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Abstract
Discrete analogues of continuous-time neural models are of great importance in
numerical simulations and practical implementations. In the current paper, a discrete
model of continuous-time neural networks with variable coefficients and multiple
delays is investigated. By Lyapunov functional, continuation theorem of topological
degree, inequality technique and matrix analysis, sufficient conditions guaranteeing
the existence and globally exponential convergence of periodic solutions are
obtained, without assuming the boundedness and differentiability of activation
functions. To show the effectiveness of our method, an illustrative example is
presented along with numerical simulations.
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1 Introduction
Various neural networks have been so far proposed, and they attracted extensive interest of
researchers from various fields, since they play important roles and have found successful
applications in the fields such as pattern recognition, signal and image processing, non-
linear optimization problems, parallel computation, and other engineering areas; see, for
example, [–]. The dynamical behaviors in neural networks, such as the existence and
their asymptotic stability of equilibria, periodic solutions, bifurcations and chaos, have
been the most active areas of research and have been extensively studied over the past
years [–].
Time-delays in interactions betweenneurons are frequently unavoidable due to the finite

transmission speed of signals among neurons, and they cause instability, divergence and
oscillations in neural networks [], so it is necessary to introduce time delays into the
neural models. Numerous sufficient conditions ensuring the stability have been given for
neural models with discrete, time-varying and distributed delays, respectively.
Meanwhile, in numerical simulations and practical implementations, discretization of

continuous-time models is necessary and of great importance. Certainly, to faithfully re-
flect the dynamical behaviors of continuous systems, the discrete analogues should in-
herit the dynamical characteristics of continuous counterparts [, ]. The ways to de-
rive the discrete-time analogues from continuous versions are diverse, but most of them
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cannot keep the original dynamics and display more complicated behaviors. To this end,
an implicit scheme has been put forward [] to derive the discrete analogues. For discrete
models under this scheme, such as discrete Hopfield, bidirectional associate memory and
cellular neural networks, several authors [–] have studied the existence and exponen-
tial stability of equilibria and periodic solutions. However, they aremainly concerned with
the models of constant coefficients. Research on the discrete models with variable coef-
ficients and delays is very rare. Since the neuron charging time, interconnection weights
and external inputs often change during the course of time, neural models with temporal
structure of neural activities are much closer to real systems, and hence studies on such
systems and their discrete versions are of great practical and theoretical value.
Motivated by the above discussions, we present a discrete analogue of continuous-time

neural networks with variable coefficients and delays. Here the activation functions are
not assumed to be bounded, as opposed to those in [–]. To deal with this general
model, a suitable and effective Lyapunov functional is constructed. Continuation theorem
of topological degree [], inequality technique and matrix analysis [] are employed
to obtain the sufficient conditions guaranteeing the existence and globally exponential
stability of periodic solutions. As we see, these sufficient conditions are less conservative
and easy to verify. Further, no restrictions of the differentiability and monotonicity are
imposed on activation functions. Also, note that the discrete models admit the common
dynamical behaviors with continuous versions. That implies they preserve the dynamics
very well from continuous versions. To show the effectiveness of our results, an illustrative
example along with numerical simulations is presented.
The paper is organized as follows. In Section , discrete-time neural networks with

variable coefficients and delays are formulated. Some assumptions and mathematical pre-
liminaries are also given. Section  is devoted to the existence of periodic solutions. In
Section , the exponential convergence of this discrete model is discussed. To show the
effectiveness of the method, an illustrative example is presented in Section . Some con-
clusions are drawn in Section .

2 Mathematical preliminaries
Continuous-time neural networks with time-varying coefficients and delays read as fol-
lows:

dxi(t)
dt

= –ai(t)xi(t) +
m∑
j=

bij(t)fj
(
xj

(
t – σ (t)

))
+ Ii(t), ()

with initial values

xi(s) = φi(s), –τ ≤ s ≤ , ()

where i = , . . . ,m, t ∈ R+ = [,+∞),  ≤ σ (t) ≤ τ ; x = col(x, . . . ,xm) ∈ Rm, xi(t) is the state
of the ith neuron at time t; the continuous function ai(t) represents the neuron charging
time, bij(t) is the strength of the jth unit on the i unit at time t – σ (t); fj denotes the acti-
vation function of the neuron, which satisfies the global Lipschitz condition; σ (t) denotes
the transmission delay along the axon of the jth unit; the continuous function Ii(t) is the
external input on the ith neuron at time t; the initial value function φi(s) is bounded and
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continuous on [–τ , ]. Research into dynamics such as stability and periodic oscillations
for this model has been extensively carried out []. Now we will focus on the dynamics
of its discrete analogue.
SetZ to be the set of integers andZ+ the set of nonnegative integers; letN(a,b) represent

