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Abstract
In this paper, we consider the Fourier spectral method for numerically solving the
modified Swift-Hohenberg equation. The semi-discrete and fully discrete schemes are
established. Moreover, the existence, uniqueness and the optimal error bound are
also considered.

1 Introduction
In [], Doelman et al. studied the modified Swift-Hohenberg equation

ut = –k( +�)u +μu – b|∇u| – u. ()

Setting a = k –μ, considering () in D case, we find that

ut + kuxxxx + kuxx + au + b|ux| + u = , (x, t) ∈ (, )× (,T). ()

On the basis of physical considerations, as usual, Eq. () is supplemented with the follow-
ing boundary value conditions:

u(x, t) = uxx(x, t) = , x = ,  ()

and the initial condition

u(x, ) = u(x), x ∈ (, ), ()

where k >  and a, b are constants. u(x) is a given function from a suitable phase space.
The Swift-Hohenberg equation is one of the universal equations used in the descrip-

tion of pattern formation in spatially extended dissipative systems (see []), which arise
in the study of convective hydrodynamics [], plasma confinement in toroidal devices [],
viscous film flow and bifurcating solutions of the Navier-Stokes []. Note that the usual
Swift-Hohenberg equation [] is recovered for b = . The additional term b|ux|, reminis-
cent of the Kuramoto-Sivashinsky equation, which arises in the study of various pattern
formation phenomena involving some kind of phase turbulence or phase transition (see
[–]), breaks the symmetry u → –u.
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During the past years, many authors have paid much attention to the Swift-Hohenberg
equation (see, e.g., [, , ]). However, only a few people have been devoted to the mod-
ified Swift-Hohenberg equation. It was Doelman et al. [] who first studied the modified
Swift-Hohenberg equation for a pattern formation system with two unbounded spatial
directions that are near the onset to instability. Polat [] also considered the modified
Swift-Hohenberg equation. In his paper, the existence of a global attractor is proved for
the modified Swift-Hohenberg equation as ()-(). Recently, Song et al. [] studied the
long time behavior for the modified Swift-Hohenberg equation in an Hk (k ≥ ) space. By
using an iteration procedure, regularity estimates for the linear semigroups and a classi-
cal existence theorem of a global attractor, they proved that problem ()-() possesses a
global attractor in the Sobolev space Hk for all k ≥ , which attracts any bounded subset
of Hk(�) in the Hk-norm.
The spectral methods are essentially discretization methods for the approximate so-

lution of partial differential equations. They have the natural advantage in keeping the
physical properties of primitive problems. During the past years, many papers have al-
ready been published to study the spectral methods, for example, [–]. However, for
the other boundary condition, can we also use the Fourier spectral method? The answer
is ‘Yes’. Choose a good finite dimensional subspace SN (here, we set SN = span{sinkπx;k =
, , . . . ,N}), we can also have the basic results for the orthogonal projecting operator PN .
In this paper, we consider the Fourier spectralmethod for themodified Swift-Hohenberg

equation. The existence of a solution locally in time is proved by the standard Picard itera-
tion, global existence results are obtained by proving a priori estimate for the appropriate
norms of u(x, t). Adjusted to our needs, the results are given in the following form.

Theorem . Assume that u ∈H
E(, ) = {v; v ∈ H(, ), v(, t) = v(, t) = } and b ≤ k,

then there exists a unique global solution u(x, t) of the problem ()-() for all T ≥  such
that

u(x, t) ∈ L∞(
,T ;H

E(, )
) ∩ L

(
,T ;H(, )

)
.

Furthermore, it satisfies

(
∂u
∂t

, v
)
+ k(uxx, vxx) – k(ux, vx) + γ (u, v)

+ b
(|ux|, v) + (

u, v
)
= , ∀v ∈H

E(, ), ()(
u(·, ), v) = (u, v), ∀v ∈H

E(, ).

This paper is organized as follows. In the next section, we consider a semi-discrete
Fourier spectral approximation, prove its existence and uniqueness of the numerical solu-
tion and derive the error bound. In Section , we consider the full-discrete approximation
for problem ()-(). Furthermore, we prove convergence to the solution of the associated
continuous problem. In the last section, some numerical experiments which confirm our
results are performed.
Throughout this paper, we denote L, Lp, L∞, Hk norm in � simply by ‖ · ‖, ‖ · ‖p, ‖ · ‖∞

and ‖ · ‖Hk .
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2 Semi-discrete approximation
In this section, we consider the semi-discrete approximation for problem ()-(). First
of all, we recall some basic results on the Fourier spectral method which will be used
throughout this paper. For any integerN > , introduce the finite dimensional subspace of
H

E(, )

SN = span{sinkπx;k = , . . . ,N}.

Let PN : L(, ) → SN be an orthogonal projecting operator which satisfies

(u – PNu, v) = , ∀v ∈ SN . ()

For the operator PN , we have the following result (see [, ]):
(B) PN commutes with derivation on H

E(, ), i.e.,

PNuxx = (PNu)xx, ∀u ∈H
E(, ).

Using the same method as [, ], we can obtain the following result (B) for problem
()-():
(B) For any real ≤ μ ≤ , there is a constant c such that

‖u – PNu‖μ ≤ cNμ–‖uxx‖, ∀u ∈H
E(, ).

