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Abstract

Background: Recent in vivo studies showed new hopes of drug repositioning through causality inference from drugs
to disease. Inspired by their success, here we present an in silico method for building a causal network (CauseNet)
between drugs and diseases, in an attempt to systematically identify new therapeutic uses of existing drugs.

Methods: Unlike the traditional ‘one drug-one target-one disease’ causal model, we simultaneously consider all
possible causal chains connecting drugs to diseases via target- and gene-involved pathways based on rich
information in several expert-curated knowledge-bases. With statistical learning, our method estimates transition
likelihood of each causal chain in the network based on known drug-disease treatment associations (e.g.
bexarotene treats skin cancer).

Results: To demonstrate its validity, our method showed high performance (AUC = 0.859) in cross validation.
Moreover, our top scored prediction results are highly enriched in literature and clinical trials. As a showcase of its
utility, we show several drugs for potential re-use in Crohn’s Disease.

Conclusions: We successfully developed a computational method for discovering new uses of existing drugs
based on casual inference in a layered drug-target-pathway-gene- disease network. The results showed that our
proposed method enables hypothesis generation from public accessible biological data for drug repositioning.

Background
Despite the fast growth in drug research and development
(R&D) such as chemical genomics technologies [1,2] and
chemical libraries [3,4], the pharmaceutical R&D output–
new drugs brought to market–has significantly declined in
recent decades. As reported in the most recent analysis,
the number of new drugs approved per billion US dollars
spent has halved approximately every 9 years since 1950
[5]. Discovering new uses for existing drugs, also known
as drug repositioning, provides one possible solution to
such a problem. The fact that existing drugs have already
passed through development stages such as target valida-
tion and ADMET (absorption, distribution, metabolism,
excretion and toxicity) characteristics analysis should

greatly help reduce time and risk when attempting to
identify their new indications [6].
The traditional one drug-one target-one disease drug

discovery model has been argued to more likely result in
poor efficacy or unanticipated side effects by not taking
into account the complexity of underlying mechanism
[7,8]. Due to such limitations, network-based computa-
tional approaches were proposed recently, providing a
new framework for identifying drug-repositioning oppor-
tunities. Keiser et al. predicted new targets for known
drugs using drug chemical structures and their canonical
biological targets, and the resulting novel drug-target
network further connected drugs to new indications [9].
Li et al. measured drug pairwise similarity by combining
similarity of drug chemical structures, similarity of target
profiles, and interaction between target proteins [10]. Iorio
et al. constructed a drug-drug similarity network using
transcriptional responses (i.e., gene expression profiles)
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following drug treatment [11]. Recent studies [12-14]
compared the drug vs. disease gene expression profiles for
identifying novel treatment relationships between drugs
and diseases. Other kinds of network-based approaches
for drug repositioning included literature mining [15] and
shared pathway analysis [16].
Different from the aforementioned computational

approaches, several recent studies demonstrated the fea-
sibility of drug repositioning through manual analysis of
causal associations in drug-involved pathways [17-20].
For example, Cramer et al. found that FDA approved
anticancer drug bexarotene could be potentially used for
Alzheimer’s Disease (AD) treatment [19] based on mole-
cular pathway examination and analysis. More specifi-
cally, they found bexarotene activates nuclear receptors
PPAR (peroxisome proliferator-activated receptor) and
LXR (liver × receptor) in coordination with RXR
(retinoid × receptor), thus up-regulating the expression
of the ApoE (apoliporrotein E) gene. This process facili-
tates the clearance of Ab (b-amyloid) from the brain,
resulting in the alleviation of AD. In this example, the
chain of causality between one drug and one disease
was examined and inferred by domain experts who took
advantage of the following knowledge in bexarotene-
related pathways: (1) drug-target (e.g., bexarotene is an
RXR agonist); (2) target involved pathway (e.g., LXR:RXR
activation pathway); (3) transcriptional responses in a
given pathway (e.g., increased ApoE gene expression in
the LXR:RXR activation pathway); (4) genetic mechanism
of disease (e.g., ApoE is associated with AD).
Motivated by the success of manual pathway analysis