the set of integers between a and b with a≤ b, a,b ∈ Z, namely, N(a,b) = {a,a + , . . . ,b}.
Reformulate the continuous-time model () by equations with piecewise constant argu-

ments of the form

dxi(t)
dt

= –ai
(
[t/h]h

)
xi(t) +

m∑
j=

bij
(
[t/h]h

)
fj
(
xj

(
[t/h]h – σ

(
[t/h]h

)))
+ Ii

(
[t/h]h

)
,

where i = , . . . ,m, t ∈ ([t/h]h, [t/h]h + h), h >  is the discretization step size and [t/h] is
the integer part of t/h. Let

[t/h] = n, xi(nh) = xi(n), ai(nh) = ai(n),

bij(nh) = bij(n), σ (nh) = k(n),

where n = , , , . . . , then one has

dxi(t)
dt

= –ai(n)xi(t) +
m∑
j=

bij(n)fj
(
xj

(
n – k(n)

))
+ Ii(n).

Integrate over the interval [nh, t) to get

xi(t)eai(n)t – xi(n)eai(n)nh =
(
eai(n)t – eai(n)nh

ai(n)

)[ m∑
j=

bij(n)fj
(
xj

(
n – k(n)

))
+ Ii(n)

]
,

let t → (n + )h, then

xi(n + ) = xi(n)e–ai(n)h + θi(h)

[ m∑
j=

bij(n)fj
(
xj

(
n – k(n)

))
+ Ii(n)

]
, ()

where

θi(h) =
 – e–ai(n)h

ai(n)
, n ∈ Z+.

The discrete model () is endowed with initial values

xi(l) = φi(l), l ∈N(–k, ), ()

where φi(l) is bounded on N(–k, ).
Note that θi(h) >  and θi(h) ≈ h + O(h) for small h > . It could be showed that the

discrete-time analogue () converges to the continuous-time model () as h→ .
To investigate the stability and periodic oscillations of system (), we make further as-

sumptions.

http://www.advancesindifferenceequations.com/content/2013/1/226


Xu and Wu Advances in Difference Equations 2013, 2013:226 Page 4 of 19
http://www.advancesindifferenceequations.com/content/2013/1/226

(H) Suppose that ai(n), bij(n), Ii(n) and k(n) are all ω-periodic functions; moreover,
ai(n) > ,  ≤ k(n)≤ k, with ω and k being positive integers, for i = , . . . ,m.

(H) Assume that a function fj satisfies the Lipschitz condition, i.e., there exists a
constant Fj >  such that

∣∣fj(ξ ) – fj(η)
∣∣ ≤ Fj|ξ – η|

for any ξ ,η ∈ R; further, fj() = , j = , . . . ,m.
(H) Suppose that there exist constants λi >  such that

λia–i –
m∑
j=

λjb+ijFj > ,

where a–i =min≤n≤ω– ai(n), i = , . . . ,m.
For any φ = (φ, . . . ,φm), a solution of system () and () is a vector-valued function x :

Z+ → Rm satisfying system () and initial conditions () for n ∈ Z+. In this paper, it is
always assumed that the neural model () and () admits a solution represented by x(n,φ)
or simply x(n).
For later convenience, throughout this paper f̄ represents the mean value of a function

f (n) over [,ω – ]. Denote by g+, g– the maximum and the minimum of a function |g(n)|
over [,ω – ], respectively, i.e.,

f̄ =

ω

ω–∑
n=

f (n), g+ = max
≤n≤ω–

∣∣g(n)∣∣, g– = min
≤n≤ω–

∣∣g(n)∣∣.
To analyze the existence and stability of periodic solutions for system (), M-matrix

theory is employed. Some notations and terminologies are given below. For more details,
please refer to [].

Definition . [] Matrix 
 = (aij) is said to be a nonsingular M-matrix if (i) aii > ,
(ii) aij ≤  for i �= j, (iii) 
– ≥ , i, j = , . . . ,m.

Lemma . [] If 
 is a nonsingular M-matrix and 
y≤ h, then

y≤ 
–h.

Lemma . [] Let 
 be an m×mmatrix with nonpositive off-diagonal elements. Then

 is a nonsingular M-matrix if and only if one of following statements holds true:

(i) There exists a constant vector ξ = (ξ, . . . , ξm)T , with ξi > , i = , . . . ,m, such that


ξ > .