Define the Fourier spectral approximation: Find uN (t) =
∑N

j= aj(t) cos jπx ∈ SN such that

(
∂uN
∂t

, vN
)
+ k(uNxx, vNxx) + k(uN , vNxx) + a(uN , vN )

+ b
(|uNx|, vN)

+
(
uN , vN

)
= , ∀vN ∈ SN ()

for all T ≥  with uN () = PNu.
Now, we are going to establish the existence, uniqueness etc. of the Fourier spectral ap-

proximation solution uN (t) for all T ≥ .

Lemma . Let u ∈ L(, ) and b ≤ k, then problem () has a unique solution uN (t)
satisfying the following inequalities:

∥∥uN (t)∥∥ ≤ c‖u‖,
∫ T



∥∥uNxx(τ )∥∥ dτ ≤ c′‖u‖, ()

where c = e(|a|+)T and c′ =
(|a|+)Tc+

k–b for all T ≥ .

Proof Set vN = cos jπx in () for each j (≤ j ≤ N ) to obtain

d
dt

aj(t) = fj
(
a(t),a(t), . . . ,aN (t)

)
, j = , , . . . ,N , ()

http://www.advancesindifferenceequations.com/content/2013/1/156
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where all fj : RN → R ( ≤ j ≤ N ) are smooth and locally Lipschitz continuous. Noticing
that uN () = PNu, then

aj() = (u, cos jπx), j = , , . . . ,N . ()

Using the theory of initial-value problems of the ordinary differential equations, there is
a time TN >  such that the initial-value problem ()-() has a unique smooth solution
(a(t), . . . ,aN (t)) for t ∈ [,TN ].
Setting vN = uN in (), we have



d
dt

‖uN‖ + k‖uNxx‖ + ‖uN‖ ≤ |a|‖uN‖ + k‖uNx‖ + |b|(|uNx|,uN)
. ()

Noticing that

|b|(|uNx|,uN)
= –

|b|


(
uN ,uNxx

) ≤ ‖uN‖ +
b


‖uNxx‖

and

k‖uNx‖ = –k(uN ,uNxx) ≤ k

‖uNxx‖ + k‖uN‖.

Summing up, we get

d
dt

‖uN‖ +
(
k –

b



)
‖uNxx‖ ≤ 

(|a| + k
)‖uN‖. ()

Using Gronwall’s inequality, we deduce that

‖uN‖ ≤ e(|a|+k)t
∥∥uN ()∥∥ ≤ e(|a|+k)T‖u‖ = c‖u‖.

Integrating () from  to t, we derive that

‖uN‖ – ∥∥uN ()∥∥ +
(
k –

b



)∫ T


‖uNxx‖ dt ≤ (

|a| + k
)∫ T


‖uN‖ dt.

Hence

(
k –

b



)∫ T


‖uNxx‖ dt ≤ 

(|a| + k
)
cT‖u‖ + ‖u‖.

From the above inequality, we obtain the second inequality of () immediately. Therefore,
Lemma . is proved. �

Lemma . Let u ∈H
(, ) and b ≤ k, then the solution uN (t) of problem () satisfying

∥∥uNx(t)∥∥ ≤ c,
∫ T



∥∥unxxx(τ )∥∥ dτ ≤ c′ ()

for all T ≥ ,where c and c′ are positive constants depending only on k, a, b,T and ‖u‖H .
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Proof Setting vN = uNxx in (), we obtain



d
dt

‖uNx‖ + k‖uNxxx‖ + a‖uNx‖ = k‖uNxx‖ + b
(|uNx|,uNxx) + (

uN ,uNxx
)
. ()

Notice that

(
uN ,uNxx

)
= –

(
uNuNx,uNx

)
= –‖uNuNx‖ ≤ 

and

k‖uNxx‖ = –k(uNx,uNxxx)≤ k


‖uNxxx‖ + ‖uNx‖.

On the other hand, by Nirenberg’s inequality, we have

‖uNx‖ ≤ C‖uNxxx‖ 
 ‖uN‖ 

 ,

where C is a positive constant independent of N . Hence

|b|(|uNx|,uNxx) ≤|b|


‖uNxx‖ + |b|


‖uNx‖

≤k

‖uNxxx‖ + |b|

k
‖uNx‖ +C‖uNxxx‖ 

 ‖uN‖ 


≤k


‖uNxxx‖ + |b|
k

‖uNx‖ + c
(‖uN‖)

≤k


‖uNxxx‖ + |b|
k

‖uNx‖ + c
(
a,k,T ,‖u‖

)
. ()

Summing up, we get

d
dt

‖uNx‖ + k‖uNxxx‖ ≤
(
|a| +  +

b

k

)
‖uNx‖ + c

(
a,k,T ,‖u‖

)
. ()

Using Gronwall’s inequality, we immediately obtain

‖uNx‖ ≤ e(|a|++
b
k )t∥∥uNx()∥∥ +

kc(a,k,T ,‖u‖)
|a|k + b + k

≤ e(|a|++
b
k )T‖ux‖ + kc(a,k,T ,‖u‖)

|a|k + b + k
≤ c

(
k,a,b,T ,‖u‖H

)
.

Integrating () from  to t, we obtain

∫ T



∥∥uNxxx(τ )∥∥ dτ ≤ 
k

((
|a| +  +

b

k

)
cT + cT + ‖ux‖

)

= c′
(
k,a,b,T ,‖u‖H

)
.

Then Lemma . is proved. �
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Lemma. Let u ∈ H
E(, ) and b ≤ k, then the solution uN (t) of problem (), satisfying

∥∥uNxx(t)∥∥ ≤ c,
∫ T



∥∥uNxxxx(τ )∥∥ dτ ≤ c′ ()

for all T ≥ , where c and c′ are positive constants, depending only on k, a, b, T and
‖u‖H .

