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Abstract 
Background: The P-glycoprotein inhibitor zosuquidar (LY335979) is clinically used to 
augment the effect of cytostatic drugs on suicidal tumor cell death or apoptosis. The present 
study explored whether the substance is cytotoxic to erythrocytes. Upon injury, erythrocytes 
may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and 
translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of 
eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i), oxidative stress and activation 
of several kinases, such as p38 kinase and protein kinase C. Methods: Phosphatidylserine 
abundance at the erythrocyte surface was quantified from binding of FITC-labelled annexin-V, 
cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and reactive oxygen species 
(ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. Results: A 48 
h treatment of human erythrocytes with zosuquidar significantly increased the percentage 
of annexin-V-binding cells (2 and 4 µg/ml), significantly decreased forward scatter (4 µg/
ml), significantly increased [Ca2+]i (4 µg/ml), but did not significantly modify ROS. The up-
regulation of annexin-V-binding following zosuquidar (4 µg/ml) treatment was significantly 
blunted by removal of extracellular Ca2+, by presence of p38 kinase inhibitor SB203580 (2 µM) 
and by presence of protein kinase C inhibitor calphostin (100 nM). Conclusions: Exposure 
of erythrocytes to zosuquidar triggers suicidal erythrocyte death with erythrocyte shrinkage 
and erythrocyte membrane scrambling, an effect involving Ca2+ entry and requiring activity of 
SB203580 and calphostin sensitive kinases.  
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Introduction

Zosuquidar (LY335979), a highly specific P-glycoprotein (multi drug resistance) 
inhibitor [1-11], has been used in the treatment of malignancy [2, 5, 9, 12-26] and interferes 
with drug efflux at the blood brain barrier [1, 27-29]. Moreover, zosuquidar or its derivatives 
may be effective on selected bacterial and fungal ABC transporters [30]. The inhibitory 
effect of zosuquidar on P-glycoprotein impairs the efflux of cytotoxic drugs thus fostering 
apoptosis of treated cells [30-32]. 

Similar to apoptosis of nucleated cells erythrocytes may enter suicidal cell death or 
eryptosis, which is characterized by cell shrinkage [33] and cell membrane scrambling 
with translocation of phosphatidylserine to the erythrocyte surface [34]. Signaling involved 
in the stimulation of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity  
([Ca2+]i), ceramide [35], oxidative stress [34], caspase activation [34, 36, 37], enhanced 
activity of casein kinase 1α, Janus-activated kinase JAK3, protein kinase C, or p38 kinase, as 
well as impaired activity of AMP activated kinase AMPK, cGMP-dependent protein kinase, 
PAK2 kinase [34] or sorafenib & sunitinib sensitive kinases [34]. Due to triggering of the 
respective signaling eryptosis is stimulated by a myriad of xenobiotics [34, 38-73].

The present study explored, whether zosuquidar stimulates eryptosis. To this end, 
erythrocytes from healthy volunteers were exposed for 48 hours to zosuquidar, and 
phosphatidylserine abundance at the erythrocyte surface estimated using annexin-V-
binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and abundance 
of reactive oxygen species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) 
fluorescence. The involvement of kinases was tested utilizing p38 kinase inhibitor SB203580 
and protein kinase C inhibitor calphostin.

Materials and Methods 

Erythrocytes, solutions and chemicals
Fresh Lithium-Heparin-anticoagulated blood samples were kindly provided by the blood bank of the 

University of Tübingen. The study is approved by the ethics committee of the University of Tübingen (184/2003 
V). The blood was centrifuged at 120 g for 20 min at 23°C and the platelets and leukocytes-containing 
supernatant was disposed. Erythrocytes were incubated in vitro for 48 hours at a hematocrit of 0.4% in Ringer 
solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4, 32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic 
acid (HEPES), 5 glucose, and 1 CaCl2; the pH was adjusted to 7.4 and the temperature kept at 37°C. Where 
indicated, erythrocytes were exposed to zosuquidar (Sigma Aldrich, Hamburg, Germany, stock solution: 4 mg/
ml in water) in the absence or presence of p38 kinase inhibitor SB203580 (Enzo Life Sciences, Farmingdale, 
USA, stock solution: 20 mM in DMSO ) or calphostin (Cayman, Ann Arbor, USA, stock solution:1 mM in DMSO).