(ii) The real parts of all eigenvalues of 
 are positive.
(iii) There exists a symmetric positive definite matrixW such that


W +W
T

is positive definite.
(iv) All of the principal minors of 
 are positive.
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3 Periodic solutions
Next we investigate the existence and global exponential stability of periodic solutions of
system (). By the continuation theorem of topological degree, the Lyapunov functional
and analytic techniques such as matrix analysis, the existence and its global exponential
stability of ω-periodic solutions are established. Let us first introduce the continuation
theorem due to Gaines and Mawhin [].
LetX and Y be two real Banach spaces, let L :DomL∩X → Y be a Fredholm operator of

index zero, and let P : X → X, Q : Y → Y be continuous projectors such that ImP =KerL,
KerQ = ImL, and X = KerL ⊕ KerP, Y = ImL ⊕ ImQ. Denote by LP the restriction of L
on KerP∩DomL; by KP : ImL →KerP∩DomL the inverse of LP ; by J : ImQ→KerL the
algebraic and topological isomorphism of ImQ onto KerL, due to the same dimensions of
these two subspaces.

Lemma . (Continuation theorem []) Let � ⊂ X be an open bounded set and let N :
X → Y be a continuous operator which is L-compact on �̄. Suppose that
(a) for each λ ∈ (, ), x ∈ ∂� ∩DomL, Lx �= λNx;
(b) for each x ∈ ∂� ∩KerL, QNx �= ;
(c) deg{JQN ,� ∩KerL, } �= .
Then Lx =Nx admits at least one solution in �̄ ∩DomL.

To achieve our goal, take

X = Y =
{
x =

{
x(n)

}
: x(n) ∈ Rm,x(n +ω) = x(n),n ∈ Z

}
,

endowed with the norm

‖x‖ =
m∑
i=

λ–
i max

≤n≤ω

∣∣xi(n)∣∣,
with which X, Y are Banach spaces, here | · | is the Euclidean norm.
Set

F = diag{F, . . . ,Fm}, B =
(

θi(h)
 – e–a–i h

b+ij

)
m×m

,  = I – BF ,

where I is the identity matrix. From periodicity and positiveness, it holds that a+i ≥ ai(n) ≥
a–i > , i = , . . . ,m.

Lemma . Under hypothesis (H),matrix  is a nonsingular M-matrix.

Proof Since

λi –
θi(h)

 – e–a–i h
m∑
j=

λjb+ijFj

=
θi(h)

 – e–a–i h

[
λia–i –

m∑
j=

λjb+ijFj

]
, i = , . . . ,m,

it follows from (H) and Lemma . that  is a nonsingularM-matrix. �
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Theorem . Suppose that hypotheses (H)-(H) hold. If

κ ≡ min
≤i≤m

{
āi – Fi

m∑
j=

|b̄ji|
}
> ,

then system () admits at least one ω-periodic solution.

Proof Let L :DomL∩X → X be defined by

(Lx)(n) = x(n + ) – x(n),

and let the ith component of the mapping N : X → X be defined, respectively, by

(Nx)i(n) =
(
e–ai(n)h – 

)
xi(n) + θi(h)

n∑
j=

bij(n)fj
(
xj

(
n – k(n)

))
+ θi(h)Ii(n), i = , . . . ,m.

With these notations, system () is rewritten into the form

Lx =Nx, x ∈DomL∩X.

It is not difficult to see that

KerL = Rm, ImL =

{
x ∈ X : x̄ =


ω

ω–∑
n=

x(n) = 

}
,

hence ImL is closed in X, and dimKerL = codim ImL =m, that is, L is a Fredholm operator
of index zero.
Define the linear continuous projectors P,Q : X → X by

Px =Qx = x̄.

In this way, ImP = KerL, ImL = KerQ, X = KerL ⊕ KerP = ImL ⊕ ImQ, and the isomor-
phism J from ImQ onto KerL is taken to be the identity map.
Clearly, the mapping LP : DomL ∩ KerP → ImL is one-to-one and onto, so invertible.

Its inverse KP : ImL →DomL∩KerP is defined as

(KPx)(n) =
n–∑
s=

x(s) –

ω

ω–∑
n=

n∑
s=

x(s).