Proof Setting vN = uNxxxx in (), we obtain



d
dt

‖uNxx‖ + k‖uNxxxx‖

= ‖uNxxx‖ – a‖uNxx‖ – b
(|uNx|,uNxxxx) – (

uN ,uNxxxx
)
. ()

Using Nirenberg’s inequality, we obtain

‖uN‖ ≤ C‖uNxxxx‖ 
 ‖uN‖ 

 , ‖uNx‖ ≤ C‖uNxxxx‖ 
 ‖uNx‖ 

 ,

where C >  is a constant depending only on the domain. Therefore

|b|(|uNx|,uNxxxx) ≤ k


‖uNxxxx‖ + b

k
‖uNx‖

≤ k


‖uNxxxx‖ + k


‖uNxxxx‖ + c
(
a,k,b,T ,‖u‖H

)

and

(
uN ,uNxxxx

) ≤ k


‖uNxxxx‖ + 
k

‖uN‖

≤ k


‖uNxxxx‖ + k


‖uNxxxx‖ + c
(
a,k,T ,‖u‖

)
.

On the other hand, we have

k‖uNxxx‖ = –k(uNxx,uNxxxx) ≤ k


‖uNxxxx‖ + ‖uNxx‖.

Summing up, we get

d
dt

‖uNxx‖ + k‖uNxxxx‖ ≤ (
 + |a|)‖uNxx‖ + c

(
a,k,b,T ,‖u‖H

)
. ()

Using Gronwall’s inequality, we have

‖uNxx‖ ≤ e(+|a|)t
∥∥uNxx()∥∥ +

c(a,k,b,T ,‖u‖H )
 + |a|

≤ e(+|a|)T‖uxx‖ + c(a,k,b,T ,‖u‖H )
 + |a| = c

(
a,k,b,T ,‖uxx‖

)
. ()

http://www.advancesindifferenceequations.com/content/2013/1/156
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Integrating () from  to t, we obtain

∫ T



∥∥uNxxxx(τ )∥∥ dτ ≤ 
k
((
 + |a|)cT + Tc

(
a,k,b,T ,‖u‖H

)
+

∥∥uNxx()∥∥)
= c′

(
k,a,b,T ,‖u‖H

)
.

Therefore, Lemma . is proved. �

Remark . Basing on the above Lemmas .-., we can get the H-norm estimate for
problem (). Then, by Sobolev’s embedding theorem, we immediately conclude that

sup
x∈[,]

∣∣uN (x, t)∣∣ = ∥∥uN (x, t)∥∥∞ ≤ c
(
k,a,b,T ,‖u‖H

)
, ()

sup
x∈[,]

∣∣uNx(x, t)∣∣ = ∥∥uNx(x, t)∥∥∞ ≤ c
(
k,a,b,T ,‖u‖H

)
. ()

Now, we give the following theorem.

Theorem . Suppose that u ∈ H
E(, ) and b ≤ k. Suppose further that u(x, t) is the

solution of problem ()-() and uN (x, t) is the solution of semi-discrete approximation ().
Then there exist a constant c depending on k, a, b, T and ‖u‖H such that

∥∥u(x, t) – uN (x, t)
∥∥ ≤ c

(
N– +

∥∥u – uN ()
∥∥)
.

Proof Denote ηN = u(t) – PNu(t) and eN = PNu(t) – uN (t). From () and (), we get

(eNt , vN ) + k(eNxx, vNxx) – k(eNx, vNx) + a(eN , vN )

+ b
(|ux| – |uNx|, vN

)
+

(
u – uN , vN

)
= , ∀vN ∈ SN . ()

Set vN = eN in (), we derive that



d
dt

‖eN‖ + k‖eNxx‖ = k‖eNx‖ – a‖eN‖ – b
(|ux| – |uNx|, eN

)
–

(
u – uN , eN

)
.

By Theorem ., we have

sup
x∈[,]

∣∣u(x, t)∣∣ ≤ c
(
k,a,b,‖u‖H

)
.

Then

–
(
u – uN , eN

)
= –

(
(eN + ηN )

(
u + uuN + uN

)
, eN

)
≤ sup

x∈[,]

(|u| + |uuN | + |uN |) · (‖eN‖ + ‖ηN‖‖eN‖)

≤ (
c + cc + c

)(‖eN‖ + 

‖eN‖ + 


‖ηN‖

)
.

http://www.advancesindifferenceequations.com/content/2013/1/156
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By Theorem ., we have

sup
x∈[,]

∣∣ux(x, t)∣∣ ≤ c
(
k,a,b,‖u‖H

)
,

∥∥uxx(x, t)∥∥ ≤ c
(
k,a,b,‖u‖H

)
. ()

Using Sobolev’s embedding theorem, we have

sup
x∈[,]

|eNx| ≤ C′‖eN‖H ≤ C‖eNxx‖, ()

where C′ and C are positive constants depending only on the domain. Then, using the
method of integration by parts, we have

–b
(|ux| – |uNx|, eN

)
= –b

(
(eNx + ηNx)(ux + uNx), eN

)
= b

(
(eN + ηN )(ux + uNx), eNx

)
+ b

(
(eN + ηN )(uxx + uNxx), eN

)
. ()

Hence, by ()-() and Hölder’s inequality, we get

–b
(|ux| – |uNx|, eN

)
≤ |b| sup

x∈[,]
|ux + uNx| ·

(‖eN‖‖eNx‖ + ‖ηN‖‖eNx‖
)