for drug repositioning, we developed a new computa-
tional method for building a network of causal chains
between drugs and diseases, allowing for computational
drug repositioning. By taking advantage of the increasing
amount of expert-curated biological knowledge in the
public domain (e.g. pathway information in Pathway
Commons [21]), we built a multi-layer causal network
(CauseNet) consisting of chains from drug to target,
target to pathway, pathway to downstream gene, and
gene to disease. Furthermore, we used a statistical
method to learn the transition likelihood of each causal
chain in the network based on those known drug-dis-
ease treatment relationships. In the prediction stage, we
identified novel drug re-uses using maximum likelihood
estimation. Unlike the traditional causal chain models
that relied on human examination of one drug target,
pathway and gene at a time, our computational model
allows us to investigate all possible causal links when
connecting drugs to diseases at once. To our best
knowledge, this is also the first attempt of using net-
work-based causal inference in computational drug
repositioning.

Methods
In Figure 1, we show a model of our proposed CauseNet
which puts causal chains from drugs to diseases in a
layered network. The nodes of CauseNet are organized in
five layers: drug D {d1, ...dx}, target T {t1, ...tm}, pathway
P {p1, ...pn}, downstream genes G {g1, ..., gk}, and disease S
{s1, ...sy}. Accordingly, from top to bottom the causal
links between two layers represent (1) drug d acts on tar-
get t; (2) target t participants in pathway p; (3) pathway
p affects the expression of downstream gene g; and
(4) gene g is associated with disease s. To construct such
a network, we integrated data from heterogeneous
resources which contain expert-curated knowledge of
relationships between drugs, molecules and diseases.
Furthermore, we learn the transition weight for each cau-
sal link in the CauseNet to distinguish the likelihood of
transitions between nodes based on the known treatment
relationships between drugs and diseases (details in
Section computing transition weights). For instance, if
drug d1 is known to treat disease sy, then the transition
weights of the gold-colored links in Figure 1 should be
promoted accordingly.

Constructing CauseNet
For constructing CauseNet, we extracted approved drugs
and their targets from DrugBank [22], target-involved-
pathways from Pathway Commons [21] and KEGG [23],
downstream genes from Pathway Commons, and diseases
and their associated genes from Comparative Toxicoge-
nomics Database (CTD) [24]. Also from CTD, we
assembled pairs of known drug-disease treatment relation-
ships. Note that each pathway can mention information
on a series of biological events such as biochemical reac-
tions, physical interactions, transcriptional responses, and
phosphorylation and enzyme catalysis. In this study, we
focused on transcriptional responses (i.e., up/down
regulated expression of downstream genes) in a pathway.

Computing transition weights
We represent the constructed CauseNet as a directed
graph G(V, E). The node set, V(G)={D, T, P, G, S}, consists
of five types of objects (i.e., drug D, target T, pathway P,
downstream gene G and disease S). The edge set is
denoted as E(G) ⊆{D × T, T×P, P×G, G×S}. A complete
causal chain, c = <d, t, p, g, s>, represents a 4-step path
from drug d (d Î D) to disease s (sÎS)with a set of indivi-
dual chains E(c) = {(d, t), (t, p), (p, g), (g, s)}⊂E(G). All
possible causal chains from drugs to diseases become the
complete chain set C. We further use a subset of
(treatment-enriched) chains C* (i.e., C*⊂C) to represent
the links between drug-disease pairs of known treatment
relationships. For example, as shown in Figure 1, drug d1
is linked to diseases s2 and sy through two separatechains
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c1=<d1, t2, p2, g3, s2 > and c2=<d1, t2, p2, g2, sy>, where c1,
c2Î C and c2Î C*(d1 is known to treat sy but not s2).
The graphs of the respective complete and enriched

chain sets C and C* are denoted as G(C) = G(V(C), E(C))
and G(C*) = G(V(C*), E(C*)), where V(C*) ⊂ V(C) and
E(C*) ⊂ E(C). Given above, we can learn the transition
weight w(vi, vj) to represent the transition likelihood from
node to towards treatment relationships (∃(vi, vj)ÎE(C)):

w(vi, vj) =

⎧⎪⎨
⎪⎩
1 +

p(vi → vj|G(C∗))
p(vi → vj|G(C)) if (vi, vj) ∈ E(C∗)

1 otherwise

(1)

Where p(vi ® vj|G(C*)) and p(vi ® vj|G(C)) are the tran-
sition probabilities from node vi to node vj in G(C*) and
G(C), respectively. Let each chain graph G(•) be a Markov
model. Thus the transition probability p(vi®vj|G(•)) is
computed using maximum likelihood estimation:

p(vi → vj |G(•)) =
Nvi, vj
Nvi, • (2)

Nvi, vj is the number of times that a transition vi ® vj
is observed in a chain set, and Nvi,• is the total number
of transitions originated from vi in the chain set.