Consequently, by the Lebesgue convergence theorem,QN andKP(I–Q)N are continuous,
and via the Arzela-Ascoli theorem, QN(�̄) and KP(I –Q)N(�̄) are compact for any open
bounded set � ⊂ X, namely, N is L-compact on �̄.
For a certain λ ∈ (, ), suppose that x ∈DomL∩X is a solution of

Lx = λNx,

http://www.advancesindifferenceequations.com/content/2013/1/226
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equivalently,

xi(n + ) – xi(n)

= λ

[(
e–ai(n)h – 

)
xi(n) + θi(h)

m∑
j=

bij(n)fj
(
xj

(
n – k(n)

))
+ θi(h)Ii(n)

]
. ()

Now one could get the estimates as follows:

max
≤n≤ω–

∣∣xi(n)∣∣ = max
≤n≤ω–

∣∣xi(n + )
∣∣

= max
≤n≤ω–

[(
 + λ

(
e–ai(n)h – 

))∣∣xi(n)∣∣

+ λθi(h)
m∑
j=

∣∣bij(n)∣∣∣∣fj(xj(n – k(n)
))∣∣ + λθi(h)Ii(n)

]

≤ (
 + λ

(
e–ai(n)h – 

))
max

≤n≤ω–

∣∣xi(n)∣∣
+ λθi(h)

m∑
j=

b+ijFj max
≤n≤ω–

∣∣xj(n – k(n)
)∣∣ + λθi(h)I+i

≤ (
 + λ

(
e–a

–
i h – 

))
max

≤n≤ω–

∣∣xi(n)∣∣
+ λθi(h)

m∑
j=

b+ijFj max
≤n≤ω–

∣∣xj(n)∣∣ + λθi(h)I+i .

Therefore, we have

max
≤n≤ω–

∣∣xi(n)∣∣ ≤ θi(h)
 – e–a–i h

[ m∑
j=

b+ijFj max
≤n≤ω–

∣∣xj(n)∣∣ + I+i

]
()

for i = , . . . ,m. Set

y =
(

max
≤n≤ω–

∣∣x(n)∣∣, . . . , max
≤n≤ω–

∣∣xm(n)∣∣)T
,

h =
(

θ(h)
 – e–a– h

I+ , . . . ,
θm(h)

 – e–a–mh I
+
m

)T

,

then inequality () is equivalent to

y≤ h. ()

From Lemma ., we know that  is a nonsingular M-matrix, then from Lemma ., it
holds that

y≤ –h. ()

http://www.advancesindifferenceequations.com/content/2013/1/226
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That means max≤n≤ω– |xi(n)| is bounded, i.e., there exist constants αi such that

max
≤n≤ω–

∣∣xi(n)∣∣ ≤ αi, i = , . . . ,m.

Take β >  such that

λκM >
m∑
i=

|Īi|,

whereM =
∑m

i= λ
–
i αi + β , λ =min≤i≤m{λi}.

Set

� =
{
x ≡ (

x(n), . . . ,xm(n)
)T ∈ X : ‖x‖ <M

}
,

according to the above discussions, Lx �= λNx for x ∈ ∂� ∩DomL, λ ∈ (, ). So, condition
(a) in Lemma . is satisfied. When x ∈ ∂� ∩ KerL, x is a constant vector in Rm, with
‖x‖ = ∑m

i= λ
–
i |xi| =M, thenQNx is expressed asQNx = ((QNx)(n), . . . , (QNx)m(n))T , with

(QNx)i(n) =

ω

ω–∑
s=

[(
e–ai(s)h – 

)
xi + θi(h)

[ m∑
j=

bij(s)fj(xj) + Ii(s)

]]
,

where i = , . . . ,m. Since


ω

ω–∑
s=

ai(s)θi(h)|xi| – θi(h)
m∑
j=

∣∣∣∣∣ ω
ω–∑
s=

bij(s)

∣∣∣∣∣Fj|xj| – θi(h)
ω

ω–∑
s=

Ii(s)

= θi(h)

[
āi|xi| –

m∑
j=

|b̄ij|Fj|xj| – |Īi|
]
,

and further

m∑
i=

[
āi|xi| –

m∑
j=

|b̄ij|Fj|xj| – |Īi|
]

=
m∑
i=

λi

[
āi – Fi

m∑
j=

|b̄ji|
]
λ–
i |xi| –

m∑
i=

|Īi|

≥ λκM –
m∑
i=

|Īi| > ,

in this way,

m∑
i=

|(QNx)i(n)|
θi(h)

> .