Annexin-V-binding and forward scatter 
After incubation under the respective experimental condition, a 100 µl cell suspension was washed in 

Ringer solution containing 5 mM CaCl2 and then stained with Annexin-V-FITC (1:200 dilution; ImmunoTools, 
Friesoythe, Germany) in this solution at 37°C for 20 min under protection from light. In the following, the 
forward scatter (FSC) of the cells was determined and annexin-V- FITC fluorescence intensity was measured 
with an excitation wavelength of 488 nm and an emission wavelength of 530 nm on a FACS Calibur 
(BD, Heidelberg, Germany). In some experiments erythrocytes were preincubated in Ca2+ free solution. 
For determination of annexin-V-binding, addition of Ca2+ (5 mM CaCl2) was required during the 15 min 
incubation with FITC-annexin V. Immediately thereafter measurements were done so that the exposure to 
Ca2+ was too short to trigger significant phosphatidylserine translocation. 

Intracellular Ca2+

After incubation, a 100 µl cell suspension was washed in Ringer solution and then loaded with Fluo-3/
AM (Biotium, Hayward, USA) in Ringer solution containing 5 µM Fluo-3/AM. The cells were incubated at 37°C 
for 30 min and washed twice in Ringer solution. The Fluo-3/AM-loaded erythrocytes were resuspended in 
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200 µl Ringer. Then, Ca2+-dependent fluorescence intensity was measured with an excitation wavelength of 
488 nm and an emission wavelength of 530 nm on a FACS Calibur.

Reactive oxygen species (ROS) 
Oxidative stress was determined utilizing 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA). After 

incubation, a 100 µl suspension of erythrocytes was washed in Ringer solution and then stained with 
DCFDA (Sigma, Schnelldorf, Germany) in Ringer solution containing DCFDA at a final concentration of 10 
µM. Erythrocytes were incubated at 37°C for 30 min in the dark and then washed three times in Ringer 
solution. The DCFDA-loaded erythrocytes were resuspended in 200 µl Ringer solution, and ROS-dependent 
fluorescence intensity was measured at an excitation wavelength of 488 nm and an emission wavelength of 
530 nm on a FACS Calibur (BD). 

Statistics
Data are expressed as arithmetic means ± SEM. As indicated in the figure legends, statistical analysis 

was made using ANOVA with Tukey’s test as post-test and t test as appropriate. n denotes the number of 
different erythrocyte specimens studied. Since different erythrocyte specimens used in distinct experiments 
are differently susceptible to triggers of eryptosis, the same erythrocyte specimens have been used for control 
and experimental conditions.

Results

The present study explored whether zosuquidar stimulates eryptosis, the suicidal 
death of erythrocytes characterized by cell membrane scrambling with phosphatidylserine 
translocation to the cell surface and by cell shrinkage.

The phosphatidylserine abundance at the cell surface was quantified by determination 
of FITC-labelled annexin-V, which tightly binds to phosphatidylserine. FITC-labelled 
annexin-V was determined by flow cytometry. As shown in Fig. 1, a 48 hours exposure to 
zosuquidar increased the percentage of annexin-V-binding erythrocytes, an effect reaching 
statistical significance at 2 µg/ml zosuquidar concentration. 

Erythrocyte cell volume was estimated from forward scatter determined in flow 
cytometry. As illustrated in Fig. 2, a 48 hours exposure to zosuquidar was followed by a 

Fig. 1. Effect of zosuquidar on phosphatidylserine exposure. A. Original histogram of annexin-V-binding of 
erythrocytes following exposure for 48 h to Ringer solution without (grey area) and with (black line) pres-
ence of 4 µg/ml zosuquidar. M1 indicates the annexin-V-fluorescence defining the percentage of annexin-V-
binding erythrocytes. B. Arithmetic means ± SEM of erythrocyte annexin-V-binding (n = 7) following incuba-
tion for 48 h to Ringer solution without (white bar) or with (black bars) presence of zosuquidar (0.5 - 4 µg/
ml). For comparison, the effect of zosuquidar on hemolysis is shown (grey bars). **(p<0.01), ***(P<0.001) 
indicates significant difference from the absence of zosuquidar (ANOVA).
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decrease of erythrocyte forward scatter, an effect reaching statistical significance at 4 µg/ml 
zosuquidar concentration. 

Both, cell membrane scrambling and cell shrinkage could be triggered by increase of 
cytosolic Ca2+ activity ([Ca2+]i). Fluo3 fluorescence was thus employed to explore whether 
zosuquidar influences cytosolic Ca2+ activity ([Ca2+]i). As illustrated in Fig. 3, a 48 hours 
exposure to zosuquidar increased the Fluo3 fluorescence, an effect requiring 4 µg/ml 
zosuquidar concentration for statistical significance. 