+ |b| sup
x∈[,]

|eN | · ‖eN + ηN‖‖uxx + uNxx‖

≤ |b| sup
x∈[,]

|ux + uNx| ·
(‖eN‖‖eNx‖ + ‖ηN‖‖eNx‖

)
+C|b|‖eNx‖ · ‖eN + ηN‖‖uxx + uNxx‖

≤ (c + c)|b|
(

‖eNx‖ + 

‖eN‖ + 


‖ηN‖

)

+ C(c + c)|b|
(

ε‖eNx‖ + 
ε

‖eN‖ + 
ε

‖ηN‖
)

≤ (c + c)|b|
(

ε‖eNxx‖ +
(


+


ε

)
‖eN‖ + 


‖ηN‖

)

+ C(c + c)|b|
(

ε‖eNxx‖ +
(


ε

+
ε



)
‖eN‖ + 

ε
‖ηN‖

)
,

where ε ∈ R
+ is a constant. Summing up, we get

d
dt

‖eN‖ + 
(
k –

[
(c + c)|b| + C(c + c)|b|

]
ε
)‖eNxx‖

≤ k‖eNx‖ + c‖eN‖ + c‖ηN‖

= –k(eN , eNxx) + c‖eN‖ + c‖ηN‖

≤ ε‖eNxx‖ +
(
k

ε
+ c

)
‖eN‖ + c‖ηN‖, ()

http://www.advancesindifferenceequations.com/content/2013/1/156
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where

c = |γ | + 

(
c + cc + c

)
+

(


+


ε

)
(c + c)|b| +

(

ε
+

ε



)
C(c + c)|b|,

c =


(
c + cc + c

)
+


(c + c)|b| + 

ε
C(c + c)|b|.

From Theorem . and (B), we have

‖ηN‖ ≤ cN–‖uxx‖ ≤ c
(
k,a,b,T ,‖u‖H

)
N–. ()

Then a simple calculation shows that

d
dt

‖eN‖ + [

(
k –

[
(c + c)|b| + C(c + c)|b|

]
ε
)
– ε

]‖eNxx‖
≤

(
k

ε
+ c

)
‖eN‖ + c‖ηN‖ ≤

(
k

ε
+ c

)
‖eN‖ + ccN

–, ()

where ε is small enough, it satisfies (k – [(c + c)|b|+ C(c + c)|b|]ε) – ε > . Therefore,
by Gronwall’s inequality, we deduce that

‖eN‖ ≤ e(

ε +c)T

∥∥eN ()∥∥ +
cc

( + c)ε
N–. ()

Hence, the proof is completed. �

3 Fully discrete scheme
In this section, we set up a full-discretization scheme for problem ()-() and consider the
fully discrete scheme which implies the pointwise boundedness of the solution.
Let �t be the time-step. The full-discretization spectral method for problem ()-() is

read as: find ujN ∈ SN (j = , , , . . . ,N ) such that for any vN ∈ SN , the following holds:

(
uj+N – ujN

�t
, vN

)
+ k

(
ūj+




Nxx, vNxx
)
– k

(
ūj+




Nx , vNx
)

+ a
(
ūj+




N , vN
)
+ b

((
ūj+




Nx
), vN)

+
((
ūj+




N
), vN)

= , ()

with uN () = PNu, where ū
j+ 


N = 

 (u
j
N + uj+N ).

The solution ujN has the following property.

Lemma . Assume that u ∈H
E(, ) and b ≤ k. Suppose that ujN is a solution of prob-

lem (), then there exist positive constants c, c, c, c, c depending only on k, a, b, T
and ‖u‖H such that

∥∥ujN∥∥ ≤ c,
∥∥ujNx∥∥ ≤ c,

∥∥ujNxx∥∥ ≤ c.

Furthermore, we have

sup
x∈[,]

∣∣ujN ∣∣ ≤ c, sup
x∈[,]

∣∣ujNx∣∣ ≤ c.

http://www.advancesindifferenceequations.com/content/2013/1/156
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Proof It can be proved the same as Lemmas .-.. Since the proof is so easy, we omit
it. �

In the following, we analyze the error estimates between numerical solution ujN and
exact solution u(tj). According to the properties of the projection operator PN , we only
need to analyze the error between PNu(tj) and ujN . Denoted by uj = u(tj), ej = PNuj – ujN
and ηj = uj – PNuj. Therefore

uj – ujN = ηj + ej.

If no confusion occurs, we denote the average of the two instant errors en and en+ by ēn+ 
 ,

where ēn+ 
 = en+en+

 . On the other hand, we let η̄j+ 
 = ηj+ηj+

 .
Firstly, we give the following error estimates for the full discretization scheme.

Lemma . For the instant errors ej+ and ej, we have

∥∥ej+∥∥ ≤ ∥∥ej∥∥ + �t
(
ut(tj+ 


) –

uj+N – ujN
�t

, ēj+



)

+



(�t)

∫ tj+

tj
‖uttt‖ dt +�t

∥∥ēj+ 

∥∥. ()

Proof Applying Taylor’s expansion about tj+ 

, using Hölder’s inequality, we can prove the

lemma immediately. Since the proof is the same as [], we omit it. �

Taking the inner product of () with ēj+ 
 , and letting t = tj+ 


, we obtain

(
uj+




t , ēj+


)
+

(
kuj+




xx , ēj+



xx
)
– k

(
uj+




x , ēj+



x
)
+ a

(
uj+


 , ēj+



)

+ b
((
uj+




x
), ēj+ 


)
+

((
uj+



), ēj+ 


)
= .

