon$ for all $k \geq n_{0}$ and for every $z_{1}, \ldots, z_{n-1} \in X$ [45].
An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. It is well known that if M is a convex function, then $M(\alpha x) \leq \alpha M(x)$ with $0<\alpha<1$.

Let $\Lambda=\left(\Lambda_{k}\right)$ be a sequence of nonzero scalars. Then, for a sequence space E, the multiplier sequence space E_{Λ}, associated with the multiplier sequence Λ, is defined as

$$
E_{\Lambda}=\left\{x=\left(x_{k}\right) \in w:\left(\Lambda_{k} x_{k}\right) \in E\right\} .
$$

The following well-known inequality will be used throughout the paper. Let $p=\left(p_{k}\right)$ be any sequence of positive real numbers with $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H, D=$ $\max \left\{1,2^{H-1}\right\}$. Then we have, for all $a_{k}, b_{k} \in \mathbb{C}$ and for all $k \in \mathbb{N}$,

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right) \tag{2.1}
\end{equation*}
$$

and for $a \in \mathbb{C},|a|^{p_{k}} \leq \max \left\{|a|^{h},|a|^{H}\right\}$.
In this paper, we introduce some new sequence spaces on a real n-normed space by using an infinite matrix, an Orlicz function and a generalized B_{Λ}^{μ}-difference operator. Further, we examine some topological properties of these sequence spaces. We also introduce a new concept which will be called $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical A-convergence in an n-normed space.

3 Main results

In this section, we give some new sequence spaces on a real n-normed space and investigate some topological properties of these spaces. We also give some inclusion relations.
Let $A=\left(a_{m k}\right)$ be an infinite matrix of non-negative real numbers, let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers for all $k \in \mathbb{N}$, and let $\Lambda=\left(\Lambda_{k}\right)$ be a sequence of nonzero scalars. Further, let M be an Orlicz function and $(X,\|\cdot, \ldots, \cdot\|)$ be an n-normed space. We denote the space of all X-valued sequence spaces by $w(n-X)$ and $x=\left(x_{k}\right) \in w(n-X)$ by $x=\left(x_{k}\right)$ for brevity. We define the following sequence spaces for every nonzero $z_{1}, z_{2}, \ldots, z_{n-1} \in X$ and for some $\rho>0$:

$$
\begin{aligned}
& W\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right) \\
& =\left\{x=\left(x_{k}\right): \lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}-L}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}=0\right. \\
& \\
& \quad \text { for some } L \in X\}
\end{aligned}
$$

$$
\begin{aligned}
& W_{0}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right) \\
& \quad=\left\{x=\left(x_{k}\right): \lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}=0\right\}, \\
& W_{\infty}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right) \\
& \quad=\left\{x=\left(x_{k}\right): \sup _{m} \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}<\infty\right\},
\end{aligned}
$$

where and throughout the paper $B_{\Lambda}^{\mu} x_{k}=\sum_{v=0}^{\mu}\binom{\mu}{v} r^{\mu-v} s^{\nu} x_{k-v} \Lambda_{k-v}$ and $\mu, k \in \mathbb{N}$. If we consider some special cases of the spaces above, the following are obtained:
(1) If we take $\mu=0$, then the spaces above are reduced to $W(A, \Lambda, M, p,\|\cdot, \ldots, \cdot\|)$, $W_{0}(A, \Lambda, M, p,\|\cdot, \ldots, \cdot\|), W_{\infty}(A, \Lambda, M, p,\|\cdot, \ldots, \cdot\|)$, respectively.
(2) If we take $r=1, s=-1$, then we get the spaces $W\left(A, \Delta_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$,
$W_{0}\left(A, \Delta_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right), W_{\infty}\left(A, \Delta_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$.
(3) If $M(x)=x$, then the spaces above are denoted by $W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)$,
$W_{0}\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right), W_{\infty}\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)$, respectively.
(4) If $p_{k}=1$ for all $k \in \mathbb{N}$ and $\Lambda=\left(\Lambda_{k}\right)=(1,1,1, \ldots)$, then the spaces above are reduced to the sequence spaces $W\left(A, B^{\mu}, M,\|\cdot, \ldots, \cdot\|\right), W_{0}\left(A, B^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$, $W_{\infty}\left(A, B^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$, respectively.
(5) If $M(x)=x$ and $p_{k}=1$ for all $k \in \mathbb{N}$, then the spaces above are denoted by $W\left(A, B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right), W_{0}\left(A, B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right), W_{\infty}\left(A, B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right)$, respectively.
(6) If we take $A=C_{1}$, i.e., the Cesaro matrix, then the spaces above are reduced to the spaces $W\left(B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right), W_{0}\left(B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$, $W_{\infty}\left(B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$.
(7) If we take $A=\left(a_{m k}\right)$ is de la Vallee Poussin mean, i.e.,

