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Abstract

In this paper, we will discuss asymptotic limit of non-isentropic compressible Euler-
Maxwell system arising from plasma physics. Formally, we give some different limit
systems according to the corresponding different scalings. Furthermore, some recent
results about the convergence of non-isentropic compressible Euler-Maxwell system
to the compressible Euler-Poisson equations will be given via the non-relativistic
regime.
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1 Introduction and the formal limits
Let n, u, and θ denote the scaled macroscopic density, mean velocity vector, and tem-

perature of the electrons and E and B the scaled electric field and magnetic field,

respectively. They are functions of a three-dimensional position vector x ∈ T and of

the time t >0, where T = (R/2πZ)3 is the torus. The fields E and B are coupled to the

particles through the Maxwell equations and act on the particles via the Lorentz force

E + gu × B. These variables satisfy the scaled non-isentropic Euler-Maxwell system for

plasma physics in a uniform background of non-moving ions with fixed density b(x)

(see [1-3]):

∂tn + ∇ · (nu) = 0, (1:1)

∂tu + (u · ∇)u + ∇θ + θ ∇ ln n = −(E + γ u × B), (1:2)

∂tθ + u · ∇θ +
2
3

θ ∇ · u = 0, (1:3)

γ ε ∂tE − ∇ × B = γ nu, γ ∂tB + ∇ × E = 0, (1:4)

ε ∇ · E = b(x) − n, ∇ · B = 0, (1:5)

(n, u, θ ,E,B)|t=0 = (nγ

0 , u
γ

0 , θ
γ

0 ,E
γ

0 ,B
γ

0 ). (1:6)

In the system, Equations 1.1-1.3 are the mass, momentum, and energy balance laws,

respectively, while (1.4)-(1.5) are the Maxwell equations. It is well known that two

equations in (1.5) are redundant with two equations in (1.4) as soon as they are satis-

fied by the initial conditions. The non-dimensionalized parameters g and ε can be
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chosen independently on each other, according to the desired scaling. Physically, g and
ε are proportional to 1

c and the Debye length, where c is the speed of light. Thus, the

limit g ® 0 is called the non-relativistic limit while the limit ε ® 0 is called the quasi-

neutral limit. Starting from one fluid and non-isentropic Euler-Maxwell system, we can

derive some different limit systems according to the corresponding different scalings.

Case 1: Non-relativistic limit, Quasi-neutral limit

In this case, we first perform non-relativistic limit and then quasi-neutral limit.

Step 1: Let ε be fixed and g ® 0. Formally, we get the following system:

∂tn + ∇ · (nu) = 0, (1:7)

∂tu + (u · ∇)u + ∇θ + θ ∇ ln n = −E, (1:8)

∂tθ + u · ∇θ +
2
3

θ ∇ · u = 0, (1:9)

∇ × B = 0, ∇ · B = 0, (1:10)

∇ × E = 0, ε ∇ · E = b(x) − n. (1:11)

This limit is the Euler-Poisson system of compressible electron fluid.

Remark 1.1. Equations 1.10 implies B = 0 when the mean value of B(x, t) vanishes,

i.e. m(B) = 0. Here,

m(v) =
1

(2π)3

∫
T 3

v(x, ·) dx

denotes the mean value of a given scalar or vector function v(x, t) in T 3with respect to

x. Furthermore, equation ∇ × E = 0 in (1.11) with m(E) = 0 implies the existence of a

potential function j0 such that

E = −∇φ.

Step 2: Set ε = 0 in Euler-Poisson system (1.7)-(1.11), we can obtain n - b(x) = 0,

which is so-called quasi-neutrality in plasma physics. Then, (u, θ, j) satisfy the follow-

ing equations:

∇ · (bu) = −∂tb, (1:12)

∂tu + (u · ∇)u + ∇θ + θ ∇ ln b = ∇φ, (1:13)

∂tθ + u · ∇θ +
2
3

θ ∇ · u = 0. (1:14)

Remark 1.2. If the ion density b(x) is a constant, say b(x) = 1 for simplicity; then

from (1.12)-(1.14), we see that (u, θ, j) satisfy the non-isentropic incompressible Euler

equations of ideal fluid:

∇ · u = 0, (1:15)

∂tu + (u · ∇)u + ∇θ = ∇φ, (1:16)

∂tθ + u · ∇θ +
2
3

θ ∇ · u = 0. (1:17)
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Hence, one derives the non-isentropic incompressible Euler equations.

Case 2: Quasineutral limit, Non-relativistic limit

In this case, we take b(x) = 1 for simplicity. Contrarily to Case 1, we first perform

quasineutral limit and then non-relativistic limit.

Step 1: Let g be fixed and ε turns to zero, one can gets n - 1 = 0 (quasineutrality),

and then we get from the Euler-Maxwell system (1.1)-(1.5) that

∂tu + (u · ∇)u + ∇θ + E = −γ u × B, (1:18)

∂tθ + u · ∇θ +
2
3

θ ∇ · u = 0, (1:19)

∇ × B = γ u, ∇ · B = 0, (1:20)

γ ∂tB + ∇ × E = 0. (1:21)

This is so-called the non-isentropic e-MHD equations.