Consequently,

QNx �=  for x ∈ ∂� ∩KerL,

that is, condition (b) in Lemma . holds.

http://www.advancesindifferenceequations.com/content/2013/1/226
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Let � :KerL× [, ]→ X be defined by

�(x,μ) = (�, . . . ,�m)T =: –μφ(x) + ( –μ)QNx,

where φ(x) = (āθ(h)x, . . . , āmθm(h)xm). When x ∈ ∂� ∩KerL, it follows that

m∑
i=

|�i|
θi(h)

≥
m∑
i=

[
āi|xi| – ( –μ)

( m∑
j=

|b̄ij|Fj|xj| – |Īi|
)]

≥
m∑
i=

λi

[
āi –

m∑
j=

|b̄ji|Fi
]
λ–
i |xi| –

m∑
i=

|Īi|

≥ λκM –
m∑
i=

|Īi|

> .

That means

�(x,μ) �=  for x ∈ ∂� ∩KerL,μ ∈ [, ].

As a result, the homotopy invariance implies

deg(QN ,� ∩KerL, ) = deg(–φ,� ∩KerL, )

= (–)m �= .

Hence condition (c) in Lemma . is verified. By Lemma ., we conclude that system ()
admits at least one ω-periodic solution. This completes the proof. �

4 Exponential stability of periodic solutions
By Theorem ., system () has at least an ω-periodic solution x*(n) = (x*(n), . . . ,x*m(n))T .
Clearly, if x*(n) is exponentially stable, then theω-periodic solution of system () is unique.
Now we will investigate the exponential stability of periodic solutions. Set u(n) = x(n) –
x*(n), then system () is equivalent to

ui(n + ) = ui(n)e–ai(n)h + θi(h)
m∑
j=

bij(n)
[
fj
(
xj

(
n – k(n)

))
– fj

(
x*j

)]
. ()

Theorem. Suppose that all conditions in Theorem . hold except that (H) is replaced
by
(H) Suppose that there exist constants λi >  such that

λia–i –
(
 + k+ – k–

)
Fi

m∑
j=

λjb+ji > , i = , . . . ,m,

then the ω-periodic solution of system () is globally exponentially stable in the sense that
there exist constants η >  and C >  such that for any solution x(n,φ) of system () and ()

http://www.advancesindifferenceequations.com/content/2013/1/226
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with initial condition φ, it holds that

m∑
i=

|xi(n,φ) – x*i (n)|
θi(h)

≤ C
(

η

)n m∑
i=

{
sup

l∈N(–k,)

|φi(l) – x*i (l)|
θi(h)

}

for all n ∈ Z+.

Proof Define the function Gi : R→ R by

Gi(ηi) = λi
(
 – ηie–a

–
i h

)
–

(
 + k+ – k–

)
Fiθi(h)

m∑
j=

λjb+jiη
k+
i

for i = , . . . ,m. From (H), we have

Gi() = λi
(
 – e–a

–
i h

)
–

(
 + k+ – k–

)
Fiθi(h)

m∑
j=

λjb+ji

= θi(h)

[
λia–i –

(
 + k+ – k–

)
Fi

m∑
j=

λjb+ji

]

> .

From the continuity of functions Gi, there must be a number η >  such that

Gi(η) > , i = , . . . ,m,

that is,

λi
(
 – ηe–a

–
i h

)
–

(
 + k+ – k–

)
Fiθi(h)

m∑
j=

λjb+jiη
k+ >  ()

for i = , . . . ,m. From () and (H), one has

∣∣ui(n + )
∣∣ ≤ ∣∣ui(n)∣∣e–a–i h + θi(h)

m∑
j=

b+ijFj
∣∣uj(n – k(n)

)∣∣. ()

Set Ui(n) = ηn |ui(n)|
θi(h)

, then it holds from () that

Ui(n + ) ≤ ηUi(n)e–a
–
i h +

m∑
j=

b+ijFjθj(h)η
+kUj

(
n – k(n)

)
, ()

where n ∈ Z+. Define a Lyapunov functional V (n) = V (U, . . . ,Um)(n) as follows:

V (n) = V(n) +V(n) +V(n),

where

V(n) =
m∑
i=

λiUi(n),

http://www.advancesindifferenceequations.com/content/2013/1/226
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V(n) =
m∑
i,j=

n–∑
s=n–k(n)

λib+ijFjθj(h)η
+kUj(s),

V(n) =
m∑
i,j=

–k–+∑
r=–k++

n–∑
s=n+r–

λib+ijFjθj(h)η
+kUj(s).