$$
a_{m k}= \begin{cases}\frac{1}{\lambda_{m}}, & k \in I_{m}=\left[m-\lambda_{m}+1, m\right], \tag{3.1}\\ 0, & \text { otherwise }\end{cases}
$$

where λ_{m} is a non-decreasing sequence of positive numbers tending to ∞ and $\lambda_{m+1} \leq \lambda_{m}+1, \lambda_{1}=1$, then the spaces above are denoted by $W\left(\lambda, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right), W_{0}\left(\lambda, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right), W_{\infty}\left(\lambda, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$.
(8) By a lacunary sequence $\theta=\left(k_{m}\right), m=0,1, \ldots$, where $k_{0}=0$, we mean an increasing sequence of non-negative integers with $h_{m}=\left(k_{m}-k_{m-1}\right) \rightarrow \infty$ as $m \rightarrow \infty$. The intervals determined by θ are denoted by $I_{m}=\left(k_{m-1}, k_{m}\right]$. Let

$$
a_{m k}= \begin{cases}\frac{1}{h_{m}}, & k_{m-1}<k \leq k_{m}, \tag{3.2}\\ 0, & \text { otherwise } .\end{cases}
$$

Then we obtain the spaces $W\left(\theta, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right), W_{0}\left(\theta, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ and $W_{\infty}\left(\theta, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$, respectively.
(9) If we take $A=I$, where I is an identity matrix and $p_{k}=1$ for all $k \in \mathbb{N}$, then the spaces above are reduced to the sequence spaces $c\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$, $c_{0}\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$ and $l_{\infty}\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$, respectively.
(10) If we take $A=I$, where I is an identity matrix, $M(x)=x$ and $p_{k}=1$ for all $k \in \mathbb{N}$, then we denote the spaces above by the sequence spaces $c\left(B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right)$, $c_{0}\left(B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right)$ and $l_{\infty}\left(B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right)$.

Theorem 3.1 $W\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$, $W_{0}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ and $W_{\infty}\left(A, B_{\Lambda}^{\mu}, M, p\right.$, $\|\cdot, \ldots, \cdot\|)$ are linear spaces.

Proof We consider only $W\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$. Others can be treated similarly. Let $x, y \in$ $W\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ and α, β be scalars. Suppose that $x \rightarrow L_{1}$ and $y \rightarrow L_{2}$. Then there exists $|\alpha| \rho_{1}+|\beta| \rho_{2}>0$ such that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu}\left(\alpha x_{k}+\beta y_{k}\right)-\left(\alpha L_{1}+\beta L_{2}\right)}{|\alpha| \rho_{1}+|\beta| \rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \quad \leq \sum_{k=1}^{\infty} a_{m k}\left[M \left(\frac{|\alpha| \rho_{1}}{|\alpha| \rho_{1}+|\beta| \rho_{2}}\left\|\frac{B_{\Lambda}^{\mu} x_{k}-L_{1}}{\rho_{1}}, z_{1}, \ldots, z_{n-1}\right\|\right.\right. \\
& \left.\left.\quad+\frac{|\beta| \rho_{2}}{|\alpha| \rho_{1}+|\beta| \rho_{2}}\left\|\frac{B_{\Lambda}^{\mu} y_{k}-L_{2}}{\rho_{2}}, z_{1}, \ldots, z_{n-1 B_{\Lambda}^{\mu}}\right\|\right)\right]^{p_{k}} \\
& \quad \leq \sum_{k=1}^{\infty} a_{m k}\left[\frac{|\alpha| \rho_{1}}{|\alpha| \rho_{1}+|\beta| \rho_{2}} M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}-L_{1}}{\rho_{1}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{|\beta| \rho_{2}}{|\alpha| \rho_{1}+|\beta| \rho_{2}} M\left(\left\|\frac{B_{\Lambda}^{\mu} y_{k}-L_{2}}{\rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
\leq & D \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}-L_{1}}{\rho_{1}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& +D \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} y_{k}-L_{2}}{\rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}},
\end{aligned}
$$

which leads us, by taking limit as $m \rightarrow \infty$, to the fact that we get $(\alpha x+\beta y) \in W\left(A, B_{\Lambda}^{\mu}, M, p\right.$, $\|\cdot, \ldots, \cdot\|)$.

Theorem 3.2 For any two sequences $p=\left(p_{k}\right)$ and $q=\left(q_{k}\right)$ of positive real numbers and for any two n-norms $\|\cdot, \ldots, \cdot\|_{1},\|\cdot, \ldots, \cdot\|_{2}$ on X, the following holds: $Z\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|_{1}\right) \cap$ $Z\left(A, B_{\Lambda}^{\mu}, M, q,\|\cdot, \ldots, \cdot\|_{2}\right) \neq \varnothing$, where $Z=W, W_{0}$ and W_{∞}.

Proof Since the zero element belongs to each of the above classes of sequences, thus the intersection is non-empty.

Theorem 3.3 Let $A=\left(a_{m k}\right)$ be a non-negative matrix, and let $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then, for any fixed $m \in \mathbb{N}$, the sequence space $W_{\infty}\left(A, B_{\Lambda}^{\mu}\right.$, $M, p,\|\cdot, \ldots, \cdot\|)$ is a paranormed space for every nonzero $z_{1}, \ldots, z_{n-1} \in X$ and for some $\rho>0$ with respect to the paranorm defined by

$$
g_{m}(x)=\inf \left\{\rho^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\infty\right\} .
$$

Proof That $g_{m}(\theta)=0$ and $g_{m}(-x)=g_{m}(x)$ are easy to prove. So, we omit them. Let us take $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ in $W_{\infty}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$. Let

$$
\begin{aligned}
& A(x)=\left\{\rho>0: \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}<\infty\right\}, \\
& A(y)=\left\{\rho>0: \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} y_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}<\infty\right\}
\end{aligned}
$$

for every nonzero $z_{1}, \ldots, z_{n-1} \in X$. Let $\rho_{1} \in A(x)$ and $\rho_{2} \in A(y)$, then we have

$$
\left(\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu}\left(x_{k}+y_{k}\right)}{\left(\rho_{1}+\rho_{2}\right)}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\infty
$$

by using Minkowski's inequality for $p=\left(p_{k}\right)>1$. Thus,

$$
\begin{aligned}
g_{m}(x+y) & =\inf \left\{\left(\rho_{1}+\rho_{2}\right)^{\frac{p_{m}}{H}}: \rho_{1} \in A(x), \rho_{2} \in A(y)\right\} \\
& \leq \inf \left\{\rho_{1}^{\frac{p_{m}}{H}}: \rho_{1} \in A(x)\right\}+\inf \left\{\rho_{2} \frac{p_{m}}{H}: \rho_{2} \in A(y)\right\} \\
& =g_{m}(x)+g_{m}(y) .
\end{aligned}
$$

We also get $g_{m}(x+y) \leq g_{m}(x)+g_{m}(y)$ for $0<p_{k} \leq 1$ by using (2.1). Hence, we complete the proof of this condition of the paranorm. Finally, we show that the scalar multiplication is continuous. Whenever $\alpha \rightarrow 0$ and x is fixed imply $g_{m}(\alpha x) \rightarrow 0$. Also, whenever $x \rightarrow \theta$ and α is any number imply $g_{m}(\alpha x) \rightarrow 0$. By using the definition of the paranorm, for every nonzero $z_{1}, \ldots, z_{n-1} \in X$, we have

$$
g_{m}(\alpha x)=\inf \left\{\rho^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu}\left(\alpha x_{k}\right)}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\infty\right\} .
$$

