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Abstract
In this paper, we prove strong convergence theorems to a point which is a fixed point
of multi-valued mappings, a zero of an α-inverse-strongly monotone operator and a
solution of the equilibrium problem. Next, we obtain strong convergence theorems
to a solution of the variational inequality problem, a fixed point of multi-valued
mappings and a solution of the equilibrium problem. The results presented in this
paper are improvement and generalization of the previously known results.
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1 Introduction
Let E be a real Banach space with dual E∗, and let C be a nonempty closed convex subset
of E. Let A : C → E∗ be an operator. A is calledmonotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C;

α-inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C;

L-Lipschitz continuous if there exists a constant L >  such that

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

If A is α-inverse strongly monotone, then it is 
α
-Lipschitz continuous, i.e.,

‖Ax –Ay‖ ≤ 
α

‖x – y‖, ∀x, y ∈ C.

Amonotone operatorA is said to bemaximal if its graphG(A) = {(x,x∗) : x∗ ∈ Ax} is not
properly contained in the graph of any other monotone operator.
Let A be a monotone operator. We consider the problem of finding x ∈ E such that

 ∈ Ax, (.)
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a point x ∈ E is called a zero point of A. Denote by A– the set of all points x ∈ E such that
 ∈ Ax. This problem is very important in optimization theory and related fields.
Let A be a monotone operator. The classical variational inequality problem for an op-

erator A is to find ẑ ∈ C such that

〈Aẑ, y – ẑ〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by VI(A,C). This problem is connected with
the convex minimization problem, the complementary problem, the problem of finding a
point x ∈ E satisfying Ax = .
The value of x∗ ∈ E∗ at x ∈ E will be denoted by 〈x,x∗〉 or x∗(x). For each p > , the

generalized duality mapping Jp : E → E∗ is defined by

Jp(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖p,∥∥x∗∥∥ = ‖x‖p–}

for all x ∈ E. In particular, J = J is called the normalized duality mapping. If E is a Hilbert
space, then J = I , where I is the identity mapping.
Consider the functional defined by

φ(y,x) = ‖y‖ – 〈y, Jx〉 + ‖x‖ for x, y ∈ E, (.)

where J is the normalized duality mapping. It is obvious from the definition of φ that

(‖y‖ – ‖x‖) ≤ φ(y,x)≤ (‖y‖ + ‖x‖), ∀x, y ∈ E. (.)

Alber [] introduced that the generalized projection �C : E → C is a map that assigns to an
arbitrary point x ∈ E the minimum point of the functional φ(x, y), that is, �Cx = x̄, where
x̄ is the solution of the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x), (.)

existence and uniqueness of the operator�C follows from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J .
Iiduka andTakahashi [] introduced the following iterative scheme for finding a solution

of the variational inequality problem for an inverse-strongly monotone operator A in a
-uniformly convex and uniformly smooth Banach space E: x = x ∈ C and

xn+ =�CJ–(Jxn – λnAxn), ∀n≥ , (.)

where�C is the generalized projection from E ontoC, J is the dualitymapping from E into
E∗ and {λn} is a sequence of positive real numbers. They proved that the sequence {xn} gen-
erated by (.) converges weakly to some element of VI(A,C). In connection, Iiduka and
Takahashi [] studied the following iterative scheme for finding a zero point of amonotone
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operator A in a -uniformly convex and uniformly smooth Banach space E:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ E chosen arbitrarily,

yn = J–(Jxn – λnAxn),

Xn = {z ∈ E : φ(z, yn) ≤ φ(z,xn)},
Yn+ = {z ∈ E : 〈xn – z, Jx – Jxn〉 ≥ },
xn+ =�Xn∩Yn (x),

(.)

where �Xn∩Yn is the generalized projection from E onto Xn ∩ Yn, J is the duality map-
ping from E into E∗ and {λn} is a sequence of positive real numbers. They proved that
the sequence {xn} converges strongly to an element of A–. Moreover, under the addi-
tional suitable assumption they proved that the sequence {xn} converges strongly to some
element of VI(A,C). Some solution methods have been proposed to solve the variational
inequality problem; see, for instance, [–].
A mapping T : C → C is said to be φ-nonexpansive [, ] if

φ(Tx,Ty) ≤ φ(x, y), ∀x, y ∈ C.

T is said to be quasi-φ-nonexpansive [, ] if F(T) �= ∅ and

φ(p,Tx) ≤ φ(p,x), ∀x ∈ C,p ∈ F(T).

T is said to be total quasi-φ-asymptotically nonexpansive, if F(T) �= ∅ and there exist non-
negative real sequences νn, μn with νn → , μn →  as n → ∞ and a strictly increasing
continuous function ϕ :R+ →R

+ with ϕ() =  such that

φ
(
p,Tnx

) ≤ φ(p,x) + νnϕ
(
φ(p,x)

)
+μn, ∀n≥ ,∀x ∈ C,p ∈ F(T).

Let C be the family of all nonempty subsets of C, and let S : C → C be a multi-valued
mapping. For a point q ∈ C, n ≥  define an iterative sequence as follows:

Sq := {q : q ∈ Sq},
Sq = SSq :=

⋃
q∈Sq

Sq,

Sq = SSq :=
⋃

q∈Tq

Sq,

...

Snq = SSn–q :=
⋃

qn–∈Sn–q
Sqn–.

A point p ∈ C is said to be an asymptotic fixed point of S if there exists a sequence {xn}
in C such that {xn} converges weakly to p and

lim
n→∞d(xn,Sxn) := lim

n→∞ inf
x∈Sxn

‖xn – x‖ = .

The asymptotic fixed point set of S is denoted by F̂(S).
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A multi-valued mapping S is said to be total quasi-φ-asymptotically nonexpansive if
F(S) �= ∅ and there exist nonnegative real sequences νn,μn with νn → ,μn →  as n→ ∞
and a strictly increasing continuous function ϕ : R+ → R

+ with ϕ() =  such that for all
x ∈ C, p ∈ F(S),

φ(p,wn)≤ φ(p,x) + νnϕ
(
φ(p,x)

)
+μn, ∀n≥ ,wn ∈ Snx.

S is said to be closed if for any sequence {xn} and {wn} in C with wn ∈ Sxn if xn → x and
wn → w, then w ∈ Sx.
A multi-valued mapping S is said to be uniformly asymptotically regular on C if

lim
n→∞

(
sup
x∈C

‖sn+ – sn‖
)
= , sn ