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Abstract

Background: Chronic administration of Aluminum is proposed as an environmental factor that may affect several
enzymes and other biomolecules related to neurotoxicity and Alzheimer's disease (AD). APE1 a multifunctional
protein, functions in DNA repair and plays a key role in cell survival versus cell death upon stimulation with
cytotoxic agent, making it an attractive emerging therapeutic target. The promising protective effect of resveratrol
(resv), which is known to exert potent anti-inflammatory effects on neurotoxicity induced by aluminum chloride
(AlCl3), may be derived from its own antioxidant properties. In the present work we investigated the modulation of
APE1 expression during AlCl3-induced neuroinflammation (25 mg/Kg body weight by oral gavages) in experimental
rats. We tested the hypothesis that a reactive oxygen species (ROS)-scavenger, resveratrol at 0.5 mg/kg bodyweight,
which is known to exert potent anti-inflammatory effects, would attenuate central inflammation and modulate
APE1 expression in AlCl3-fed rats. Neuroinflammation-induced genes including β-secretase (BACE), amyloid-β
precursor protein (APP), presenilin 2 (PSEN-2) and sirt-2 were determined by RT-PCR. APE1 is determined at mRNA
and protein levels and confirmed by immunohistochemistry. The expression of pro-inflammatory cytokines (TNF-α,
IL6) and iNOS by the rat brain extract were measured by RT-PCR.

Result: Our results indicate that resveratrol may attenuate AlCl3-induced direct neuroinflammation in rats, and its
mechanisms are, at least partly, due to maintaining high APE1 level. Resveratrol co-administration with aluminum
chloride exerted more protective effect than pre-administration or treatment of induced rats. A significant elevation
of APE1 at both mRNA and protein levels was observed in addition to a marked reduction in β-secretase and
amyloid-β. We found that AlCl3 stimulated the expression of TNF-α, IL-6, and iNOS in rat brain in which NF-κB was
involved. Resveratrol inhibited AlCl3-induced expression and release of TNF-α, IL-6, and iNOS in rat brain.

Conclusions: These findings establish a role for APE1 as a master regulator of AlCl3 dependent inflammatory
responses in rat brain. In addition, there was an ameliorative change with resveratrol against AlCl3-induced
neurotoxicity. These results suggest that rat brain cells produce pro-inflammatory cytokines in response to AlCl3 in a
similar pattern, and further suggest that resveratrol exerts anti-inflammatory effects in rat brain, at least partly, by
inhibiting different pro-inflammatory cytokines and key signaling molecules. It might be a potential agent for
treatment of neuroinflammation-related diseases, such as AD.
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Background
Aluminum is a well-documented neurotoxin that enhances
neuroinflammatory events in the brain by different mecha-
nisms. Aluminum exacerbates oxidative stress, amyloid
beta (Aβ) deposition, and plaque formation in the brain of
transgenic mice that overexpress amyloid beta (A4) pre-
cursor protein (APP) [1]. Both Aβ and aluminum are able
to potentiate reactive oxygen species (ROS) formation that
will lead to genotoxicity and DNA damage. The mamma-
lian ap-endonuclease, APE1/ref-1, is a ubiquitous and re-
markably multifunctional protein. It plays a central role in
the base excision repair (BER) pathway for damaged bases
and DNA single-strand breaks induced by ROS and alkyl-
ating agents [2]. APE1 was independently identified as a
reductive activator factor and named redox effector factor
1 (Ref-1) [3]. A third and distinct function of APE1 as a
trans-acting factor was also discovered [4,5]. Several stud-
ies showed that global cerebral ischemia or traumatic
brain injury or cold injury-induced brain trauma [6] in-
duced oxidative stress decreases APE1 expression in the
hippocampus and is associated with neuronal apoptosis in
rats [7,8]. This specific inhibition of APE1 expression may
affect the extent of apoptosis after ischemia. Consistently,
overexpression of WT APE1 in hippocampal and sensory
cells reduced neuronal death [9]. Moreover a very recent
study by Mantha et. al., [10] indicated that APE1/Ref-1 ex-
erts neuro-protective role via its association with different
intracellular proteins in Aβ (25–35)-treated rat pheochro-
mocytoma, PC12 and SH-SY5Y cell lines, which could
modulate their cellular functions during Aβ-mediated
neurotoxicity.
The polyphenolic compound resveratrol (3,4',5-trihydroxy-