Then

$$
g_{m}(\alpha x)=\inf \left\{(\alpha \varrho)^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\varrho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\infty\right\}
$$

where $\varrho=\frac{\rho}{\alpha}$. Since $|\alpha|^{p_{k}} \leq \max \left\{|\alpha|^{h},|\alpha|^{H}\right\}$, therefore $|\alpha|^{\frac{p_{k}}{H}} \leq\left(\max \left\{|\alpha|^{h},|\alpha|^{H}\right\}\right)^{\frac{1}{H}}$. Then the required proof follows from the following inequality

$$
\begin{aligned}
g_{m}(\alpha x) \leq & \left(\max \left\{|\alpha|^{h},|\alpha|^{H}\right\}\right)^{\frac{1}{H}} \\
& \cdot \inf \left\{\varrho^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\varrho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\infty\right\} \\
= & \left(\max \left\{|\alpha|^{h},|\alpha|^{H}\right\}\right)^{\frac{1}{H}} g_{m}(x) .
\end{aligned}
$$

Theorem 3.4 Let M, M_{1}, M_{2} be Orlicz functions. Then the following hold:
(1) Let $0<h \leq p_{k} \leq 1$. Then $Z\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right) \subseteq Z\left(A, B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$, where $Z=W, W_{0}$.
(2) Let $1<p_{k} \leq H<\infty$. Then $Z\left(A, B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right) \subseteq Z\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$, where $Z=W, W_{0}$.
(3) $W_{0}\left(A, B_{\Lambda}^{\mu}, M_{1}, p,\|\cdot, \ldots, \cdot\|\right) \cap W_{0}\left(A, B_{\Lambda}^{\mu}, M_{2}, p,\|\cdot, \ldots, \cdot\|\right) \subseteq$ $W_{0}\left(A, B_{\Lambda}^{\mu}, M_{1}+M_{2}, p,\|\cdot, \ldots, \cdot\|\right)$.

Proof (1) We give the proof for the sequence space $W_{0}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ only. The other can be proved by a similar argument. Let $\left(x_{k}\right) \in W_{0}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ and $0<$ $h \leq p_{k} \leq 1$, then

$$
\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right] \leq \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}
$$

Hence, we have the result by taking the limit as $m \rightarrow \infty$. This completes the proof.
(2) Let $1<p_{k} \leq H<\infty$ and $\left(x_{k}\right) \in W_{0}\left(A, B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$. Then, for each $0<\varepsilon<1$, there exists a positive integer M_{0} such that

$$
\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]<\varepsilon<1
$$

for all $m>M_{0}$. This implies that

$$
\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \leq \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]
$$

Hence we have the result.
(3) Let $x=\left(x_{k}\right) \in W_{0}\left(A, B_{\Lambda}^{\mu}, M_{1}, p,\|\cdot, \ldots, \cdot\|\right) \cap W_{0}\left(A, B_{\Lambda}^{\mu}, M_{2}, p,\|\cdot, \ldots, \cdot\|\right)$. Then, by the following inequality, the result follows

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{m k}\left[\left(M_{1}+M_{2}\right)\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \leq \\
& \quad D \sum_{k=1}^{\infty} a_{m k}\left[M_{1}\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \quad+D \sum_{k=1}^{\infty} a_{m k}\left[M_{2}\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} .
\end{aligned}
$$

If we take the limit as $m \rightarrow \infty$, then we get $\left(x_{k}\right) \in W_{0}\left(A, B_{\Lambda}^{\mu}, M_{1}+M_{2}, p,\|\cdot, \ldots, \cdot\|\right)$. This completes the proof.

Theorem 3.5 $Z\left(A, B_{\Lambda}^{\mu-1}, M, p,\|\cdot, \ldots, \cdot\|\right) \subset Z\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ and the inclusion is strict for $\mu \geq 1$. In general, $Z\left(A, B_{\Lambda}^{j}, M, p,\|\cdot, \ldots, \cdot\|_{1}\right) \subset Z\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ for $j=$ $0,1,2, \ldots, \mu-1$ and the inclusions are strict, where $Z=W, W_{0}$ and W_{∞}.