Step 2: We set g = 0 and get that

∇ × E = 0, ∇ × B = 0, ∇ · B = 0

and the non-isentropic incompressible Euler equations 1.16-1.18 of ideal fluid from

the e-MHD system (1.18)-(1.21).

Case 3: Combined quasineutral and non-relativistic limits

Similarly to Case 2, we still take b(x) = 1 for simplicity. Choose ε = g and let ε = g ® 0,

first it is easy to get from the Maxwell system (1.4)-(1.5) that n = 1 (quasi-neutrality) and

∇ × E = 0, ∇ × B = 0, ∇ · B = 0.

Then one gets the non-isentropic incompressible Euler equations 1.15-1.17 of ideal

fluid from the Euler-Maxwell system (1.1)-(1.5).

The above formal limits are obvious, but it is very difficult to rigorously prove them,

even in isentropic case, see [4-6]. Since usually it is required to deal with some com-

plex related problems such as the oscillatory behavior of the electric fields, the initial

layer problem, the sheath boundary layer problem, and the classical shock problem.

The proofs of these convergence are based on the asymptotic expansion of multiple-

scale and the careful energy methods, iteration scheme, the entropy methods, etc. In

the following section, we will provide a rigorous convergence result when ε is fixed

(especially we take ε = 1) and g ® 0. We state our result in the following section. For

detail, see [7]. For the other results, see [4-6] and references therein.

2 Rigorous convergence
Let (ng, ug, θg, Eg, Bg) be the classical solutions to problem (1.1)-(1.6) and assume that

the initial conditions have the following asymptotic expansion with respect to g:

(nγ

0 , u
γ

0 , θ
γ

0 ,E
γ

0 ,B
γ

0 ) =
m∑
j=0

γ j(nj, uj, θj,Ej,Bj) +O(γm+1).

Plugging the following ansatz:

(nγ , uγ , θγ ,Eγ ,Bγ ) =
∑
j≥0

γ j(nj, uj, θ j,Ej,Bj) (2:1)
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into system (1.1)-(1.6), we obtain:

(1) The leading profiles (n0, u0, θ0, E0, B0) satisfy the following equations:

∂tn
0 + div (n0u0) = 0, (2:2)

∂tu
0 + (u0 · ∇)u0 + ∇θ0 + θ0∇ ln n0 = −E0, (2:3)

∂tθ
0 + (u0 · ∇)θ0 +

2
3

θ0∇ · u0 = 0, (2:4)

∇ × E0 = 0, divE0 = b(x) − n0, (2:5)

∇ × B0 = 0, divB0 = 0, (2:6)

(n0, u0, θ0)|t=0 = (n0, u0, θ0). (2:7)

From (2.6), we may take B0 = 0, and equation ∇ × E0 = 0 in (2.5) implies the exis-

tence of a potential function j0 such that E0 = -∇j0. Then Equations 2.2-2.5 become a

non-isentropic compressible Euler-Poisson system and determine a unique smooth

solution (n0, u0, j0) in the class m(j0) = 0 well defined on T × [0,T∗] with T* >0.

Here, we need the following compatibility conditions on (E0, B0):

E0 = −∇φ0, B0 = 0, (2:8)

where j0 satisfies

−�φ0 = b(x) − n0 in T and m(φ0) = 0. (2:9)

(2) For any j ≥ 1, the profiles (nj, uj, θ j, Ej, Bj) can be obtained by induction. Now,

we assume that (nk, uk, θk, Ek, Bk)0≤k≤j-1 are smooth and already determined in previous

steps. Then (nj, uj, θ j, Ej, Bj) satisfy the following linearized equations:

∂tnj +
j∑

k=1

div(nkuj−k) = 0, (2:10)

∂tuj +
j∑

k=0

(uk · ∇)uj−k + θ0∇
(
nj

n0

)
+ θ j∇(lnn0)

+ ∇θ j + Ej +
j−1∑
k=0

uk × Bj−1−k + f j−1 = 0,

(2:11)

∂tθ
j +

j∑
k=0

uk · ∇θ j−k +
2
3

j∑
k=0

θ kdiv uj−k = 0, (2:12)

∇ × Ej = −∂tB
j−1, div Ej = −nj, (2:13)

∇ × Bj = ∂tEj−1 −
j−1∑
k=0

nkuj−1−k, divBj = 0, (2:14)
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(nj, uj, θ j)|t=0 = (nj, uj, θj), (2:15)

where f 0 = 0,
∑−1

k=0 = 0 and f j-1 ((nk, θk)k≤j-1) is defined by
⎛
⎝θ0 +

∑
j≥1

γ jθ j

⎞
⎠∇ ln

⎛
⎝n0 +

∑
j≥1

γ jnj

⎞
⎠

=
∑
j≥0

γ j(θ j∇ lnn0 + θ0∇(ln’n0nj)) +
∑
j≥2

γ jf j−1.