trans-stilbene) is a naturally occurring phytochemical
which has been found in a large number of plant spe-
cies that are components of human diet, including
mulberries, peanuts, grapes and red wine. Its physio-
logical function is thought to serve as phytoalexin
protecting plants against environmental stress or patho-
gen attack. Accumulating evidence suggests that resver-
atrol may exert a protective effect in the CNS under
pathological conditions, and that resveratrol is associ-
ated with reduced risks of cardiovascular disease, can-
cer, diabetes and AD [11-13].
Resveratrol has been found to exert protective effects

against neuroinflammation in both in vivo and in vitro
studies. These activities of resveratrol appear to target
activated microglia, resulting in the reduction of pro-
inflammatory factors through the modulation of signal
transduction pathways. Activated microglia and astro-
cytes, the main glial cell type, serve immune surveillance
functions and are involved in maintaining CNS homeo-
stasis. They also respond promptly to injury and regulate
neuroinflammatory events [14,15]. Over-activation of
glial cells and release of pro-inflammatory cytokines may
lead to neuronal death [16,17], causing neuropatho-
logical changes in CNS diseases such as multiple scler-
osis [18], Parkinson's disease [19] and Alzheimer's
disease [20]. Therefore, limiting inflammatory cytokine
production by activated microglia and astrocytes should
be beneficial for prevention of neuroinflammation and
neurodegeneration.
One of the potential mechanisms for resveratrol-

mediated neuroprotection is activation of the Sirt1 path-
way, which in turn suppresses the activation of the NF-κB
signaling pathway [21]. The overall effects are to re-
duce pro-inflammatory mediators, eventually produ-
cing neuroprotection. Sirt1could also protect neurons
against microglia-dependent Aβ toxicity via the suppres-
sion of NF-κB pathway [21].
Yamamori et. al., [22] reported that APE1 is a target of

the Sirt1 protein deacetylase. Sirt1 associates with APE1,
and this association is increased with genotoxic stress
and cell vulnerability is rescued by overexpression of
APE1. Activation of Sirt1 with resveratrol promotes
binding of APE1 to the BER protein X-ray cross-
complementing-1 (XRCC1), while inhibition of Sirt1 de-
creases this interaction, which suggests that Sirt1 plays a
vital role in maintaining genomic integrity through regu-
lation of the BER pathway.
In the present study we show for the first time the in-

volvement of APE1 modulation in resveratrol-mediated
therapeutic and/or protective activity against aluminum
chloride-induced neurotoxicity in rats. We examined also
the expression of pro-inflammatory cytokines (TNF-α,
and IL-6) and of iNOS in brain extract in response to
AlCl3 exposure, as well as the NF-κB signaling pathway.

Methods
Animals and neuroinflammation induction
Total of forty male adult Wistar rats (120–190 g) were
supplied and maintained at Medical Research Institute in
which the principles of laboratory animal care were fol-
lowed in all protocols and were approved by ethics com-
mittee of animal research facility. Rats were maintained
under controlled temperature (25°C) and constant photo-
periodic conditions (12:12-h daylight/darkness). The dams
had free access to water and standard commercial chow.
Neuroinflammation was induced using AlCl3.6H2O. Ani-
mals were divided into three major groups as illustrated in
Figure 1. Induced rats received AlCl3.6H2O (25 mg/ kg)
daily for duration of one month by oral gavages. Resvera-
trol was administered by gavage in the form of resveratrol
and green tea complex (0.5 mg/ kg).

Samples collection
Three rats from each group were sacrificed by cervical
dislocation at time intervals 2 and 4 weeks of AlCl3 ad-
ministration and at weeks 8 and 12 of resveratrol



Figure 1 Experimental protocol design.
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treatment or self-recovery. Brains were rapidly removed
from the skulls and dissected into different regions. Parts
of the Cortex and hippocampus regions were removed for
histochemical studies by fixation with10% buffered-saline
formalin. The remaining sections were stored at −80°C for
extraction of total RNA and enzyme assays.

Assay of oxidative stress-related markers
Reduced glutathione (GSH)
Part of the brain tissue (10% w/v) was washed with sa-
line solution minced and homogenized in ice cooled buf-
fer 1.15% KCl, 0.01 M sodium phosphate buffer pH 7.4.
Concentration of GSH was determined as described by
Ellman [23].