Proof We give the proof for $W_{0}\left(A, B_{\Lambda}^{\mu-1}, M, p,\|\cdot, \ldots, \cdot\|\right)$ only. The others can be proved by a similar argument. Let $x=\left(x_{k}\right)$ be any element in the space $W_{0}\left(A, B_{\Lambda}^{\mu-1}, M, p,\|\cdot, \ldots, \cdot\|\right)$, then there exists $\rho=|r| \rho_{1}+|s| \rho_{2}>0$ such that

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu-1} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}=0
$$

Since M is non-decreasing and convex, it follows that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{|r| \rho_{1}+|s| \rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \quad=\sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{r B_{\Lambda}^{\mu-1} x_{k}+s B_{\Lambda}^{\mu-1} x_{k-1}}{|r| \rho_{1}+|s| \rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \quad \leq D \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu-1} x_{k}}{\rho_{1}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \\
& \quad+D \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu-1} x_{k-1}}{\rho_{2}}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}
\end{aligned}
$$

The result holds by taking the limit as $m \rightarrow \infty$.

In the following example we show that the inclusion given in the theorem above is strict.

Example 3.6 Let $M(x)=x, p_{k}=1$ for all $k \in \mathbb{N}, \Lambda=\left(\Lambda_{k}\right)=(1,1, \ldots), A=C_{1}$, i.e., the Cesaro matrix, $r=1, s=-1$, where $B_{\Lambda}^{\mu} x_{k}=\sum_{v=0}^{\mu}\binom{\mu}{v} r^{\mu-v} s^{\nu} x_{k-v} \Lambda_{k-\nu}$ for all $r, s \in \mathbb{R}-\{0\}$. Consider the sequence $x=\left(x_{k}\right)=\left(k^{\mu-1}\right)$. Then $x=\left(x_{k}\right)$ belongs to $W_{0}\left(B^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$ but does not belong to $W_{0}\left(B^{\mu-2}, M, p,\|\cdot, \ldots, \cdot\|\right)$.

Theorem 3.7 Let $A=\left(a_{m k}\right)$ be a non-negative regular matrix and $p=\left(p_{k}\right)$ be such that $0<h \leq p_{k} \leq H<\infty$. Then

$$
l_{\infty}\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right) \subseteq W_{\infty}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)
$$

Proof Let $l_{\infty}\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right)$. Then there exists $T_{0}>0$ such that $\left[M\left(\| \frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots\right.\right.$, $\left.\left.z_{n-1} \|\right)\right] \leq T_{0}$ for all $k \in \mathbb{N}$ and for every nonzero $z_{1}, \ldots, z_{n-1} \in X$. Since $A=\left(a_{m k}\right)$ is a nonnegative regular matrix, we have the following inequality by (1) of Silverman-Toeplitz conditions:

$$
\sup _{m} \sum_{k=1}^{\infty} a_{m k}\left[M\left(\left\|\frac{B_{\Lambda}^{\mu} x_{k}}{\rho}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}} \leq \max \left\{T_{0}^{h}, T_{0}^{H}\right\} \sup _{m} \sum_{k=1}^{\infty} a_{m k}<\infty .
$$

Hence $l_{\infty}\left(B_{\Lambda}^{\mu}, M,\|\cdot, \ldots, \cdot\|\right) \subseteq W_{\infty}\left(A, B_{\Lambda}^{\mu}, M, p,\|\cdot, \ldots, \cdot\|\right)$.

$4\left(B_{\Lambda}^{\mu}\right)^{n}$-statistically A-convergent sequences

In this section we introduce and study a new concept of $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical A-convergence in an n-normed space as follows.

Definition 4.1 Let $(X,\|\cdot, \ldots, \cdot\|)$ be an n-normed space and let $A=\left(a_{m k}\right)$ be a non-negative regular matrix. A real sequence $x=\left(x_{k}\right)$ is said to be $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistically A-convergent to a number L if $\delta_{A\left(B_{\Lambda}^{\mu}\right)^{n}}(K)=\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k} \chi_{K}(k)=0$ or, equivalently, $\lim _{m \rightarrow \infty} \sum_{k \in K} a_{m k}=$ 0 for each $\varepsilon>0$ and for every nonzero $z_{1}, \ldots, z_{n-1} \in X$, where $K=\left\{k \in \mathbb{N}: \| B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots\right.$, $\left.z_{n-1} \| \geq \varepsilon\right\}$ and χ_{K} is the characteristic function of K.

In this case, we write $\left(B_{\Lambda}^{\mu}\right)^{n}$ stat- $A-\lim x=L . S\left(A\left(B_{\Lambda}^{\mu}\right)^{n}\right)$ denotes the set of all $\left(B_{\Lambda}^{\mu}\right)^{n}$ statistically A-convergent sequences.