Taking vN = ēn+ 
 in (), we obtain

(
uj+N – ujN

�t
, ēj+




)
+ k

(
ūj+




Nxx, ē
j+ 


xx

)
– k

(
ūj+




Nx , ē
j+ 


x

)
+ a

(
ūj+




N , ēj+


)

+ b
((
ūj+




Nx
), ēj+ 


)
+

((
ūj+




N
), ēj+ 


)
= .

Comparing the above two equations, we get

(
uj+




t –
uj+N – ujN

�t
, ēj+




)

= –k
(
uj+




xx – ūj+



Nxx, ē
j+ 


xx

)
+ k

(
uj+




x – ūj+



Nx , ē
j+ 


x

)
– a

(
uj+


 – ūj+




N , ēj+


)

– b
((
uj+




x
) – (

ūj+



Nx
), ēj+ 


)
–

((
uj+



) – (

ūj+



N
), ēj+ 


)
.

So, we investigate the error estimates of the five items on the right-hand side of the previ-
ous equation.
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Lemma . Suppose that u ∈ H
E(, ) and b ≤ k, u is the solution for problem ()-()

and ujN is the solution for problem (), then

–k
(
uj+




xx – ūj+



Nxx, ē
j+ 


xx

) ≤ –
k

∥∥ēj+ 


xx

∥∥ +
k(�t)



∫ tj+

tj
‖uxxtt‖ dt.

Proof Using Taylor’s expansion, we obtain

uj = uj+

 –

�t

uj+




t +
∫ tj+ 



tj
(t – tj)utt dt,

uj+ = uj+

 +

�t

uj+




t +
∫ tj+

tj+ 


(tj – t)utt dt.

Hence



(
uj + uj+

)
– uj+


 =




(∫ tj+ 


tj
(t – tj)utt dt +

∫ tj+

tj+ 


(tj – t)utt dt
)
.

By Hölder’s inequality, we have

∥∥∥∥uj+ 


xx –


(
ujxx + uj+xx

)∥∥∥∥


=



∥∥∥∥
(∫ tj+ 



tj
(t – tj)utt dt +

∫ tj+

tj+ 


(tj – t)utt dt
)
xx

∥∥∥∥


≤ (�t)



∫ tj+

tj
‖uxxtt‖ dt.

Noticing that (η̄j+ 


xx , ēj+



xx ) = . Therefore

–
(
uj+




xx – ūj+



Nxx, ē
j+ 


xx

)
= –

(
uj+




xx –
ujxx + uj+xx


, ēj+




xx

)
–

(
uj+xx + ujxx


–
uj+Nxx + ujNxx


, ēj+




xx

)

≤
∥∥∥∥uj+ 


xx –

ujxx + uj+xx



∥∥∥∥∥∥ēj+ 


xx
∥∥ –

(
η̄
j+ 


xx + ēj+




xx , ēj+



xx
)

≤
(
(�t)



∫ tj+

tj
‖uxxtt‖ dt

) 
 ∥∥ēj+ 


xx

∥∥ –
(
η̄
j+ 


xx , ēj+




xx
)
–

∥∥ēj+ 


xx
∥∥

≤ (�t)



∫ tj+

tj
‖uxxtt‖ dt – 


∥∥ēj+ 


xx

∥∥.

Then Lemma . is proved. �

Lemma . Suppose that u ∈ H
E(, ) and b ≤ k, u is the solution for problem ()-()

and ujN is the solution for problem (), then

k
(
uj+




x – ūj+



Nx , ē
j+ 


x

)
≤ k


∥∥ēj+ 


xx

∥∥ + k
∥∥ēj+ 


∥∥ + kcN– +

k(�t)



∫ tj+

tj
‖utt‖ dt,

where c is the same constant as ().
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Proof Noticing that ‖η̄j+ 
 ‖ ≤ cN–. Hence


(
uj+




x – ūj+



Nx , ē
j+ 


x

)
= –

(
uj+


 – ūj+




N , ēj+



xx
)

= –
(
uj+


 – ūj+


 , ēj+




xx
)
– 

(
uj+ + uj


–
uj+N + ujN


, ēj+




xx

)

≤ 
∥∥∥∥uj+ 

 –
uj+ + uj



∥∥∥∥∥∥ēj+ 


xx
∥∥ + 

∥∥∥∥uj+ + uj


–
uj+N + ujN



∥∥∥∥∥∥ēj+ 


xx
∥∥

≤ 
∥∥∥∥
∫ tj+ 



tj
(t – tj)utt dt +

∫ tj+

tj+ 


(tj+ – t)utt dt
∥∥∥∥∥∥ēj+ 


xx

∥∥ + 
∥∥ēj+ 

 + η̄j+ 

∥∥∥∥ēj+ 


xx

∥∥

≤ 
(
(�t)



∫ tj+

tj
‖utt‖ dt

) 
 ∥∥ēj+ 


xx

∥∥ + 
∥∥ēj+ 


∥∥∥∥ēj+ 


xx

∥∥ + 
∥∥η̄j+ 


∥∥∥∥ēj+ 


xx

∥∥
≤ ε

∥∥ēj+ 


xx
∥∥ +


ε

(∥∥ēj+ 

∥∥ + cN–) + (�t)

ε

∫ tj+

tj
‖utt‖ dt.