Lipid peroxidation
Part of the brain tissue (10% w/v) was washed with sa-
line solution, minced and homogenized in ice-cooled
50 mM potassium phosphate buffer pH 7.5. Level of
lipid peroxidation was determined according to Ohkawa
e.t al., [24] method.

Glutathione-s-transferase (GST) activity
Brain tissue was homogenized in ice-cooled buffer
(100 mM potassium phosphate, pH 7.0 containing 2 mM
EDTA) per gram tissue. GST was assayed according to
Habig et. al., method [25].

Catalase activity
Part of brain tissue was homogenized in ice-cooled
homogenization buffer (50 mM potassium phosphate,
pH 7.4, 1 mM EDTA and 1 ml/L Triton X-100). Catalase
activity was assayed according to Aebi procedure [26].
Aspartate amino transferase (AST) Activity
AST activity assay in brain tissues was preformed
according to the method described by Reitman and
Frankel [27] with some modifications. Briefly part of
mid-brain tissue was dissected, washed in ice-cooled sa-
line and homogenized in total protein extraction buffer
(10 mM HEPES, 350 mM sucrose, 5 mM EDTA, pH 7.4,
1% of Triton-X100, and protease inhibitor cocktail) then
centrifuged at 4,000 rpm for 15 min at 4°C. Ten
microlitters of the supernatant were used for AST activ-
ity assay as described before [27].

Estimation of amyloid beta 40 (Aβ 40):-
This quantification was done using commercially avail-
able rat amyloid beta peptide 1–40 (Aβ1-40) ELISA Kit
(Cusabio, cat# CSB-E08302r) and according to man-
ufacturer's instruction with some modifications. Briefly
brain tissues of experimental animals were isolated at
the end of each experimental phase, washed in ice-
cooled saline and homogenized in extraction buffer
containing 10 mM HEPES, 350 mM sucrose, 5 mM
EDTA, pH 7.4, 1% of Triton-X100, and protease inhibi-
tor cocktail. The homogenates were analyzed and Aβ-40
was calculated as (pg/ml/g. tissue).

Isolation of Total RNA and semi qRT-PCR analysis
Total RNA was extracted from frozen brain tissues
according to the method of Chomczynski and Sacchi
procedure [28]. Alteration in the steady–state mRNA
levels of genes relevant to neuroinflammation pathogen-
esis (Figure 2) was determined using semi-quantitative
reverse transcriptase PCR analysis. Using one-step
RT-PCR (RT/PCR Master Mix Gold Beads, BIORON)



Figure 2 Outline of the neuroinflammation-induced genes in AlCl3-induced versus resveratrol-treated state.
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reaction, the cDNA was synthesized and used for ampli-
fication of target gene(s) primers sequences: Amyloid
beta (A4) precursor protein (APP)-F: AGAGGTCTA
CCCTGAACTGC, R: ATCGCTTACAAACTCACCA
AC- 154 bp; beta secretase (BACE)-F: CGGGAGTGG
TATTATGAAGTG, R: AGGATGGTGATGCGGAAG,
Figure 3 Total anti-oxidant capacity in AlCl3-induced versus resv-trea
catalase activities during the four weeks of AlCl3 administration while MDA
Pre-and continuous resveratrol administration ameliorated toxicity by main
resv-treated rats post AlCl3 induction improved the total antioxidant capac
320 bp [29]; presenilin 2 (PSEN2) F:GAGCAGAGCCA
AATCAAAGG,R-GGGAGAAAGAACAGCTCGTG,188-
bp; Sirt2 F:ACCTTCCTTCAGTCCCGTTT,R: AAGGG
TTCACAGTGGTGGAG,173 bp; TNFαF:ATGAGCAC
AGAAAGCATGATCCGCG,R:CCCTTCACAGAGCAA
TGACTCCAAA; IL-6-F: GATGCTACCAAACTGGATA
ted rats. A significant reduction in GSH contents as well as GST and
level was increased significantly (*p < 0.01) compared to control.
taining high GSH level and enzymes activities. Also we show that
ity in both pre-and cont- compared to self-recovery group (**p < 0.05).
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Figure 4 Brain AST activity and Aβ 40 level. A- alterations in brain tissues AST activities (mid brain) indicating significant reduction during the four
weeks of AlCl3 administration compared to control (P < 0.01). Pre- and continuous resveratrol administration ameliorated toxicity by maintaining tissue
integrity and hence elevated AST activity. B- Aβ 40 concentration significant reduced in AlCl3-induced versus resv-treated rats. Pre-and continuous
resveratrol significantly (p < 0.01) maintained high Aβ 40 level upon AlCl3 administration.
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TAATC, R:GGTCCTTAGCCACTCCTTCTGTG; iNOS-
F: TGGGAATGGAGACTGTCCCAG, R:GGGATCTGAA
TGTGATGTTTG; β-actin-F: TGTGATGGTGGGAATG
GGTCAG, R: TTTGATGTCACGCACGATTTCC.