To investigate the exponential stability of an ω-periodic solution x*(n) by the Lyapunov
functional V (n), it is necessary to calculate the difference �V (n) = V (n + ) – V (n) along
the solutions of (). From (), we have

�V(n) = V(n + ) –V(n)

≤
m∑
i=

λi

[(
ηe–a

–
i h – 

)
Ui(n) +

m∑
j=

b+ijFjθj(h)η
+kUj

(
n – k(n)

)]
.

Since

n – k(n) + ≤ n +  – k–,

n +  – k+ ≤ n +  – k(n + ),

one obtains

�V(n) =
m∑
i,j=

η+kb+ijλiFjθj(h)

( n∑
s=n+–k(n+)

Uj(s) –
n–∑

s=n–k(n)

Uj(s)

)

≤
m∑
i,j=

η+kb+ijλiFjθj(h)

(
Uj(n) –Uj

(
n – k(n)

)
+

n–∑
s=n+–k–

Uj(s)

+
n–k–∑

s=n+–k(n+)

Uj(s) –
n–∑

s=n+–k–
Uj(s)

)

≤
m∑
i,j=

η+kb+ijλiFjθj(h)

(
Uj(n) –Uj

(
n – k(n)

)
+

n–k–∑
s=n+–k+

Uj(s)

)
,

�V(n) =
m∑
i,j=

η+kb+ijλiFjθj(h)
–k–+∑

r=–k++

( n∑
s=n+r

Uj(s) –
n–∑

s=n+r–

Uj(s)

)

=
m∑
i,j=

η+kb+ijλiFjθj(h)
–k–+∑

r=–k++

(
Uj(n) –Uj(n + r – )

)

=
m∑
i,j=

η+kb+ijλiFjθj(h)

((
k+ – k–

)
Uj(n) –

n–k–∑
s=n+–k+

Uj(s)

)
.

Therefore, we have

�V (n) = �V(n) +�V(n) +�V(n)

≤
m∑
i=

λi
(
ηe–a

–
i h – 

)
Ui(n)
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+
m∑
i,j=

(
 + k+ – k–

)
η+kλib+ijFjθj(h)Uj(n)

=
m∑
i=

[
λi

(
ηe–a

–
i h – 

)
+

(
 + k+ – k–

)
η+kθi(h)Fi

m∑
j=

λjb+ji

]
Ui(n).

In view of (), it follows that �V (n) ≤  for all n ∈ Z+, which means that V (n) ≤ V () for
n = , , , . . . . Note that

V (n) ≥ min
≤i≤m

{λi}
m∑
i=

Ui(n),

V () =
m∑
i=

λiUi() +
m∑
i,j=

–∑
s=–k()

λib+ijFjθj(h)η
+kUj(s)

+
m∑
i,j=

–k–+∑
r=–k++

–∑
s=r–

λib+ijFjθj(h)η
+kUj(s)

≤
m∑
i=

{
λiUi() +

m∑
j=

–∑
s=–k+

λib+ijFjθj(h)η
+kUj(s)

+
m∑
j=

–k–+∑
r=–k++

–∑
s=–k+

λib+ijFjθj(h)η
+kUj(s)

}
,

so we have

m∑
i=

|xi(n,φ) – x*(n)|
θi(h)

≤ 
λ

(

η

)n m∑
i=

[
λi + k+

(
 + k+ – k–

)

× Fiθi(h)η+k
m∑
j=

λjb+ji

]
sup

l∈N(–k,)

|φi(l) – x*i (l)|
θi(h)

≤ C
(

η

)n m∑
i=

sup
l∈N(–k,)

|φi(l) – x*i (l)|
θi(h)

,

where n ∈ Z+, λ =min≤i≤m{λi} and

C = max
≤i≤m

{
λi + k+( + k+ – k–)Fiθi(h)η+k ∑m

j= λjb+ji
λ

}
.

The proof is complete. �

Theorem . Suppose that all conditions in Theorem . hold, then the ω-periodic solu-
tion of system () is globally exponentially stable in the sense that there exist constants η > 
and C* >  such that for any solution x(n,φ) of system () and () with initial conditions φ,
it holds that

∣∣xi(n,φ) – x*i (n)
∣∣ ≤ C*

(

η

)n

max
≤i≤m

{
sup

l∈N(–k,)

∣∣φi(l) – x*i (l)
∣∣}

for all n ∈ Z+.
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Proof Define the function G*
i : R → R by

G*
i (ηi) = λi

(
 – ηie–a

–
i h

)
– θi(h)

m∑
i=

λjb+ijFjη
k+
i , i = l, . . . ,m.