In the above inequality, setting ε = 
 , we get the conclusion. �

Lemma . Suppose that u ∈ H
E(, ) and b ≤ k, u is the solution for problem ()-()

and ujN is the solution for problem (), then

–a
(
uj+


 – ūj+




N , ēj+


)

≤ |a|∥∥ēj+ 

∥∥ + |a|cN– +

|a|(�t)



∫ tj+

tj
‖utt‖ dt,

where c is the same constant as ().

Proof We have

–a
(
uj+


 – ūj+




N , ēj+


)

= –a
(
uj+


 –

uj+ + uj


, ēj+




)
+ a

(
uj+ – uj


– ūj+




N , ēj+



)

≤ |a|
∥∥∥∥uj+ 

 –
uj+ + uj



∥∥∥∥∥∥ēj+ 

∥∥ + |a|

∥∥∥∥uj+ – uj


– ūj+




N

∥∥∥∥∥∥ēj+ 

∥∥

≤ |a|
∥∥∥∥
∫ tj+ 



tj
(t – tj)utt dt +

∫ tj+

tj+ 


(tj+ – t)utt dt
∥∥∥∥∥∥ēj+ 


∥∥ + |a|∥∥ēj+ 

 + η̄j+ 

∥∥∥∥ēj+ 


∥∥

≤ |a|
(
(�t)



∫ tj+

tj
‖utt‖ dt

) 
 ∥∥ēj+ 


∥∥ + |a|(∥∥ēj+ 


∥∥ +

∥∥η̄j+ 

∥∥∥∥ēj+ 


∥∥)

≤ |a|∥∥ēj+ 

∥∥ + |a|cN– +

|a|(�t)



∫ tj+

tj
‖utt‖ dt.

Then Lemma . is proved. �
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Lemma . Suppose that u ∈ H
E(, ) and b ≤ k, u is the solution for problem ()-()

and ujN is the solution for problem (), then

–b
((
uj+




x
) – (

ūj+



Nx
), ēj+ 


)

≤ k


∥∥ēj+ 


xx
∥∥ +

c|b|(�t)



∫ tj+

tj
‖uxtt‖ dt + ccN– + c

∥∥ēj+ 

∥∥,

where C ∈R
+, c = c|b| + c|b| +C|b|(c + c) and c = c|b| + c + c

k .

Proof Notice that

sup
x∈[,]

∣∣ux(x, t)∣∣ ≤ c,
∥∥uxx(x, t)∥∥ ≤ c,

∥∥ujNxx∥∥ ≤ c, sup
x∈[,]

∣∣ujNx∣∣ ≤ c.

Hence

–b
((
uj+




x
) – (

ūj+



Nx
), ēj+ 


)

= –b
((

uj+



x +
uj+x + ujx



)(
uj+




x –
uj+x + ujx



)
, ēj+




)

– b
((

uj+x + ujx


+ ūj+



Nx

)(
uj+x + ujx


– ūj+




Nx

)
, ēj+




)

= –b
((

uj+



x +
uj+x + ujx



)(
uj+




x –
uj+x + ujx



)
, ēj+




)

+ b
((

uj+x + ujx


+ ūj+



Nx

)(
uj+ + uj


–
uj+N + ujN



)
, ēj+




x

)

+ b
((

uj+xx + ujxx


+
uj+Nxx + ujNxx



)(
uj+ + uj


–
uj+N + ujN



)
, ēj+




)
. ()

We have used the method of integration by parts in (). Then

–b
((
uj+




x
) – (

ūj+



Nx
), ēj+ 


)

≤ |b| sup
x∈[,]

∣∣∣∣uj+ 


x +
uj+x + ujx



∣∣∣∣ ·
∥∥∥∥uj+ 


x –

uj+x + ujx


∥∥∥∥∥∥ēj+ 

∥∥

+ |b| sup
x∈[,]

∣∣∣∣u
j+
x + ujx


+ ūj+



Nx

∣∣∣∣ ·
∥∥∥∥uj+ + uj


–
uj+N + ujN



∥∥∥∥∥∥ēj+ 


x
∥∥

+ |b| sup
x∈[,]

∣∣ēj+ 

∣∣ ·

∥∥∥∥u
j+
xx + ujxx


+
uj+Nxx + ujNxx



∥∥∥∥
∥∥∥∥uj+ + uj


–
uj+N + ujN



∥∥∥∥
≤ c|b|

∥∥∥∥
∫ tj+ 



tj
(t – tj)uxtt dt +

∫ tj+

tj+ 


(tj+ – t)uxtt dt
∥∥∥∥∥∥ēj+ 


∥∥

+
(
c|b| + c|b| +C|b|(c + c)

)∥∥ēj+ 
 + η̄j+ 


∥∥∥∥ēj+ 


x

∥∥
≤ c|b| (�t)



∫ tj+

tj
‖uxtt‖ dt + c|b|

∥∥ēj+ 

∥∥ + ε

∥∥ēj+ 


xx
∥∥
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+ c
(∥∥ēj+ 


∥∥ +

∥∥η̄j+ 

∥∥) + c

ε
∥∥ēj+ 


∥∥

≤ ε
∥∥ēj+ 


xx

∥∥ +
c|b|(�t)



∫ tj+

tj
‖uxtt‖ dt +

(
c|b| + c +

c
ε

)∥∥ēj+ 

∥∥ + ccN–.