In order to test whether zosuquidar-induced translocation of phosphatidylserine to the 
cell surface required entry of extracellular Ca2+, erythrocytes were incubated for 48 hours 
in the absence or presence of 2 or 4 µg/ml zosuquidar, both in the presence or nominal 
absence of extracellular Ca2+. As illustrated in Fig 4, removal of extracellular Ca2+ did not 
significantly modify the effect of 2 µg/ml zosuquidar, but significantly blunted the effect of 
4 µg/ml zosuquidar on annexin-V-binding. Exposure to 2 µg/ml zosuquidar significantly 
increased the percentage of annexin-V-binding erythrocytes to similarly high levels in the 

Fig. 2. Effect of zosuquidar on erythrocyte forward scatter. A. Original histogram of forward scatter of eryth-
rocytes following exposure for 48 h to Ringer solution without (grey area) and with (black line) presence of 
4 µg/ml zosuquidar. B. Arithmetic means ± SEM (n = 12) of the erythrocyte forward scatter (FSC) following 
incubation for 48 h to Ringer solution without (white bar) or with (black bars) zosuquidar (0.5 - 4 µg/ml).  
***(P<0.001) indicates significant difference from the absence of zosuquidar (ANOVA).

Fig. 3. Effect of zosuquidar on erythrocyte Ca2+ activity. A. Original histogram of Fluo3 fluorescence in eryth-
rocytes following exposure for 48 h to Ringer solution without (grey area) and with (black line) presence 
of zosuquidar (4 µg/ml). B. Arithmetic means ± SEM (n = 5) of the Fluo3 fluorescence (arbitrary units) in 
erythrocytes exposed for 48 h to Ringer solution without (white bar) or with (black bars) zosuquidar (0.5 - 
4 µg/ml). **(P<0.01) indicates significant difference from the absence of zosuquidar (ANOVA).
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absence and in the presence of extracellular Ca2+ and exposure to 4 µg/ml zosuquidar still 
significantly increased the percentage of annexin-V-binding erythrocytes in the absence of 

Fig. 4. Ca2+ sensitivity of zosuquidar- induced phosphatidylserine exposure. A,B. Original histograms of 
annexin-V-binding of erythrocytes following exposure for 48 h to Ringer solution without (grey areas) and 
with (black lines) presence of zosuquidar (4 µg/ml) in the presence (A) and absence (B) of extracellular 
Ca2+. C. Arithmetic means ± SEM (n = 12) of annexin-V-binding of erythrocytes after a 48 h treatment with 
Ringer solution without (white bars) or with 2 µg/ml (grey bars) or 4 µg/ml (black bars) zosuquidar in the 
presence (left bars, +Ca2+) and absence (right bars, -Ca2+) of Ca2+. ***(P<0.001) indicates significant differ-
ence from the absence of zosuquidar, ###(P<0.001) indicates significant difference from presence of Ca2+ 
(ANOVA).

Fig. 5. Effect of zosuqui-
dar on phosphatidyl-
serine exposure in the 
absence and presence of 
SB203580 or calphostin. 
A-C. Original histograms 
of annexin-V-binding 
of erythrocytes follow-
ing exposure for 48 h to 
Ringer solution without 
(grey areas) and with 
(black lines) presence 
of zosuquidar (4 µg/
ml) in the absence of 
kinase inhibitors (A), 
in the presence of 2 µM 
SB203580 (B) or in the 
presence of 100 nM cal-
phostin (C). D. Arithme-
tic means ± SEM (n = 13) 
of annexin-V-binding of 
erythrocytes after a 48 
h treatment with Ringer 
solution without (white 
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bars) or with (black bars) 4 µg/ml zosuquidar in the absence of kinase inhibitors (left bars) and presence of 
2 µM SB203580 (middle bars) or of 100 nM calphostin (right bars). ***(P<0.001) indicates significant dif-
ference from the absence of zosuquidar, #(p<0.05), ###(P<0.001) indicates significant difference from the 
respective value in the absence of kinase inhibitors (ANOVA).
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extracellular Ca2+. Thus, eryptosis was in large part triggered by mechanisms other than 
entry of extracellular Ca2+. 