If we consider some special cases of the matrix, then we have the following:
(1) If $A=C_{1}$, the Cesaro matrix, then the definition reduces to $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical convergence.
(2) If $A=\left(a_{m k}\right)$ is de la Vallee Poussin mean, which is given by (3.1), then the definition reduces to $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical λ-convergence.
(3) If we take $A=\left(a_{m k}\right)$ as in (3.2), then the definition reduces to $\left(B_{\Lambda}^{\mu}\right)^{n}$-statistical lacunary convergence.

Theorem 4.2 Let $p=\left(p_{k}\right)$ be a sequence of non-negative bounded real numbers such that $\inf _{k} p_{k}>0$. Then $W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right) \subset S\left(A\left(B_{\Lambda}^{\mu}\right)^{n}\right)$.

Proof Assume that $x=\left(x_{k}\right) \in W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)$. So, we have for every nonzero $z_{1}, \ldots, z_{n-1} \in X$

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}}=0
$$

Let $\varepsilon>0$ and $K=\left\{k \in \mathbb{N}:\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\| \geq \varepsilon\right\}$. We obtain the following:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}} \\
& \quad=\sum_{k \in K} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}}+\sum_{k \notin K} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}} \\
& \quad \geq \min \left\{\varepsilon^{h}, \varepsilon^{H}\right\} \sum_{k \in K} a_{m k} .
\end{aligned}
$$

If we take the limit as $m \rightarrow \infty$, then we get $x \in S\left(A\left(B_{\Lambda}^{\mu}\right)^{n}\right)$. This completes the proof.
Theorem 4.3 Let $p=\left(p_{k}\right)$ be a sequence of non-negative bounded real numbers such that $\inf _{k} p_{k}>0$. Then

$$
l_{\infty}\left(B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right) \cap S\left(A\left(B_{\Lambda}^{\mu}\right)^{n}\right) \subset W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)
$$

Proof Suppose that $x=\left(x_{k}\right) \in l_{\infty}\left(B_{\Lambda}^{\mu},\|\cdot, \ldots, \cdot\|\right) \cap S\left(A\left(B_{\Lambda}^{\mu}\right)^{n}\right)$. Then there exists an integer T such that $\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\| \leq T$ for all $k>0$ and for every nonzero $z_{1}, \ldots, z_{n-1} \in X$, and $\lim _{m \rightarrow \infty} \sum_{k \in K} a_{m k}=0$, where $K=\left\{k \in \mathbb{N}:\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\| \geq \varepsilon\right\}$. Then we can write

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}} \\
& \quad=\sum_{k \notin K} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}}+\sum_{k \in K} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}} \\
& \quad<\max \left\{\varepsilon^{h}, \varepsilon^{H}\right\} \sum_{k \notin K} a_{m k}+\max \left\{T^{h}, T^{H}\right\} \sum_{k \in K} a_{m k} .
\end{aligned}
$$

Since $A=\left(a_{m k}\right)$ is a non-negative regular matrix, then we have

$$
\begin{aligned}
1 & =\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k} \\
& =\lim _{m \rightarrow \infty} \sum_{k \notin K} a_{m k}+\lim _{m \rightarrow \infty} \sum_{k \in K} a_{m k} .
\end{aligned}
$$

Hence, $\lim _{m \rightarrow \infty} \sum_{k \notin K} a_{m k}=1$. Thus

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a_{m k}\left\|B_{\Lambda}^{\mu} x_{k}-L, z_{1}, \ldots, z_{n-1}\right\|^{p_{k}} \\
& \quad<\varepsilon^{\prime} \lim _{m \rightarrow \infty} \sum_{k \notin K} a_{m k}+T^{\prime} \lim _{m \rightarrow \infty} \sum_{k \in K} a_{m k} \\
& \quad<\varepsilon^{\prime},
\end{aligned}
$$

where $\max \left\{\varepsilon^{h}, \varepsilon^{H}\right\}=\varepsilon^{\prime}$ and $\max \left\{T^{h}, T^{H}\right\}=T^{\prime}$.
Hence, $x_{k} \in W\left(A, B_{\Lambda}^{\mu}, p,\|\cdot, \ldots, \cdot\|\right)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally in the preparation of this article. Both the authors read and approved the final manuscript

Acknowledgements

This paper is supported by Sakarya University BAPK Project No: 2012-50-02-032.

