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Abstract
In the paper, we prove a new fixed point theorem of nonlinear quasi-contractions in
non-normal cone metric spaces, which partially improve the recent results of
Arandelović and Kečkić’s and of Li and Jiang since some of the essential conditions
therein are removed. A suitable example is presented to show the usability of our
theorem. It is worth mentioning that the results in this paper could not be derived
from the corresponding results in the setting of metric spaces by using a scalarization
function or a Minkowski functional.
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1 Introduction
In , Huang and Zhang [] introduced the concept of cone metric spaces, as a gener-
alization of metric spaces, and gave the version of the Banach contraction principle and
other basic theorems in the setting of cone metric spaces. Later on, by omitting the as-
sumption of normality of the cone, Rezapour and Hamlbarani [] improved the relevant
results of [], and presented a number of examples to support the existence of non-normal
cones, which shows that such generalizations are meaningful. Since then, many authors
have been interested in the study of fixed point results in non-normal cone metric spaces;
see [–]. In the preceding references except [–, , ], the involving contractions are
always assumed to be restricted with a constant.
There are some references concerned with the problem of whether cone metric spaces

are equivalent tometric spaces in terms of the existence of the fixed points of themappings
in cone metric spaces; see [–]. Actually, it has been shown that each cone metric space
(X,d) is equivalent to a usual metric space (X,de), where the real-valued metric function
de is defined by a nonlinear scalarization function [] or by a Minkowski functional [].
Besides, it has been pointed out in [] that many fixed point generalizations obtained
in cone metric spaces are not real generalizations, and the authors should take care in
obtaining real fixed point generalizations in cone metric spaces.
In , Ćirić [] introduced Ćirić’s quasi-contractions in metric spaces as one of the

most general classes of contractive-type mappings, and proved the well-known theorem
that everyĆirić’s quasi-contractionT has a unique fixed point, whichwas then generalized
to cone metric spaces by [–]. There were many works concerned with the fixed point
results of contractions or quasi-contractions restricted with nonlinear comparison func-
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tions, we refer the readers to [–]. Recently, Arandelović and Kečkić [] considered
nonlinear quasi-contractions in cone metric spaces, and by using the nonlinear scalar-
ization method of Du [], they obtained several fixed point theorems of nonlinear quasi-
contractions and quasi-contractions restricted with linear contractive boundedmappings
in cone metric spaces over locally convex Hausdorff topological vector spaces with the
assumption that (I –A)(intP) ⊂ intP. Very recently, Li and Jiang [] removed the contrac-
tive condition of linear boundedmappings appearing in [], and they proved a fixed point
result of quasi-contractions restricted with linear boundedmappings in non-normal cone
metric spaces at the expense of

un
w→ θ ⇒ Aun

w→ θ , ∀{un} ⊂ P. (H)

In this paper, we first show that every nondecreasing mapping A : P → P satisfies the
condition (H) provided that it is continuous at θ and Aθ = θ (see Lemma ), and conse-
quently, the condition (H) in [] is superfluous and could be omitted; see Remark . Then
by using Lemma , we prove a new fixed point theorems of nonlinear quasi-contractions
in non-normal cone metric spaces, which improved the relevant results of [, ] since
the conditions (I –A)(intP) ⊂ intP and (H) are removed. In addition, a suitable example is
presented to show the usability of our theorem.
It is worth mentioning that the results in this paper could not be derived from the cor-

responding results in the setting of metric spaces by the methods of [, ] and also cannot
be obtained by any existing fixed point results in cone metric spaces. Hence the results in
this paper are real generalizations.

2 Preliminaries
Let (E,‖ · ‖) be a normed vector space. A cone of E is a nonempty closed subset P of E
such that ax+ by ∈ P for each x, y ∈ P and each a,b≥ , and P∩ (–P) = {θ}, where θ is the
zero element of E. A cone P of E determines a partial order 
 on E by x 
 y ⇔ y – x ∈ P
for each x, y ∈ X. In this case E is called an ordered normed vector space.
A cone P of a normed vector space E is solid if intP �= ∅, where intP is the interior of P.