qRT-PCR assay
Real time-PCR (qRT-PCR) was used to measure the mRNA
expression levels of APE1 gene. CDNA was synthesized by
High-Capacity cDNA Reverse Transcription Kit according
to the manufacture`s protocol. APE1 Primers sequence: 5’-
GCTTGGATTGGGTAAAGGA-3’ and 3’TTCTTTGTCT
GATGGAGCTG-5’; GAPDH primers: 5’-GTATGACTCT
ACCCACGGCAAGT-3’and 5’-TCTCGCTCCTGGAAGA
TGGT-3’. APE1 was normalized to GAPDH and the fold
difference calculated using the equation 2−ΔΔCt as de-
scribed before [30].

Preparation of total and nuclear extracts
Total cell extracts were prepared by homogenization of
50–100 mg of tissue in lysis buffer (50 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% TritonX-100,
and protease inhibitor cocktail). Nuclear extract was pre-
pared as described by Schreiber et. al., [31].

Western blotting
Western blots were performed as described previously
by Burnette [32], APE1 and NF-κB immunoblots were
performed on prepared total and nuclear cell extracts re-
spectively. Primary antibody to APE1 (sc-17774), NF-κB
(NB100-2176) and β-actin (sc-81178) were used. Anti-
body binding was detected following appropriate sec-
ondary antibody using chemiluminescence detection,
and equal loading was confirmed by probing with
β-Actin monoclonal antibody.

Statistical analysis
All experiments were performed in duplicate or triplicate
independently and typical graphs are presented in some
cases data are expressed as Mean± SD. Data were ana-
lyzed by student’s t- test and difference was considered



Figure 5 Expression profiles of neuro-inflammation related genes. Semi-quantitative RT-PCR was used to detect mRNA levels of APP, BACE,
PSEN2, p53 and sirt-2. A-Our results indicate that AlCl3 administration induces elevation in APP, BAC and p53 levels at week four (group2a), while
resv treatment (group 2b) caused marked reduction in all parameters mRNA levels compared to self-recovery group (2a at week 8). Co-administration
of resv during AlCl3 induction and for four weeks later ameliorated neurotoxicity by reducing mRNA levels of pro-inflammatory genes as shown in
group3b at weeks 4 and 8. Moreover PSEN2 expression is induced in resv treated groups 2b and 3b. B- Resveratrol induces Sirt-2 in mock-treated
group and resveratrol treatment of AlCl3-induced group induces sirt-2 expression as well.
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significant from control when p < 0.01. ANOVA test was
used to compare the statistical difference between groups.
The results are considered significant when p < 0.05.

Results
Effect of resveratrol administration on brain`s total anti-
oxidant capacity, tissue AST activity and Aβ 40 level
Oral AlCl3 administration for four weeks was tolerated
by the majority of rats, with less than 3% mortality. Ini-
tially all rats lost few grams of the body weight during
the first 10 days of the study. However, rats in all groups
re-gained weight and continued to grow normally for
the duration of the study. Analysis of anti-oxidant cap-
acity represented by GSH and MDA levels as well as
catalase and GST activities revealed that AlCl3- induced
significant elevation in MDA along with marked reduc-
tion in GSH contents, GST and catalase activities at
weeks 2 and 4 compared to mock-treated group at week
zero (p < 0.01, Figure 1A-D). Pre- and cont- resveratrol
administered groups 3a & b, showed higher anti-oxidant
capacity compared to self-recovery (p<0.05, Figure 3).
However, continuous resveratrol administration is shown
to be more protective compared to both self-recovery
and pre- groups (p < 0.01, p < 0.05, Figure 3).
AlCl3-induced neurotoxicity was further assessed by

measuring tissue AST activity, which is important en-
zyme in brain that is strongly related to amino acid
homeostasis. The results indicated significant (p < 0.01)
reduction in AST activity in the induced rats. While res-
veratrol administration markedly improved (p < 0.01)
AST activity in different experimental groups as repre-
sented in Figure 4A.
Furthermore by detecting the level of Aβ 40, which is

considered target for Alzheimer's therapy, in experimental
rats` brain we found that resveratrol-induced significant
elevation (p < 0.01) in its level compared to AlCl3-induced
rats (Figure 4B).