Eryptosis could be stimulated by oxidative stress. Thus, 2’,7’-dichlorodihydrofluorescein 
diacetate (DCFDA) fluorescence was utilized to quantify reactive oxygen species (ROS) 
abundance. As a result, the ROS abundance was similar following a 48 hours incubation in 
the absence of zosuquidar (17.6 ± 1.9 a.u., n = 5) and in the presence of 0.5 µg/ml (14.7 ± 0.5 
a.u., n = 5), 1 µg/ml (15.0 ± 0.4 a.u., n = 5), 2 µg/ml (15.6 ± 0.5 a.u., n = 5) and 4 µg/ml (17.0 
± 0.4 a.u., n = 5) zosuquidar. Thus, zosuquidar did not appreciably enhance oxidative stress.

In order to test, whether the effect of zosuquidar required kinase activation, the effect of 
zosuquidar on translocation of phosphatidylserine to the cell surface was determined in the 
absence and presence of p38 protein kinase inhibitor SB203580 (2µM) or protein kinase C 
inhibitor calphostin (100 nM). As shown in Fig. 5, addition of either SB203580 or calphostin 
significantly blunted the effect of zosuquidar on annexin-V-binding. 

Discussion

The present observations uncover a novel effect of zosuquidar, i.e. the stimulation 
of eryptosis, the suicidal erythrocyte death characterized by erythrocyte shrinkage and 
erythrocyte cell membrane scrambling with phosphatidylserine translocation from the cell 
interior to the erythrocyte surface. The zosuquidar concentration required for stimulation 
of erythrocyte cell membrane scrambling (2 µg/ml) was in the range of the concentrations 
determined in mice following treatment with 20 mg/kg zosuquidar [74], but was higher than 
the concentrations observed in patients [74, 75]. It must be kept in mind that the susceptibility 
to eryptosis is enhanced in several clinical conditions, such as malignancy [76], hepatic 
failure [77], diabetes [78, 79], uremia  [44, 80], hemolytic uremic syndrome [81], sepsis 
[82], fever [83], hyperphosphatemia [69], dehydration [61], mycoplasma infection [84], 
malaria [85], iron deficiency [86], sickle cell anemia [87], thalassemia [87], glucose-6-
phosphate dehydrogenase deficiency [87], and Wilson´s disease [34, 88]. In those conditions, 
presumably lower concentrations of zosuquidar are required to trigger eryptosis.

Signaling involved in zosuquidar induced eryptosis includes increase of cytosolic Ca2+ 
activity ([Ca2+]i), which may contribute to stimulation of cell membrane scrambling by 
activating an illdefined Ca2+ sensitive scramblase and of cell shrinkage by activation of Ca2+ 
sensitive K+ channels, K+ exit, cell membrane hyperpolarization, Cl- exit and thus cellular loss of 
KCl with osmotically obliged water [33]. Accordingly, removal of extracellular Ca2+ slightly but 
significantly blunted the stimulation of annexin-V-binding following treatment with 4 µg/ml 
zosuquidar. However, removal of extracellular Ca2+ did not appreciably influence the effect of 2 
µg/ml zosuquidar and 4 µg/ml zosuquidar still significantly enhanced the phosphatidylserine 
abundance at the cell surface in the absence of extracellular Ca2+. Thus, the effect of zosuquidar 
on Ca2+ entry contributed only little to the stimulation of phosphatidylserine translocation. 

Moreover, zosuquidar failed to trigger oxidative stress, a known stimulator of eryptosis 
[34]. Instead, the effect of zosuquidar on cell membrane scrambling apparently involved 
activation of kinases. The effect of zosuquidar on cell membrane scrambling was significantly 
blunted by the p38 kinase inhibitor SB203580 and the protein kinase C inhibitor calphostin. 

The stimulation of eryptosis by zosuquidar may lead to anemia, as phosphatidylserine 
exposing erythrocytes are engulfed by macrophages and thus rapidly cleared from circulating 
blood [34]. Erythrocytes exposing phosphatidylserine at their surface may further adhere to 
endothelial cells of the vascular wall [89], stimulate blood clotting and induce thrombosis 
[90-92]. The stimulation of erythrocyte cell membrane scrambling may thus interfere with 
microcirculation [35, 90, 93-96]. 

In conclusion, exposure of human erythrocytes to zosuquidar is followed by stimulation 
of erythrocyte cell membrane scrambling and cell shrinkage, both hallmarks of eryptosis, the 
suicidal erythrocyte death. Signaling involved in the effect of zosuquidar on cell membrane 
scrambling includes Ca2+ entry, p38 kinase and protein kinase C.
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