For each x, y ∈ E with y–x ∈ intP, we write x� y. Let P be a solid cone of a normed vector
space E. A sequence {un} of E weakly converges [] to u ∈ E (denote un

w→ u) if for each
ε ∈ intP, there exists a positive integer n such that u – ε � un � u + ε for all n≥ n.
A cone P of E is normal if the unit ball is order-convex, which is equivalent to the con-

dition that there is some positive number N such that x, y ∈ E and θ 
 x 
 y implies that
‖x‖ ≤ N‖y‖, and the minimalN is called a normal constant of P. Another equivalent con-
dition is that

inf
{‖x + y‖ : x, y ∈ P and ‖x‖ = ‖y‖ = 

}
> .

Then it is not hard to conclude that P is non-normal if and only if there exists a sequence
{un}, {vn} ⊂ P such that

un + vn
‖·‖→ θ � un

‖·‖→ θ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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which implies that the sandwich theorem does not hold in the case that P is non-normal.
However, in the sense of weak convergence, the sandwich theorem still holds even if P is
non-normal, and we have the following lemma.

Lemma  (see [, ]) Let P be a solid cone of a normed vector space (E,‖ · ‖) and
{un}, {vn}, {zn} ⊂ E. If

un 
 zn 
 vn, ∀n,

and there exists some z ∈ E such that un
w→ z and vn

w→ z, then zn
w→ z.

Lemma  (see []) Let P be a solid cone of a normed vector space (E,‖ · ‖). Then for each
sequence {un} ⊂ E, un

‖·‖→ u implies un
w→ u.

Lemma  Let P be a solid cone of a normed vector space (E,‖ · ‖) and A : P → P a nonde-
creasing mapping. If A is continuous at θ and Aθ = θ , then it satisfies (H).

Proof Let {un} be a sequence of P such that un
w→ θ . It suffices to show Aun

w→ θ .
Fix ε ∈ intP. It is clear that ε

m ∈ intP for each m. From un
w→ u we find that, for each m,

there exists nm such that un � ε
m for each n ≥ nm. Since A is nondecreasing, Aun 
 A( ε

m )

for each n≥ nm. Note that ε
m

‖·‖→ θ (m→ ∞), then A( ε
m )

‖·‖→ θ (m→ ∞) sinceA is continu-
ous at θ andAθ = θ . Hence by Lemma ,A( ε

m )
w→ θ (m→ ∞), which implies that, for each

c ∈ intP, there existsm such that A( ε
m ) � c for eachm ≥ m. Therefore we have Aun � c

for each n≥ um , i.e., Aun
w→ θ (n→ ∞). The proof is complete. �

Remark  Every linear bounded mapping A : P → P is certainly nondecreasing and con-
tinuous at θ , and hence it satisfies the condition (H) by Lemma . Therefore in Theorem 
of [], the condition (H) is superfluous and could be omitted.

Let X be a nonempty set and P be a cone of a topological vector space E. A cone metric
on X is a mapping d : X ×X → P such that, for each x, y, z ∈ X,
(d) d(x, y) = θ ⇐⇒ x = y;
(d) d(x, y) = d(y,x);
(d) d(x, y) 
 d(x, z) + d(z, y).

The pair (X,d) is called a conemetric space over P. A conemetric d on X over a solid cone
P generates a topology τd on X which has a base of the family of open d-balls {Bd(x, ε) :
x ∈ X, θ � ε}, where Bd(x, ε) = {y ∈ X : d(x, y)� ε} for each x ∈ X and each ε ∈ intP.
Let (X,d) be a cone metric space over a solid cone P of a normed vector space E. A se-

quence {xn} of X converges [, ] to x ∈ X (denote by xn
τd→ x) if d(xn,x)

w→ θ . A sequence
{xn} of X is Cauchy [, ], if d(xn,xm)

w→ θ . The cone metric space (X,d) is complete [, ],
if each Cauchy sequence {xn} of X converges to a point x ∈ X.

3 Main results
Let P be a solid cone of a normed vector space (E,‖ · ‖). A mapping T : X → X is called a
quasi-contraction, if there exists a mapping A : P → P such that

d(Tx,Ty) ≤ Au, ∀x, y ∈ X, ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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where u ∈ {d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}. In particular when A is a linear
bounded mapping, T is reduced to the one considered in [].
Some slight modifications of the proof of [, Theorem ] yield the following result.