Predicting novel treatment relationships between drugs
and diseases
For each causal chain c = <d, t, p, g, s>in the global chain
set (cÎC), we can estimate its likelihood L(c) based on the
pre-computed transition weights in equation (1).

L(c) = log( w( d, t) · w(t, p) · w(p, g) · w(g, s)) (3)

Our prediction of a new indication of drug dx for dis-
ease sy is based on the final score S(dx, sy) between drug
dx and disease sy, which is the maximal likelihood of all
possible chains from dx to sy:

S
(
dx, sy

)
= max(L(cx,y)), cx,y ∈ {< dx, t•, p•, g•, sy >} (4)

cx,y is a causal chain from drug dx to disease sy among
all possible chains Cx,y = {< dx, t·, p· , g· , sy >}. Note that
alternatively, S(dx,sy) can also be measured simply by the

Figure 1 A network-based view of causality between drugs and diseases.
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number of successful chains from dx to sy: |Cx,y|. As
shown below, we used such a method as a baseline for
comparing our weighted method.

Results
Complete and treatment-enriched chain sets
Based on the CauseNet (see Section constructing
CauseNet), we constructed a complete causal chain set C
including 2,711,440 possible 4-step chains from 979 drugs,
to 538 targets, to 207 pathways, to 1,122 downstream
genes, to 1,650 diseases, corresponding to 389,945 possible
drug-disease associations. A total of 6,268 such associa-
tions between 665 drugs and 583 diseases were labelled as
known (i.e. found in CTD), resulting in a total of 135,936
chains to the treatment-enriched chain subset C*.
Table 1 shows detailed statistics of the complete vs.

enriched chain sets and their corresponding graph
elements. For each edge in G(C), we calculated its transi-
tion weight based on equation 1 (see Section computing
transition weights). Furthermore, we computed scores for
each of the 389,945 possible drug-disease associations
based on the maximal likelihood estimation of causal
chains (equation 4) and ranked them accordingly. When
treating the known 6,268 associations as the only positive
instances, we calculated true positive rate (sensitivity) and
false positive rate (1-specificity) of our results at different
cut-off ranking scores. As plotted as a ROC curve in
Figure 2(A), we obtained a high AUC score of 0.889,
which suggests that the 6,289 known (positive) associa-
tions were indeed ranked high among all 389,945 pairs.
Also in Figure 2(A), we show that our weighted inference
method significantly outperformed the baseline method in
AUC scores, which shows the value of computing weights
for transition between nodes in our CauseNet.

Cross validation of therapeutic effect prediction
To further evaluate the validity of our method, we con-
ducted a 10-fold cross validation by withholding 10%

of the known treatment relationships in each fold and
removing their connected chains accordingly. Figure 2
(B) shows the results of all ten ROC curves, with the
average AUC score of 0.859 ± 0.006 with (CI = 0.95)
(highlighted in blue). The best tradeoff between sensi-
tivity (0.866) and specificity (0.760) is shown in red,
which corresponds to 2.609 in our prediction score.
After filtering known ones, 92,057 associations between
964 drugs and 1050 diseases have scores higher than
2.609. Additional File 1 lists the 92,057 predicted asso-
ciations and all possible causal chains connecting the
drug-disease associations via target-and gene-involved
pathways.
We compared our method with the similarity-based

methods [9,10] which assume that similar drugs are
used for similar diseases’ treatments. Drug pairwise
similarity was measured by chemical 2D structure simi-
larity (SIM_chem), drug target similarity (SIM_target),
and linear combination of these two (SIM_combo)
respectively. We applied the similarity-based methods to
602 small molecule drugs (with 2D chemical structure)
in our CauseNet dataset. As can be seen in Figure 3,
our method achieved a higher AUC score (0.866) than
using chemical similarity (0.829), target similarity
(0.841) or their combination (0.851).