Profile of neuroinflammation-related genes expression in
induced versus treated rats
Alterations in the expression of neuroinflammation re-
lated markers (Figure 2), post AlCl3 feeding at weeks 4
and 8 (groups 2a, b and 3b) was tested by semi-
quantitative PCR. Strong expression of APP, BACE and
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(See figure on previous page.)
Figure 6 NF-κB, cytokines and iNOS profile in different experimental groups. A & B) Change in NF-κB activity and protein levels were
detected in induced versus resveratrol administered groups. We show that AlCl3 administration induced significantly (*p < 0.01) NF-κB activity
with more p65 dissociation from the p105 complex as represented in the western blot. On the contrary co-administration of resveratrol with
AlCl3 in both pre- and con- groups significantly decreased (**p < 0.05) NF-κB activity as well as p105 complex dissociation (B). Resveratrol inhibits
AlCl3-induced TNF-α, IL-6 cytokine and iNOS expression in rat brain (C).
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p53 were observed in the induced group that received
no resveratrol during the course of induction compared
to lower expression in the continuously administered
group at week 4 (Figure 5A). A decrease in the mRNA
of all pro-inflammatory mediators was observed in resv-
treated rats compared to self-recovery group (2a and 2b
respectively). Interestingly, we found that resv continu-
ous administration exerted more protection through
marked inhibition of inflammatory markers (Figure 5A,
group 3b at weeks 4 and 8) and induction of PSEN2 ex-
pression in both groups. By testing sirt-2 expression we
found that resveratrol treatment induced sirt-2 expres-
sion in pre-, cont- and treated groups which indicate
that sirt-2 is involved during neuronal recovery from in-
jury (Figure 5B).
Because activation of Sirt1 pathway, which in turn

suppresses the activation of the NF-κB signaling cascade,
is one of resveratrol well documented mechanism for re-
duction of proinflammatory mediators, therefore we
measured NF-κB transcription factor activity as well as
protein level. NF-κB activity as well as p105 complex
dissociation were elevated significantly in AlCl3-induced
group in time-dependent manner compared to mock-
treated group (p < 0.01, Figure 6 A & B). On the con-
trary, pre- and cont- resveratrol administered groups
showed significant reduction in NF-κB activity as well as
p65 dissociation from p105 complex compared to in-
duced group (p < 0.05, Figure 6 A & B). Furthermore we
examined the effect of resveratrol on AlCl3 -induced
proinflammatory cytokine expression in rat brain hom-
ogenate. As shown in Figure 6C, AlCl3 markedly in-
creased TNF-α, IL-6 mRNA expression in rat brain
homogenates. Continuous resv administration exerted
more inhibitory effect on cytokines and iNOS expression
than pre-administration (Figure 6C).

APE1 as a novel molecular target in resveratrol-mediated
neuroprotection
APE1 was detected at both levels mRNA using qRT-PCR
and protein using western blotting as well as by im-
munohistochemistry. AlCl3 oral administration for 4
weeks significantly reduced APE1 both at mRNA and
protein levels versus mock-treated group (p < 0.01,
Figure 7). Although resveratrol treatment was observed
to act through induction of APE1 expression, we also ob-
served that during self-recovery of injured- rats, brain
APE1 level is elevated significantly (p <0.01, p < 0.05,
Figure 7A-B).Very interestingly, pre- and cont-resveratrol
administration with AlCl3 maintained high APE1 mRNA
and protein and exerted more protective effect than post-
lesion treatment (p < 0.01, p < 0.05, Figure 7A-B). More-
over immunohistochemical investigation showed strong
cytoplasmic labeling of APE1 in brain sections of continu-
ously administered group that received resv during AlCl3
induction (Figure 7C).