From (H), we have

G*
i () = λi

(
 – e–a

–
i h

)
– θi(h)

m∑
j=

λjb+ijFj

= θi(h)

(
λia–i –

m∑
j=

λjb+ijFj

)

> .

From the continuity of functions G*
i , there must be a number η >  such that

G*
i (η) > , i = , . . . ,m,

that is,

λi
(
 – ηe–a

–
i h

)
– θi(h)

m∑
j=

λjb+ijFjη
k+ > , i = l, . . . ,m. ()

From () and (H), one has

∣∣ui(n + )
∣∣ ≤ ∣∣ui(n)∣∣e–a–i h + θi(h)

m∑
j=

b+ijFj
∣∣uj(n – k(n)

)∣∣. ()

Set Vi(n) = ηnλ–
i |ui(n)|, then it holds that

Vi(n + ) ≤ ηVi(n)e–a
–
i h + θi(h)λ–

i

m∑
j=

b+ijFjλjη
+kVj

(
n – k(n)

)
, ()

where n ∈ Z+. Let M = max≤i≤m{supl∈N(–k,) λ
–
i |ui(l)|}. It is clear that Vi(l) ≤ M for l ∈

N(–k, ), i = , . . . ,m. We claim that

Vi(n) ≤ M for i = , . . . ,m,n ∈ Z+. ()

Otherwise, there should be an index r and a positive integer n such that

Vr(n) >M, Vr(n) ≤ M for n ∈N(–k,n – )

and

Vi(n) ≤ M for i = , . . . ,m, i �= r,n ∈N(–k,n – ).

http://www.advancesindifferenceequations.com/content/2013/1/226
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That is, n is the first time that inequality () is violated. Meanwhile, by () and (), one
has

M < Vr(n)

≤ ηVr(n – )e–a
–
i h + θi(h)λ–

i

m∑
j=

b+ijFjλjη
+kVj

(
n –  – k(n – )

)

≤
(

ηe–a
–
i h + λ–

i θi(h)
m∑
j=

b+ijFjλjη
+k

)
M

< M.

That leads to a contradiction. Therefore, the assertion () is true. Consequently,

∣∣ui(n)∣∣ ≤ λi

(

η

)n

M, i = , . . . ,m,n ∈ Z+.

That implies that the ω-periodic solution x*(n) of system () and () is globally exponen-
tially stable. The proof is completed. �

Remark Frequently activation functions fj are assumed to be bounded and monotonic;
see, for instance, [, ]. However, no restrictions of boundedness, monotonicity and
differentiability are imposed in this paper. Moreover, the conditions ensuring exponential
stability are less conservative and easy to verify. Also, it could be noted [] that continuous
model () admits the common behaviors with system ().

From Theorems ., ., . and Lemma ., some corollaries could be immediately
derived.

Corollary . Assume that hypotheses (H) and (H) hold and κ > ; further assume that
one of the following conditions holds:

(i) a–i – ( + k+ – k–)Fi
∑m

j= b+ji > ;
(ii) a–i –

∑m
j= b+ijFj > , i = , . . . ,m.

Then system () admits a unique ω-periodic solution, which is globally exponentially
stable, that is, all other solutions converge to it exponentially as n → ∞.

Corollary . Under conditions (H), (H) and κ > , if the matrix A–DF is a nonsingu-
lar M-matrix, where A = diag{a– , . . . ,a–m}, D = (b+ij)m×m, then system () admits a unique
ω-periodic solution, which is globally exponentially stable.

When a(n) ≡ ai, bij(n) ≡ bij, Ii(n) ≡ Ii, k(n) ≡ k, then the matrices A = diag{a, . . . ,am},
D = (bij)m×m and system () reduces to the model with constant coefficients and delays,
that is,

xi(n + ) = xi(n)e–aih + θi(h)
m∑
j=

bijfj
(
xj(n – k)

)
+ Ii. ()

Since the equilibrium could be viewed as the periodic solution of arbitrary period, as a
consequence of Theorems ., . and ., we obtain the following corollary.

http://www.advancesindifferenceequations.com/content/2013/1/226
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Corollary . If fj satisfies hypothesis (H), ai > , k > ,

ai – Fi
m∑
j=

|bji| > , i = , . . . ,m,

and, further, the matrix A –DF is a nonsingular M-matrix, then system () has a unique
equilibrium, which is globally exponentially stable.