Theorem  Let (X,d) be a complete cone metric space over a solid cone P of a normed
vector space (E,‖ · ‖) and T : X → X a quasi-contraction. Assume that A : P → P is a
nondecreasing and subadditive (i.e., A(u + v) 
 Au + Av for each u, v ∈ P) mapping with
Aθ = θ such that

∞∑
i=

∥∥Aiu
∥∥ < ∞, ∀u ∈ P. ()

If A and B are continuous at θ , where Bu =
∑∞

i=Aiu for each u ∈ P. Then T has a unique
fixed point x∗ ∈ X, and for each x ∈ X, the Picard iterative sequence {xn} converges to x∗,
where xn = Tnx for each n.

Remark  In particular when A : P → P is a linear bounded mapping with the spectra
radius r(A) < , then () is naturally satisfied and B is continuous on P since B = (I – A)–

and (I –A)– : P → P is a linear bounded mapping, where (I –A)– is the inverse of I –A.

The following example shows that there exists some nonlinear mapping A : P → P such
that () is satisfied and B is continuous at θ .

Example  Let E = C
R
[, ] be endowed with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ and P = {u ∈

E : u(t) ≥ ,∀t ∈ [, ]} which is a non-normal cone []. Let (Au)(t) = a
∫ t
 u

 ds for each
u ∈ P and each t ∈ [, ], where a > .
For each u ∈ P, we have (Anu)(t)≤ (at)n

n! ‖u‖ 
∞ ≤ an

n! ‖u‖ 
 for each t ∈ [, ] and each n ≥ ,

and so ‖Anu‖∞ ≤ an
n! ‖u‖ 

 for each n≥ . Note that (Anu)′(t) = a(An–u)  (t) for each u ∈ P

and each t ∈ [, ], then ‖(Anu)′‖∞ ≤ a
n+
√

(n–)!‖u‖ 
 for each u ∈ P and n ≥ . Thus for each

u ∈ P, we have

∥∥Anu
∥∥ =

∥∥Anu
∥∥∞ +

∥∥(
Anu

)′∥∥∞ ≤ an

n!
‖u‖ 

 +
an+

√
(n – )!

‖u‖ 
 , ∀n≥ ,

and so

∞∑
i=

∥∥Aiu
∥∥ ≤ ‖u‖ + a‖u‖ 

 +

( ∞∑
i=

ai

i!

)
‖u‖ 

 +

( ∞∑
i=

a i+
√
i!

)
‖u‖ 

 ,

which implies that () is satisfied since the series
∑∞

i=
ai
i! and

∑∞
i=

a
i+
√
i! are convergent.

Note that Bθ = θ , then for each u ∈ P we have

‖Bu – Bθ‖ = ‖Bu‖ ≤
∞∑
i=

∥∥Aiu
∥∥

≤ ‖u‖ + a‖u‖ 
 +

( ∞∑
i=

ai

i!

)
‖u‖ 

 +

( ∞∑
i=

a i+
√
i!

)
‖u‖ 

 ,

which implies that B is continuous at θ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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Proof of Theorem  It follows from () that themapping B is well defined. Clearly, B(P) ⊂ P
and Bθ = θ since A(P) ⊂ (P) and Aθ = θ . By (), we get

lim
n→∞

∥∥Anu
∥∥ = , ∀u ∈ P. ()

Since A and B are commutative,

BA = AB, B(I –A) = (I –A)B = B –AB = I. ()

We claim that, for all n ≥ ,

d(xi,xj) 
 BAd(x,x), ∀≤ i, j ≤ n. ()

In the following we shall show this claim by induction.
If n = , then i = j = , and so the claim is trivial.
Assume that () holds for n. To prove () holds for n + , it suffices to show

d(xi ,xn+)
 BAd(x,x), ∀ ≤ i ≤ n. ()

By (),

d(xi ,xn+)
 Au, ()

where

u ∈ {
d(xi–,xn),d(xi–,xi ),d(xn,xn+),d(xi–,xn+),d(xn,xi )

}
.