Discussion
Oxidative stress and extensive DNA damage has been
reported as contributing factor in different diseases in-
cluding neuronal degeneration. The arguments on the
role of Aluminum (Al)-induced oxidative stress and me-
diated neuronal loss may help in understanding the role
of Al in Alzheimer’s disease (AD). Neurons appear to be
particularly vulnerable to free radicals. Al, which is a
stress-inducing agent in endoplasmic reticulum, has
been shown to activate the expression of various genes
that are important in growth arrest and DNA damage
induction, and NF-κB, which initiates apoptosis [33].
To explore the mechanism of resveratrol on the at-

tenuation of AlCl3-induced neuroinflammation, the ex-
pression of TNF-α, COX-2 and APP protein expression
was detected by RT-PCR, as well as induction of NF-κB
in the rat brain by western blot.
Our findings are in agreement with Wu Z et. al., re-

port [34] and clearly show that resveratrol attenuates
AlCl3-induced neuroinflammation. We demonstrate
that continued resveratrol administration during the
course of induction exerts more protective effect than
pre- or after induction administration. By detecting
total lipid peroxidation and glutathione contents in
rat`s brain, a significant reduction in lipid peroxida-
tion as well as a significant increase in brain glutathi-
one contents were observed in all resveratrol treated
groups versus induced rats.
NF-κB which considered an important transcription

factor in inflammatory responses can regulate the pro-
duction of various pro-inflammatory factors [35]. In the
resting conditions, NF-κB is sequestered in the cyto-
plasm by binding to its inhibitors IκBs. In response to
inflammatory stimuli, IκBs are rapidly phosphorylated
and then degraded via IKK complex, followed by the re-
lease of free NF-κB dimers (p50 and p65) and subse-
quent translocation to the nucleus and thus regulating
the expression of target genes. Sirt-1 upregulation could
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Figure 7 Changes in APE1 mRNA and protein levels. A-mRNA was determined using qRT-PCR. A significant reduction (p < 0.01) in group 2a
at 4 weeks of induction was observed. APE1 mRNA was elevated during self-recovery (group 2a at week 8) as well as during the four weeks of
resveratrol treatment. Pre- and cont- resveratrol administration maintained significantly elevated (p < 0.01) APE1 compared to induced group.
B- APE1 protein profile shows the same pattern and change in parallel to mRNA as indicated in all groups. C-Immunohistochemical analysis of
continuously resveratrol administered group indicated strong cytoplasmic expression of APE1. * indicates significance from control at p < 0.01,
while ** indicates significance between groups at p < 0.05.
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Figure 8 Postulated mechanism of resveratrol protective effect against AlCl3–induced neurotoxicity.
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protect neurons against microglia-dependent Aβ tox-
icity via the suppression of NF-κB pathway [36].
Therefore, we investigated the effect of resv as thera-
peutic and/or prophylactic agent on NF-κB activation
and p105 complex stability. We found that resv co-
administration during AlCl3-feeding resulted in a sig-
nificant reduction in both NF-κB activity and p105
complex dissociation compared to resv-treated group
and resv continues administration inhibited AlCl3- me-
diated NF-κB activation and complex dissociation. To
further explore the resveratrol inhibitory effect on
AlCl3- induced brain toxicity, we detected the mRNA
level of neuroinflammation-regulated genes including
APP, β-secretase (BAC), p53, Presenilin 2 (PSEN2), Sirt2,
as well as APE1 as suggested new target for resveratrol-
mediated neuro-protection. It has been shown that the
abnormal processing of APP by β and γ-secretase en-
zymes is a key event in the development of Alzheimer's
disease (AD) neuropathology, resulting in an increase in
the generation of the 42 amino acid form of Aβ pep-
tide which aggregates to form the insoluble amyloid
plaques [37].
The γ-secretase complex has not yet been fully charac-