Novel predictions in clinical trials and literature
We further evaluated our predictions by searching
evidence in clinical trials and literature. About 1/3 were
found in PubMed [25] (requiring three or more occur-
rences) and a relatively small percentage of our predic-
tions (3,202) were found in ClinicalTrials.gov [26].
There are several main reasons for more evidence in the
literature than in clinical trials: First, some predicted
therapeutic uses are still in pre-clinical development
and hence have not reached clinical trial stage.
For example, we predicted anakinra to treat colorectal
neoplasm with a high confidence score of 5.996.

Table 1 Descriptive statistics of global and treatment enriched chain sets

Complete chain set C Enriched chain subset C*

# of chains 2,711,440 135,936

Node set # of drugs |D| 979 655

# of targets |T| 538 397

# of pathways |P| 207 199

# of genes |G| 1,122 838

# of diseases |S| 1,650 583

Edge set |D×T| 2,953 2,074

|T×P| 2,922 2,004

|P×G| 2,772 2,179

|G×S| 6,496 3,954

# of drug-disease associations 389,945 6,268
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According to literature evidence [27], anakinra–a drug
approved for treating rheumatoid arthritis–was recently
found to be able to contribute to growth-inhibition of
small tumors in mice with colon carcinoma. Second,
clinical trials are not always registered in ClinicalTrails.
gov. In our results, some highly scored predictions
were found for novel uses of nadroparin–a drug out-
side of the U.S. market. Some trials have been launched
for investigating these new uses in countries outside the

U.S., with their studies reported in literature, but not in
ClinicalTrials.gov.
To demonstrate the discriminative power of our predic-

tion scores, we show in Figure 4 that in general the higher
the prediction score and more likely the predicted associa-
tion can be validated in ongoing clinical trial investigations
and scientific publications. Hence, we believe such a score
can greatly help others to use our prediction results for
further investigations.

Figure 2 ROC curves of our methods in predicting therapeutic effects.
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Investigations of drug repositioning opportunities for
Crohn’s Disease
Drug repositioning for poorly treated diseases is a promis-
ing strategy in drug discovery today because of the highly
unmet need there [5]. In this study, we further explored
drug repositioning opportunities for Crohn’s disease (CD),
a chronic inflammatory condition of the gastrointestinal
tract, for which there is no known cure and most treat-
ment options aim to relieve its symptoms such as rectal
bleeding and diarrheal [28]. Every year, 10,000 ~ 47,000
residents of North America are diagnosed with CD, and as
many as 630,000 currently suffer from CD [29]. Epide-
miology studies showed incidence of CD is highly influ-
enced by geographic region and family history. Recently,
genetic efforts have been made to explain these epidemio-
logic observations and to understand the underlying
pathogenesis from the view of human genomics [30,31].
As a result, multiple CD susceptibility genes have been
found such as IL23R, IL6, IL10, NLRP3, FN1, NCF4 and
FPR2. These findings could lead to identifying novel thera-
peutic options for CD.
Figure 5 shows five selected CD drugs predicted by our

method for CD and their exemplar causal chains found
in our CauseNet. For example, anakinra, an approved
rheumatoid arthritis drug, shows a high potential for CD
treatment with a score of 5.26 in our method. Further
analysis shows that anakinra works by binding receptor
IL1R, which may influence multiple pathways like osteo-
clast differentiation pathway and amoebiasis pathway,
affecting CD genes NCF4 and FN1 respectively. Another
highly scored drug is nedocromil (score = 4.00), a drug

approved for treating allergic conjunctivitis and asthma.
Our method shows its potential therapeutic use in CD
through acting on multiple targets HSP90AA1 and FPR1,
affecting multiple pathways NOD-like receptor signaling
pathway and staphylococcus aureus infection pathway,
and further affecting multiple CD mechanism genes IL6,
TNF, NLRP3, NOD2, FPR2 and IL10. This comprehensive
evidence would greatly help experts generate hypotheses
on the therapeutic values of these CD drug candidates
which are worth further experimenting. We find that two
drugs shown in Figure 5, adalimumab and prednisolone,
have also been previously studied for CD [32,33].