Equations 2.14 are of curl-div type and they determine a unique smooth Bj in the

class m(Bj) = 0 in T × [0,T∗]. Moreover, from div Bj = 0, we deduce the existence of a

given vector function ωj such that Bj = - ∇ × ωj. Then, the first equation in (2.13)

becomes ∇ × (Ej -∂tω
j-1) = 0. It follows that there is a potential function j j such that

Ej = ∂tω
j-1 - ∇j j with ω0 = 0.

Then, (nj, uj, θ j, jj) solve a compressible linearized Euler-Poisson system:

∂tnj +
j∑

k=1

div(nkuj−k) = 0, (2:16)

∂tuj +
j∑

k=0

(uk · ∇)uj−k + θ0∇
(
nj

n0

)
+ θ j∇(lnn0)

+∇θ j − ∇φj +
j−1∑
k=0

uk × Bj−1−k + gj−1 = 0,

(2:17)

∂tθ
j +

j∑
k=0

uk · ∇θ j−k +
2
3

j∑
k=0

θ kdiv uj−k = 0, (2:18)

−�φj = −nj − ∂tdivωj−1, (2:19)

(nj, uj, θ j)|t=0 = (nj, uj, θj) (2:20)

where gj-1 = f j-1 +∂tω
j-1. Then system (2.16)-(2.20) determines a unique smooth

solution (nj, uj, θ j, j j)j≥1 in the class m(j j) = 0, in the time interval [0, T*]. Since Ej =

∂tω
j-1 - ∇j j, we need the following compatibility conditions on (Ej, Bj):

Ej = ∂tωj−1 − ∇φj, Bj = Bj(0, x), (2:21)

where jj is determined by

−�φj = −nj − ∂t divωj−1(0, x), (2:22)

for x ∈ T and m(jj) = 0.

Proposition 2.1. Assume that the initial data (nj, uj, Ej, Bj)j<0 are sufficiently smooth

with n0 > 0 in Tand satisfy the compatibility conditions (2.8)-(2.9) and (2.21)-(2.22). Then

there exists a unique asymptotic expansion up to any order of the form (2.1), i.e. there

exist the unique smooth profiles (nj uj, Ej, Bj)j<0, solutions of the problems (2.2)-(2.7) and

(2.10)-(2.15) in the time interval [0, T*]. In particular, the formal non-relativistic limit
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g ® 0 of the non-isentropic compressible Euler-Maxwell system (1.1)-(1.6) is the non-

isentropic compressible Euler-Poisson system.

Set

(nγ
m, u

γ
m, θ

γ
m,E

γ
m,B

γ
m) =

m∑
j=0

γ j(nj, uj, θ j,Ej.Bj),

where (nj, uj, θ j, Ej, Bj) are those constructed in the previous Proposition 1.1.

For the convergence of the compressible Euler-Maxwell system (1.1)-(1.6), our main

result is stated as follows.

Theorem 2.1. For any fixed integer s0 > 3
2 + 1and m ≥ 1, assume that the mean

values of Eg (x, t), Bg (x, t) vanish and the ion density b(x) the initial data (nj, uj, θj)j≥0,

satisfy the following conditions:

• b(x), nj, uj, θj ∈ Hs(T), s ≥ N + 2, N ≥ j ≥ 0,

• n0, θ0 ≥ δ > 0 for some constant δ,

• m(b(x) - n0) = m(nj) = 0, j ≥ 1

with N = m and s = m + s0 + 3 hold. Furthermore, if

(Ej,Bj)(x) = (Ej,Bj)(x, 0), 0 ≤ j ≤ m, (2:23)

satisfy the compatibility condition

div Eγ

0 = b(x) − nγ

0 , div Bγ

0 = 0, x ∈ T, (2:24)

and initial condition
∥∥∥∥∥∥(n

γ

0 , u
γ

0 , θ
γ

0 ,E
γ

0 ,E
γ

0 ) −
m∑
j=0

γ j(nj, uj, θj,Ej,Bj)

∥∥∥∥∥∥
s0

≤ Cγm+1, (2:25)

then, there exists T* Î (0, T*] such that problem (1.1)-(1.6) has a unique solution

(nγ ,nγ , θγ ,Eγ ,Bγ ) ∈ Ci([0,T
],Hs0−i(T)), i = 0, 1.

Furthermore,
∥∥∥∥∥∥
∣∣∣∣∣∣n

γ , uγ , θγ ,Eγ ,Bγ ) −
m∑
j=0

γ j(nj, uj, θ j,Ej,Bj)

∣∣∣∣∣∣
∥∥∥∥∥∥
s0,T


≤ Cγm+1,

where (nj, uj, θ j, Ej, Bj)0≤j≤m are solutions to problems and C >0 is a constant inde-

pendent of g.
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