Consider the case that i = .
If u = d(x,xn), then by the triangle inequality, the nondecreasing property of A, (), and

(),

d(xi ,xn+) 
 Ad(x,xn)
 A
[
d(x,x) + d(x,xn)

]

 A

[
d(x,x) + BAd(x,x)

]
= A(I + BA)d(x,x)

= A

(
I +

∞∑
i=

Ai

)
d(x,x) = BAd(x,x),

i.e., () holds.
If u = d(x,x), then by () and A(P) ⊂ P,

d(xi ,xn+)
 Ad(x,x) 

( ∞∑

i=

Ai

)
d(x,x) = BAd(x,x),

i.e., () holds.
If u = d(x,xn+), then by the triangle inequality, the nondecreasing property and subad-

ditivity of A, (), and A(P) ⊂ P,

d(xi ,xn+)
 Ad(x,xn+) 
 A
[
d(x,x) + d(xi ,xn+)

] 
 Ad(x,x) +Ad(xi ,xn+),

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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which implies that

(I –A)d(xi ,xn+) 
 Ad(x,x).

Act on the above inequality with B, then by () and B(P) ⊂ P,

d(xi ,xn+)
 BAd(x,x),

i.e., () holds.
If u = d(xn,xi ), then by (), (), and A(P) ⊂ P,

d(xi ,xn+) 
 Ad(xi ,xn)
 ABd(x,x)

=

( ∞∑
i=

Ai

)
d(x,x) 


( ∞∑
i=

Ai

)
d(x,x)

= BAd(x,x),

i.e., () holds.
If u = d(xn,xn+), we set i = n – , and then by (),

d(xi ,xn+)
 Ad(xi ,xn+). ()

Consider the case that ≤ i ≤ n.
If u = d(xi–,xn), or u = d(xi–,xi ), or d(xn,xi ), then by (), (), and A(P) ⊂ P,

d(xi ,xn+) 
 Au 
 ABd(x,x)

=

( ∞∑
i=

Ai

)
d(x,x) 


( ∞∑
i=

Ai

)
d(x,x)

= BAd(x,x),

i.e., () holds.
If u = d(xn,xn+), or u = d(xi–,xn+), we set i = n, or i = i –  ≥ , respectively, and

then () follows.
From the above discussions of both cases, we have the result that either () holds, and

so the proof of our claim is complete, or there exists i ∈ {, , . . . ,n} such that () holds.
For the latter situation, continue in a similar way, and we will have the result that either

d(xi ,xn+) 
 ABd(x,x),

which together with () forces

d(xi ,xn+)
 ABd(x,x) 
 ABd(x,x),

i.e., () holds, and so the proof of our claim is complete, or there exists i ∈ {, , . . . ,n}
such that

d(xi ,xn+) 
 Ad(xi ,xn+).

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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If the above procedure ends by the kth stepwith k ≤ n–, that is, there exist k+ integers
i, i, . . . , ik ∈ {, , . . . ,n} such that

d(xi ,xn+) 
 Ad(xi ,xn+),

d(xi ,xn+)
 Ad(xi ,xn+), . . . ,

d(xik– ,xn+) 
 Ad(xik ,xn+),

d(xik ,xn+) 
 BAd(x,x),

then by A(P) ⊂ P,

d(xi ,xn+) 
 Ak+Bd(x,x) =

( ∞∑
i=k+

Ai

)
d(x,x)



( ∞∑

i=

Ai

)
d(x,x) = BAd(x,x),

i.e. () holds, and so the proof of our claim is complete.
If the above procedure continues more than n steps, then there exist n +  integers

i, i, in ∈ {, , . . . ,n} such that

d(xi ,xn+) 
 Ad(xi ,xn+),

d(xi ,xn+)
 Ad(xi ,xn+), . . . ,

d(xin– ,xn+) 
 Ad(xin ,xn+).

()

It is clear that i, i, in ∈ {, , . . . ,n} implies there exist two integers k, l ∈ {, , , . . . ,n}with
k < l such that ik = il , then by the nondecreasing property of A and (),

d(xik ,xn+) 
 Al–kd(xil ,xn+) = Al–kd(xik ,xn+),

and so

(
I –Al–k)d(xik ,xn+) 
 θ . ()

Set Bu =
∑∞

i=Ai(l–k)u for each u ∈ P. By (), B : P → P is well defined. Clearly, Bθ = θ

and

B
(
I –Al–k) = (

I –Al–k)B = B –Al–kB = I. ()

Act on () with B, then by (), B(P) ⊂ P and Bθ = θ we get d(xik ,xn+) = θ , and hence
() holds by (). The proof of our claim is complete.
For each  <m < n and each x ∈ X, set