Setting ε = k
 in the above inequality, we obtain the conclusion. �

Lemma . Suppose that u ∈ H
E(, ) and b ≤ k, u is the solution for problem ()-()

and ujN is the solution for problem (), then

–
((
uj+



) – (

ūj+



N
), ēj+ 


) ≤ (�t)



∫ tj+

tj
‖utt‖ dt + c

∥∥ēj+ 

∥∥ + ccN–,

where c =
c
 + (c + cc + c), c = c + cc + c.

Proof Notice that

sup
x∈[,]

∣∣uj∣∣ ≤ c, sup
x∈[,]

∣∣ujN ∣∣ ≤ c.

Hence

–
((
uj+



) – (

ūj+



N
), ēj+ 


)

= –
((

uj+


) –(

uj+ + uj



)

, ēj+



)
–

((
uj+ + uj



)

–
(
ūj+




N
), ēj+ 



)

≤ sup
x∈[,]

∣∣∣∣(uj+ 

) + uj+



uj+ + uj


+

(
uj+ + uj



)∣∣∣∣
∥∥∥∥uj+ 

 –
uj+ + uj



∥∥∥∥∥∥ēj+ 

∥∥

+ sup
x∈[,]

∣∣∣∣
(
uj+ + uj



)

+ ūj+



N
uj+ + uj


+

(
ūj+




N
)∣∣∣∣

∥∥∥∥uj+ + uj


– ūj+




N

∥∥∥∥∥∥ēj+ 

∥∥

≤ c

∥∥∥∥
∫ tj+ 



tj
(t – tj)utt dt +

∫ tj+

tj+ 


(tj+ – t)utt dt
∥∥∥∥∥∥ēj+ 


∥∥

+
(
c + cc + c

)∥∥ēj+ 
 + η̄j+ 


∥∥∥∥ēj+ 


∥∥

≤ (�t)



∫ tj+

tj
‖utt‖ dt +

(
c


+ 
(
c + cc + c

))∥∥ēj+ 

∥∥

+
(
c + cc + c

)∥∥η̄j+ 

∥∥

≤ (�t)



∫ tj+

tj
‖utt‖ dt + c

∥∥ēj+ 

∥∥ + ccN–.

Then Lemma . is proved. �

Now, we obtain the following theorem.

Theorem . Suppose that u ∈ H
E(, ) and b ≤ k, u(x, t) is the solution for problem

()-() satisfying

u ∈ L∞(
,T ;H(, )

)
, utt ∈ L

(
,T ;H(, )

)
, uttt ∈ L

(
,T ;L(, )

)
.
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Suppose further that ujN is the solution for problem (). Then if �t is sufficiently small,
there exist positive constants c depending on k, a, b, T , ‖u‖H and c depending on k,
a, b, T , ‖u‖H ,

∫ T
 ‖utt‖H dt and

∫ T
 ‖uttt‖ dt such that, for j = , , , . . . ,N ,

∥∥ej+∥∥ ≤ c
(
N– +

∥∥e∥∥)
+ c(�t).

Proof By Lemmas .-., we obtain

∥∥ej+∥∥ ≤ ∥∥ej∥∥ +�tc
(∥∥ej+∥∥ +

∥∥ej∥∥ +N–)
+ (�t)c

∫ tj+

tj

(‖utt‖ + ‖uxtt‖ + ‖uxxtt‖ + ‖uttt‖
)
dt,

where c and c are positive constants depending only on k, a, b, T and ‖u‖H . For �t
being sufficiently small such that c�t ≤ 

 , setting c = (c + c), we get

∥∥ej+∥∥ ≤ ( + c�t)
∥∥ej∥∥ + c

(
�tN– + (�t)Bj),

where

Bj =
∫ tj+

tj

(‖utt‖ + ‖uxtt‖ + ‖uxxtt‖ + ‖uttt‖
)
dt.

Using Gronwall’s inequality for the discrete form, we have

∥∥ej+∥∥ ≤ ec(j+)�t

(∥∥e∥∥ + c

(
j�tN– + (�t)

j∑
i=

Bi

))
.

Direct computation shows that

j∑
i=

Bi ≤
∫ tj+



(‖utt‖ + ‖uxtt‖ + ‖uxxtt‖ + ‖uttt‖
)
dt.

Thus, Theorem . is proved. �

Furthermore, we have the following theorem.

Theorem . Suppose that u ∈ H
E(, ) and b ≤ k, u(x, t) is the solution for problem

()-() satisfying

u ∈ L∞(
,T ;H(, )

)
, utt ∈ L

(
,T ;H(, )

)
, uttt ∈ L

(
,T ;L(, )

)
.

Suppose further that ujN ∈ SN (j = , , , . . .) is the solution for problem () and the initial
value uN satisfies ‖e‖ = ‖PNu – uN‖ ≤ cN–‖uxx‖. Then there exist positive constants
c′ depending on k, a, b, T , ‖u‖H and c′′ depending on k, a, b, T , ‖u‖H ,

∫ T
 ‖utt‖H dt,∫ T

 ‖uttt‖ dt such that

∥∥u(x, tj) – ujN
∥∥ ≤ c′N– + c′′(�t), j = , , , . . . ,N .
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4 Numerical results
In this section, using the spectral method described in (), we carry out some numerical
computations to illustrate out results in previous section. The full-discretization spectral
method is read as: For vl = sin lπx, l = , . . . ,N , find

unN =
N∑
i=

αn
i sin iπx, i = , . . . ,N ,

such that () holds.
Noticing that under the inner product (·, ·), {sin iπx, i = , , . . .} is the system of orthog-

onal functions, then

∫ 


sin iπx · sin iπxdx =

{
, i �= i,

 , i = i.