Received: 21 February 2013 Accepted: 9 July 2013 Published: 23 July 2013

References

1. Zygmund, A: Trigonometric Series, pp. 233-239. Cambridge University Press, Cambridge (2011)
2. Fast, H: Sur la Convergence Statistique. Colloq. Math. 2, 241-244 (1951)
3. Schoenberg, IJ: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361-375 (1959)
4. Fridy, JA: On statistical convergence. Analysis 5, 301-313 (1985)
5. Kuttner, B: Note on strong summability. J. Lond. Math. Soc. 21, 118-122 (1946)
6. Maddox, IJ: Space of strongly summable sequence. Q. J. Math. 18, 345-355 (1967)
7. Maddox, IJ: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100, 161-166 (1986)
8. Connor, J: On strong matrix summability with respect to a modulus and statistical convergence. Can. Math. Bull. 32 194-198 (1989)
9. Freedman, AR, Sember, JJ: Densities and summability. Pac. J. Math. 95, 293-305 (1981)
10. Kolk, E: Matrix summability of statistically convergent sequences. Analysis 13, 77-83 (1993)
11. Miller, HI: A measure theoretical subsequence characterization of statistical convergence. Trans. Am. Math. Soc. 347, 1811-1819 (1995)
12. Kolk, E: The statistical convergence in Banach spaces. Acta Comment. Univ. Tartu Math. 928, 41-52 (1991)
13. Kızmaz, H: On certain sequence spaces. Can. Math. Bull. 24(2), 169-176 (1981)
14. Et, M, Çolak, R, Cheng, SS: On generalized difference sequence spaces. Soochow J. Math. 21(4), 147-169 (1985)
15. Et, M, Başarır, M: On some new generalized difference sequence spaces. Period. Math. Hung. 35(3), 169-175 (1997)
16. Dutta, H: On some difference sequence spaces. Pac. J. Sci. Technol. 10(2), 243-247 (2009)
17. Dutta, H: Some statistically convergent difference sequence spaces defined over real 2-normed linear space. Appl. Sci. 12, 37-47 (2010)
18. Tripathy, BC, Dutta, H: On some lacunary difference sequence spaces defined by a sequence of functions and q-lacunary Δ_{m}^{n} statistical convergence. An. Univ. Ovidius Constanţa, Ser. Mat. 20(1), 417-430 (2012)
19. Dutta, H, Başar, F: A generalization of Orlicz sequence spaces by Cesaro mean of order one. Acta Math. Univ. Comen. 80(2), 185-200 (2011)
20. Karakaya, V, Dutta, H: On some vector valued generalized difference modular sequence spaces. Filomat 25(3), 15-27 (2011)
21. Dutta, H, Bilgin, $\mathrm{T}:$ Strongly $\left(V, \lambda, A, \Delta_{v m}^{n}\right)$-summable sequence spaces defined by an Orlicz function. Appl. Math. Lett. 24(7), 1057-1062 (2011)
22. Dutta, H, Surender Reddy, B: Some new type of multiplier sequence spaces defined by a modulus function. Int. J. Math. Anal. 4(29-32), 1527-1533 (2010)
23. Tripathy, BC, Dutta, H: On some new paranormed difference sequence spaces defined by Orlicz functions. Kyungpook Math. J. 50(1), 59-69 (2010)
24. Nuray, F, Başarır, M: Paranormed difference sequence spaces generated by infinite matrices. Pure Appl. Math. Sci. 34(1-2), 87-90 (1991)
25. Dutta, H: On some n-normed linear space valued difference sequences. J. Franklin Inst. 348(10), 2876-2883 (2011)
26. Dutta, H: On n-normed linear space valued strongly ($C, 1$)-summable difference sequences. Asian-Eur. J. Math. 3(4), 565-575 (2010)
27. Dutta, H: Characterization of certain matrix classes involving generalized difference summability spaces. Appl. Sci. 11, 60-67 (2009)
28. Işık, M: On statistical convergence of generalized difference sequences. Soochow J. Math. 30(2), 197-205 (2004)
29. Karakaya, V, Dutta, H: On some vector valued generalized difference modular sequence spaces. Filomat 25(3), 15-27 (2011)