C(x,m,n) =
{
d
(
Tix,Tjx

)
:m ≤ i, j ≤ n

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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From (), it follows that, for each u ∈ C(x,m,n), there exists some v ∈ C(x,m– ,n) such
that u
 Av. Consequently for all  <m < n, there exist ui ∈ C(x,m– i,n) (i = , , . . . ,m–)
such that

d(xm,xn)
 Au 
 Au 
 · · · 
 Am–um–, ()

since A is nondecreasing. Note that um– ∈ C(x, ,n), then by (),

um– 
 BAd(x,x),

and so by (),

d(xm,xn)
 BAmd(x,x), ∀ <m < n. ()

It follows from () that Amd(x,x)
‖·‖→ θ (m→ ∞), and hence BAmd(x,x)

‖·‖→ θ (m→ ∞)
since B is continuous at θ . This together with Lemma  implies that BAmd(x,x)

w→ θ

(m→ ∞). Moreover, by () and Lemma , we get

d(xm,xn)
w→ θ (n >m→ ∞), ()

i.e., {xn} is a Cauchy sequence of X. Therefore by the completeness of X, there exists some
x∗ ∈ X such that xn

τd→ x∗ (n→ ∞), i.e.,

d
(
xn,x∗) w→ θ (n→ ∞). ()

By (),

d
(
Tx∗,x∗) 
 d

(
xn+,Tx∗) + d

(
xn+,x∗) 
 Au + d

(
xn+,x∗), ∀n, ()

where u ∈ {d(xn,x∗),d(xn,xn+),d(x∗,Tx∗),d(xn,Tx∗),d(x∗,xn+)}.
If u = d(xn,x∗), or u = d(xn,xn+), or u = d(x∗,xn+), then by (), (), (), Lemma , and

Lemma , we get d(Tx∗,x∗) = θ since A is continuous at θ .
If u = d(x∗,Tx∗), then by (),

(I –A)d
(
x∗,Tx∗) 
 d

(
xn+,x∗), ∀n,

and hence by (), for each ε ∈ intP, there exists n such that, for each n≥ n,

(I –A)d
(
x∗,Tx∗) 
 d

(
xn+,x∗) � ε, ()

which implies that

(I –A)d
(
x∗,Tx∗) 
 θ . ()

Act on () with B, then by B(P) ⊂ P and Bθ = θ we get d(Tx∗,x∗) = θ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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If u = d(xn,Tx∗), then by the triangle inequality, the nondecreasing property, and subad-
ditivity of A and (), we have

d
(
Tx∗,x∗) 
 d

(
xn+,x∗) +Ad

(
xn,Tx∗)


 d
(
xn+,x∗) +A

[
d
(
xn,x∗) + d

(
x∗,Tx∗)]


 d
(
xn+,x∗) +Ad

(
xn,x∗) +Ad

(
x∗,Tx∗), ∀n,

and so

(I –A)d
(
x∗,Tx∗) 
 d

(
xn+,x∗) +Ad

(
xn,x∗), ∀n.

Thus it follows from () and Lemma  that () holds for each ε ∈ intP since A is contin-
uous at θ . Consequently, we get (). Act on () with B, then by B(P) ⊂ P and Bθ = θ we
get d(Tx∗,x∗) = θ . This shows that x∗ is a fixed point of T .
If x is another fixed point of T , then by (),

d
(
x,x∗) = d

(
Tx,Tx∗) 
 Au,

whereu ∈ {d(x,x∗),d(x,Tx),d(x∗,Tx∗),d(x,Tx∗),d(x∗,Tx)}. Ifu = d(x,Tx), oru = d(x∗,Tx∗),
then u = θ , and hence d(x,x∗) = θ . If u = d(x,x∗), or u = d(x,Tx∗) or u = d(x∗,Tx), then we
must have u = d(x,x∗), and hence (I – A)d(x,x∗) 
 θ . Act on it with B, then by B(P) ⊂ P
and Bθ = θ we get d(x,x∗) = θ . This shows x∗ is the unique fixed point of T . The proof is
complete. �

The following example shows the usability of Theorem .

Example  Let E and P be the same ones as those in Example  and X = P. Define a
mapping d : X ×X → P by

d(x, y) =

{
θ , x = y,
x + y, x �= y.

Clearly, (X,d) is a complete cone metric space.
Let (Tx)(t) =

∫ t
 x


 (s)ds and (Ax)(t) =

√
(Tx)(t) for each x ∈ X and each t ∈ [, ].