terized but minimally consists of four individual proteins
including presenilin (PSEN) [38]. Here we show that
continued oral administration of resveratrol markedly
repressed AlCl3-induced APP mRNA expression and de-
creased tissue Aβ 40 level through down regulation of
BAC expression and also by reducing γ-secretase activity
probably through down-regulation of PSEN2 as a regula-
tory subunit. Resveratrol-treated rats showed higher
brain Aβ 40 levels compared to induced group. Jayadev
et. al., [39] report demonstrated that PSEN2 regulates
CNS innate immunity through the finding that PSEN2 is
the predominant γ-secretase in microglia and modulates
release of proinflammatory cytokines, therefore PSEN2
may participate in a negative feedback loop regulating
inflammatory behavior in microglia. In our model
PSEN2 expression as a neuro-protective marker found
to be induced by resveratrol administration either as
treatment or protective agent, which clarify that PSEN2
is one of the resv-activated genes during neural regener-
ation. It has been reported that a redundancy of func-
tions may exist between sirt-1 and sirt-2, and that sirt-1
and sirt-2 cooperate to deacetylate the tumor suppressor
protein p53 to attenuate cell death [40]. Moreover many
reports highlighted the role of sirt1-sir2 as a target for
resv-mediated action. Here we show that resv-induces
the expression of sirt-2 which considered mitotic protein
that promotes cell survival. We found that in mock-
treated rats, administered only resv as a positive control
for four weeks, a strong sirt-2 expression was detected
compared to empty vehicle control group. Also resv
treatment, pre- or cont- administration induced sirt-2
expression, suggesting a pivotal role for cytoplasmic
protein sirt-2 during neural cells regeneration or protec-
tion. In neurons, base excision repair (BER) is the pre-
dominant mechanism for repair of oxidative DNA lesions.
In addition it has been reported that Aβ level differentially
modulates APE1 expression which may contribute to se-
lective neuronal vulnerability in Alzheimer’s disease [41].
The inhibition of Sirt1 signaling by AlCl3 is partially
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responsible for the activation of NF-κB pathways and sub-
sequent generation of TNF-α in Kupffer cells and macro-
phages [42]. Therefore, it should be quite interesting to
investigate whether activation of Sirt1 signaling also con-
tributes to the inhibitory effect of resveratrol on NF-κB ac-
tivation by AlCl3 in rat brain cells. AlCl3 is capable of
inducing production of pro-inflammatory cytokines and
NO in treated rat brain, probably by both microglia and
astrocytes [43]. In agreement with our finding, aluminum
causes oxidative damage as a pro-oxidant, both on its own
and in synergy with iron. Aluminum also competes with,
and substitutes for, essential metals—primarily Mg2+, iron
and Ca2+ ions—in or on proteins and their co-factors. It
was hypothesized that intra-neuronal aluminum may
interfere with Ca2+ metabolism in the aged brain [44].
Our study shows that AlCl3 significantly induces the
expression and production of pro-inflammatory cytokines
(TNF-α, IL-6,), and enhances the expression of iNOS
most probably by immuno-competent and phagocytic
cells in CNS.
We have previously investigated APE1 in different ex-

perimental models in a trial to explore and highlight a
new role during tissue fibrosis [45,46]. Consistently in
the present study, by investigating APE1 expression in
neuroinflammation model, the results revealed that
AlCl3 significantly reduces both APE1 mRNA and pro-
tein levels. Furthermore, we show that in rats that did
not receive any treatment post-lesion-induction and in
self-recovery group, APE1 mRNA and protein levels
started to re-elevate, which indicate that APE1 is essen-
tial during neuronal repair and regeneration. However
APE1 level was also elevated in resv-treated group, but
continuous revs administration seems to exert more pro-
tective effect on rat`s brain as indicated from the alter-
ations in neuroinflammatory mediators expression
which suggests that resv action is mediated, in part, by
maintaining elevated APE1 level. Since it has been
reported that p53 downregulates APE1 expression [47]
and p53 transcriptional activity is modulated by sirt1 and
sirt2 through deacetylation [42], we propose p53/APE1
signaling pathway as a novel resv-mediated target
(Figure 8). We believe that understanding the molecular
balance between total oxidant versus antioxidant capaci-
ties as well as pro-apoptotic versus pro-survival proteins
during neuroinflammation is essential for therapeutics
development.

Conclusions
APE1/Ref-1 (APE1), a multifunctional protein possessing
both DNA repair and transcriptional regulatory activities,
has a pleiotropic role in controlling cellular response to
oxidative stress such as exposure to neurotoxic agents.
We have uncovered some important role of APE1 during
neuroinflammation and consequently neurodegeneration
pathogenesis. Our results suggest that the extent of
inflammatory responses induced by AlCl3 in the main
resident immunocompetent and phagocytic cells in CNS
could be limited by resveratrol by maintaining high APE1
and may contribute positively to neuronal cell survival
following exposure to cytotoxic agents.
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