Discussion
In this study, we propose a new computational drug repo-
sitioning approach by using causal chains in drug-disease
networks (see Figure 1). Our method has the following
important characteristics:
First, it provides a broad and semantic view of molecular

causality between drugs and diseases. Unlike the tradi-
tional ‘one drug-one target-one disease’ model, we put all
causality relationships between drugs and disease in a net-
work view with five distinct layers. In the CauseNet con-
struction, we integrated different types of data and
semantic relationships between them from widely recog-
nized and expert-curated resources. For example, when
integrating pathway data, we focused on specific direction
(downstream) and specific semantics (transcriptional
response) relationships in an interested pathway by taking
advantage of recent progress in pathway curation and
standardization [21,34]. The resulting CauseNet laid down

Figure 3 Comparison with similarity-based methods in predicting therapeutic effects.
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a key foundation for further drug-disease relationship
prediction.
Second, not only does our method find novel drug-

disease treatment associations, but also scores and ranks
each prediction accordingly. As shown in the cross-
validation experiment, our method is able to rank true
associations generally at the top positions. Moreover,
those highly scored drug-disease prediction results are

found significantly enriched in clinical trials and biomedi-
cal literature. Hence, we believe that our weighted infer-
ence method is able to prioritize prediction results for
further exploring drug repositioning opportunities.
Third, instead of being a black box, our method provides

detailed and comprehensive molecular evidence support-
ing each prediction. As shown in the case study with
Crohn’s disease, the accompanying pathway evidence can

Figure 4 Clinical trial and literature validity of novel drug-disease association predictions.
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support further human investigation. More importantly,
such comprehensive pathway information could reveal
unknown linkages between drugs and disease and help
hypothesis generation on novel drug re-uses.
Lastly, our prediction results cover a wide range of

diseases and drugs. For drugs, our repositioning results
consist of both small molecule drugs (e.g., rifabutin) and
big molecules (e.g., adalimumab), thus lifting the limita-
tions of those methods that rely on 2D chemical structures
or gene expression profiles of small molecules [9-14]. In
addition, our method can identify drugs for a disease with
no current treatments, making it different from similarity-
based methods where predictions are always based on
known uses of other drugs.
Like other knowledge-based methods, our approach

relies on existing knowledge of drug-target, target-path-
way, pathway-downstream gene, gene-disease, and drug-
disease relationships. Despite increasing efforts in data
curation and standardization, at present such information
is still incomplete, thus limiting the prediction power of
our method. For example, we extracted 1,239 target-
involved pathways, but merely 209 of which contain tran-
scriptional response relationships. Combining gene
expression with pathway analysis to predict downstream
genes is a hopeful strategy to help break the bottleneck
[35]. We plan to investigate this issue in future work.

Conclusions
In this study, we successfully developed a computational
drug repositioning method using pathway-based causal
inference. Unlike the traditional ‘one drug-one target-one
disease’ causal model, we systematically considered all
possible causal chains connecting drugs to diseases via
target- and gene-involved pathways. More specifically, we
built a multi-layer causal network (CauseNet) consisting
of chains from drugs to disease by integrating heteroge-
neous expert-curated biological resources in public
domain. The transition likelihood of each causal edge in
the CauseNet was estimated by learning known drug-dis-
ease treatment relationships. Furthermore, we predicated
novel drug indications using maximum likelihood estima-
tion of causal chains between drugs and diseases. In
cross-validation experiments, our method achieved AUC
score of 0.859 ± 0.006 with best tradeoff sensitivity =
0.866 and specificity = 0.760. When compared with a
control group of drug uses, our drug repositioning results
were found to be significantly enriched in both the bio-
medical literature and clinical trials. Additionally, in the
Crohn’s Disease case study, we demonstrated our method
would provide more comprehensive evidence showing
how drugs connect to diseases via pathways. We believe
our method would greatly help experts generate hypoth-
eses in drug discovery.

Figure 5 Potential drugs for Crohn’s Disease (CD) treatment.
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Additional material

Additional file 1: Predicted drug-disease associations. lists the 92,057
predicted associations and all possible causal chains connecting the
drug-disease associations via target-and gene-involved pathways
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