()

Therefore, the terms of () are

(
uj+N – ujN

�t
, vl

)
=

α
j+
l – α

j
l

�t
,

k
(
ūj+




Nxx, vlxx
)
=
k

(
uj+Nxx + ujNxx, vlxx

)
=
k

(lπ )

(
α
j+
l + α

j
l
)
,

–k
(
ūj+




Nx , vlx
)
= k

(
uj+N + ujN , vlxx

)
= –

k

(lπ )

(
α
j+
l + α

j
l
)
,

a
(
ūj+




N , vl
)
=
a

(
uj+N + ujN , vl

)
=
a


(
α
j+
l + α

j
l
)
,

b
((
ūj+




Nx
), vl) = b


((
uj+Nx + ujNx

), vl)

=
b


N∑
p,p=

ppπ
(
αj+
p αj+

p + αj
pα

j
p + αj+

p αj
p

)
ξppl

and

((
ūj+




N
), vl)

=



N∑
p,p,p=

(
αj+
p αj+

p αj+
p + αj+

p αj+
p αj

p + αj+
p αj

pα
j
p + αj

pα
j
pα

j
p

)
ηpppl,

where

ξppl =
∫ 


cospπx · cospπx · sin lπxdx,

ηpppl =
∫ 


sinpπx · sinpπx · sinpπx · sin lπxdx.

Thus, () can be transformed as

α
j+
l – α

j
l

�t
+

(
k

(lπ ) –

k

(lπ ) +

a


)(
α
j+
l + α

j
l
)
+
b


ρl +


σl = , ()
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where l = , . . . ,N , and

ρl =
N∑

p,p=

ppπ(αj+
p αj+

p + αj
pα

j
p + αj+

p αj
p

)
ξppl,

σl =
N∑

p,p,p=

(
αj+
p αj+

p αj+
p + αj+

p αj+
p αj

p + αj+
p αj

pα
j
p + αj

pα
j
pα

j
p

)
ηpppl.

If αn
k (k = , , . . . ,N ) is known, there exists an N variable nonlinear system of equations

for α
j+
l (l = , , . . . ,N ) which can be seen as

F
(
αj+) =

⎛
⎜⎜⎜⎜⎝
f(αj+)
f(αj+)

...
fN (αj+)

⎞
⎟⎟⎟⎟⎠ = .

We use the simple Newton method to seek the solutions. Initialization yields

α
j+
() =

(
α
j
,α

j
, . . . ,α

j
N
)T . ()

The iterative formulation is as follows:

α
j+
(k+) = α

j+
(k) +�α

j+
(k) ,

F′(αj+
() ) · �α

j+
(k) + F(αj+

(k) ) = , k = , , , . . . ,

}
()

where F′(αj+
() ) is the N ×N order Jacobi matrix for F(αj+) when αj+ = α

j+
() ,

F′(αj+
()

)
=

⎛
⎜⎜⎝

∂f(α
j+
() ), . . . , ∂Nf(α

j+
() )

...
. . .

...
∂fN (α

j+
() ), . . . , ∂NfN (α

j+
() )

⎞
⎟⎟⎠ . ()

Give accuracy ε > , when ‖αj+
(k+) – α

j+
(k) ‖ < ε, stop the iteration, αj+ ≈ α

j+
(k+).

As an example, we choose k = , a = , b = , u = ( – x)x, �t = ., N = , and
get the solution which evolves from t =  to t = . (cf. Figure ).

Figure 1 Expanded property of solution when
N = 32, �t = 0.0005.
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Table 1 Errors of different time steps at t = 0.1

�t err(0.1,�t) err(0.1,�t)
(�t)2

0.001 1.6808× 10–6 1.6808
0.001× 1

2 2.2439× 10–7 0.8976
0.001× 1

4 2.6068× 10–8 0.4171
0.001× 1

8 2.8494× 10–9 0.1824
0.001× 1

16 2.8754× 10–10 0.0736

Table 2 Errors of different basic function numbers at t = 0.1

N err(0.1,�t0)
err(0.1,�t0)

N–2

24 2.28708× 10–10 1.32× 10–7

28 1.3588× 10–10 1.07× 10–7

32 7.32182× 10–11 7.50× 10–8

36 3.87087× 10–11 5.02× 10–8

40 2.03256× 10–11 3.25× 10–8

Now,we consider the variation of error. Since there is no exact solution for ()-() known
to us, we make a comparison between the solution of () on coarse meshes and a fine
mesh.
Choose �t = ., .× 

 , .× 
 , .× 

 , .× 
 , .× 

 , respectively,
to solve (). Set umin

N (x, .) as the solution for �tmin = .× 
 . Denote

err(.,�t) =
(∫ 



(
ukN (x, .) – umin

N (x, .)
) dx) 


, k = , , . . . , . ()

Then the error is showed in Table  at t = ..
On the other hand, chooseN = , , , , , �t = .× 

 , respectively, to solve
(). Then the error is showed in Table  at t = ..
It is easy to see that the third column err(.,�t)

(�t) of Table  is monotone decreasing along
with the time step’s waning, the third column err(.,�t)

N– of Table  is monotone decreasing
along withN ’s magnifying. Hence, we can find positive constants C = ., C = .×
– such that

err(.,�t)
(�t)

≤ C, k = , , . . . , 

and

err(.,�t)
N– ≤ C, N = , , , , .

Thus, the order of error estimates is O((�t) +N–) proved in Theorem ..
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