5 Numerical results
Note that when neural networks are applied to practical problems such as image process-
ing, pattern recognition, artificial intelligence, computer simulations, and so on, discrete
versions of models are needed, since the information is discrete in nature and processing
procedures occur in discrete steps.
Now some algorithms based on discrete-time neural models have been given. For ex-

ample, Chen et al. [] put forward an image processing method based on discrete neu-
ral models, which were implemented on circuits; Wang et al. [, ] proposed the dis-
crete Hopfield neural models for Max-cut problems and cellular channel assignments;
and Yashtini et al. [] gave the discrete model for nonlinear convex programming. More-
over, the discrete-time cellular neural networks for associate memories with learning and
forgetting capabilities [, ] also were established. So, discrete neural networks have
extensive uses in real-life applications.
To show the effectiveness of the obtained theoretical results, an illustrative example is

given. Consider the following discrete-time neural network:

x(n + ) = e–a(n)hx(n) + θ(h)
[
b(n)f

(
x

(
n – k(n)

))
+ b(n)f

(
x

(
n – k(n)

))
+ I(n)

]
,

x(n + ) = e–a(n)hx(n) + θ(h)
[
b(n)f

(
x

(
n – k(n)

))
+ b(n)f

(
x

(
n – k(n)

))
+ I(n)

]
.

The example is a discrete network of two neurons with self-connection, which is of
Hopfield type. The model is often implemented in practical applications such as image
processing, pattern recognition and artificial intelligence. Such networks are the proto-
types to understand the dynamics of larger-scale networks.
The corresponding continuous model is

ẋ(t) = –a(t)x(t) +
[
b(t)f

(
x

(
t – k(t)

))
+ b(t)f

(
x

(
t – k(t)

))
+ I(t)

]
,

ẋ(t) = –a(t)x(t) +
[
b(t)f

(
x

(
t – k(t)

))
+ b(t)f

(
x

(
t – k(t)

))
+ I(t)

]
.

It is the Hopfield network with associate memory and data storage capability []. To
measure the information transmitted among neurons, i.e., inputs and outputs, discrete
samplings are necessary on discrete time instances. Frequently, periodic samplings are
adopted. So, under the proposed discretization scheme, the discrete version of neural
model follows.
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Now take

a(n) =  + cos(nπh), b(n) =  – sin(nπh), b(n) =  + cos(nπh),

a(n) =  – sin(nπh), b(n) =  – cos(nπh), b(n) =  – sin(nπh),

I(n) = – cos(nπh), I(n) = – sin(nπh), k(n) = ,

f(u) = tanhu, f(u) = arctanu, h =



.

Activation functions f, f are chosen to be hyperbolic tangent and inverse tangent ones,
respectively, which are of sigmoid symmetric type. They are frequently used in neural
networks and work very well in applications. The coefficients ai, bij (i, j = , ) are chosen
to be periodic functions. Here we take trigonometric functions. It is not difficult to see
that (H) and (H) are satisfied by this discrete-time neural network. The parameters are
as follows:

a– = , b+ = , b+ = ,

a– = , b+ = , b+ = ,

F = F = , κ > 

and

θ(h) =
 – e–(+cos(nπh))h

 + cos(nπh)
, θ(h) =

 – e–(–sin(nπh))h

 – sin(nπh)
.

When λ, λ are set to be , 
 , respectively, (H) is also true, so from Theorems . and

., it admits a unique periodic solution, with all other solutions converging to it expo-
nentially as n → ∞ (see Figures -).
From Figures -, note that all the solutions tend to the unique periodic solution. So, the

unique periodic solution exists and it is exponentially stable. The trajectories of a contin-
uous model are showed in Figure . Note that it admits a unique periodic solution. Also

Figure 1 The trajectory of x1(n) versus n.
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Figure 2 The trajectory of x2(n) versus n.

Figure 3 Existence and stability of the unique periodic solution.

note that the discrete analogue model well preserves the dynamics of the corresponding
continuous one.

6 Conclusions
In the current paper, a class of discrete-time neural networks has been studied. Using the
coincidence degree, the Lyapunov functional and matrix analysis, the existence and its
global exponential stability of a periodic solution have been established for this model, as-
suming no boundedness, monotonicity and differentiability of activation functions. The
obtained results are less conservative and will be of practical use for applying neural mod-

http://www.advancesindifferenceequations.com/content/2013/1/226
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Figure 4 Trajectories of the continuous model.

els. Also note that the discrete-time analogue model well preserves the dynamical behav-
iors from the continuous version.
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