Clearly, A : P → P is a nondecreasing mapping with Aθ = θ , and A is continuous at θ .
From Example  we know that () is satisfied and B is continuous at θ . For each u, v ∈ P,
we have (A(u + v))(t) =

√

∫ t
 (u(s) + v(s))  ds ≤ √


∫ t
 (u(s)


 + v(s)  )ds = (Au)(t) + (Av)(t)

for each t ∈ [, ], and so A(u + v)
 Au +Av for each u, v ∈ P, i.e., A is subadditive.
Note that (Tx)(t) + (Ty)(t)

∫ t
 (x


 (s) + y 

 (s))ds =
∫ t
 (x(s) + y(s) + x 

 (s)y 
 (s))  ds ≤√


∫ t
 (x(s) + y(s))  ds =

√
(T(x + y))(t) for each t ∈ [, ] and each x, y ∈ X, i.e., Tx + Ty 
√

T(x + y) for each x, y ∈ P, then

d(Tx,Ty) =

{
θ = Ad(x, y), x = y,
Tx + Ty
 √

T(x + y) = Ad(x, y), x �= y,

i.e., () is satisfied with u = d(x, y).

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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Hence all the assumptions of Theorem  are satisfied, and so T has a unique fixed point.
In fact, θ is the unique fixed point of T .

Remark 
(i) Since in Example  the underlying mapping A is nonlinear, we can conclude that any

of the theorems in [–, ] cannot cope with Example .
(ii) Let u(t) = cos t for each t ∈ [, ] in Example . Clearly, u ∈ intP and

(Au)(t) =
√

∫ t
 cos s ds =

√
 sin t for each t ∈ [, ]. Take t = π

 , we have
(Au)(t) =  > 

 = u(t), and so Au � u, i.e., (I –A)u /∈ P. Note that it is
necessarily assumed that (I –A)(intP) ⊂ intP in [], then Theorem  of [] is not
applicable.

In what follows, we shall show that the subadditivity of A assumed in Theorem  could
be removed in the case that () is satisfied for u = d(x, y).

Theorem  Let (X,d) be a complete cone metric space over a solid cone P of a normed
vector space (E,‖ · ‖) and T : X → X. Assume that

d(Tx,Ty) 
 Ad(x, y), ∀x, y ∈ X, ()

where A : P → P is a nondecreasing mapping with Aθ = θ such that () is satisfied. If A and
B are continuous at θ ,where Bu =

∑∞
i=Aiu for each u ∈ P.Then T has a unique fixed point

x∗ ∈ X, and for each x ∈ X, the Picard iterative sequence {xn} converges to x∗.

Proof By the nondecreasing property of A and (), we have

d(xn,xn+) 
 Ad(xn–,xn) 
 Ad(xn–,xn–) 
 · · · 
 And(x,x), ∀n,

and so, by the triangle inequality,

d(xn,xm) 

m–∑
i=n

d(xi,xi+) 

m–∑
i=n

Aid(x,x)

= An

(m–∑
i=n

Ai

)
d(x,x) = BAnd(x,x), ∀m > n. ()

Since B is continuous at θ , it follows from () that BAnd(x,x)
‖·‖→ θ (n → ∞), which

together with Lemma  implies that BAnd(x,x)
w→ θ (n → ∞). Moreover, by () and

Lemma , we get

d(xm,xn)
w→ θ (m > n→ ∞),

i.e., {xn} is a Cauchy sequence of X. Therefore by the completeness of X, there exists some
x∗ ∈ X such that () is satisfied. By the triangle inequality and (), we get

d
(
x∗,Tx∗) 
 d

(
x∗,xn+

)
+ d

(
Txn,Tx∗) 
 d

(
x∗,xn+

)
+Ad

(
xn,x∗), ∀n,

http://www.fixedpointtheoryandapplications.com/content/2014/1/165
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which together with (), Lemma , and Lemma  implies that p(x∗,Tx∗) = θ since A is
continuous at θ . Hence x∗ is a fixed point of T . Let x be another fixed point of T , then
by (),

d
(
x,x∗) = d

(
Tx,Tx∗) 
 Ad

(
x,x∗),

and so (I –A)d(x,x∗) 
 θ . Act on it with B, then by B(P) ⊂ P and Bθ = θ we get d(x,x∗) = θ .
This shows x∗ is the unique fixed point of T . The proof is complete. �
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