30. Mursaleen, M, Noman, AK: On some new difference sequence spaces of non-absolute type. Math. Comput. Model. 52(3-4), 603-617 (2010)
31. Mursaleen, M, Karakaya, V, Polat, H, Şimşek, N: Measure of noncompactness of matrix operators on some difference sequence spaces of weighted means. Comput. Math. Appl. 62(2), 814-820 (2011)
32. Mursaleen, M: Generalized spaces of difference sequences. J. Math. Anal. Appl. 203, 738-745 (1996)
33. Dutta, H: Some vector valued multiplier difference sequence spaces defined by a sequence of Orlicz functions. Vladikavkaz. Mat. Zh. 13(2), 26-34 (2011)
34. Mursaleen, M, Noman, AK: Compactness of matrix operators on some new difference sequence spaces. Linear Algebra Appl. 436(1), 41-52 (2012)
35. Başar, F, Altay, B: On the space of sequences of bounded variation and related matrix mappings. Ukr. Math. J. 55(1), 136-147 (2003)
36. Başarır, M, Kayıkçı, M: On the generalized B^{m}-Riesz difference sequence space and β-property. J. Inequal. Appl. 2009, Article ID 385029 (2009). doi:10.1155/2009/385029
37. Başarır, M, Kara, EE: On compact operators on the Riesz B^{m} difference sequence spaces II. Iran. J. Sci. Technol., Trans. A, Sci. 35(4), 279-285 (2012)
38. Başarır, M, Kara, EE: On compact operators on the Riesz B^{m} difference sequence spaces. Iran. J. Sci. Technol., Trans. A, Sci. 4, 371-376 (2011)
39. Başarır, M, Kara, EE: On compact operators and some Euler B^{m} difference sequence spaces. J. Math. Anal. Appl. 379(2), 499-511 (2011)
40. Altay, B, Başar, F: On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces C_{0} and c. Int. J. Math. Math. Sci. 2005(18), 3005-3013 (2005)
41. Başarır, M: On the generalized Riesz B-difference sequence spaces. Filomat 24(4), 35-52 (2010)
42. Gähler, S: Lineare 2-normierte raume. Math. Nachr. 28, 1-43 (1965)
43. Misiak, A: n-Inner product spaces. Math. Nachr. 140, 299-319 (1989)
44. Gunawan, H : The spaces of p-summable sequences and its natural n-norm. Bull. Aust. Math. Soc. 64, 137-147 (2001)
45. Gunawan, H, Mashadi, M: On n-normed spaces. Int. J. Math. Sci. 27(10), 631-639 (2001)
46. Gunawan, H, Setya-Budhi, W, Mashadi, M, Gemawati, S: On volumes of n-dimensional parallelepipeds in P spaces. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16, 48-54 (2005)
47. Dutta, H, Reddy, BS, Cheng, SS: Strongly summable sequences defined over real n-normed spaces. Appl. Math. E-Notes 10, 199-209 (2010)
48. Dutta, H, Reddy, BS: On non-standard n-norm on some sequence spaces. Int. J. Pure Appl. Math. 68(1), 1-11 (2011)
49. Dutta, H: An application of lacunary summability method to n-norm. Int. J. Appl. Math. Stat. 15(09), 89-97 (2009)
50. Dutta, H: On sequence spaces with elements in a sequence of real linear n-normed spaces. Appl. Math. Lett. 23(9), 1109-1113 (2010)
51. Gürdal, M, Pehlivan, S: Statistical convergence in 2-normed spaces. Southeast Asian Bull. Math. 33, 257-264 (2009)
52. Şahiner, A, Gürdal, M, Soltan, S, Gunawan, H: Ideal convergence in 2-normed spaces. Taiwan. J. Math. 11(5), 1477-1484 (2007)
53. Savaş, $\mathrm{E}: \Delta^{m}$-Strongly summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function. Appl. Math. Comput. 217(1), 271-276 (2010)
54. Savaş, E: A-Sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function. Abstr. Appl. Anal. 2011, Article ID 741382 (2011)

doi:10.1186/1029-242X-2013-335

Cite this article as: Konca and Başarır: Generalized difference sequence spaces associated with a multiplier sequence on a real n-normed space. Journal of Inequalities and Applications 2013 2013:335.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

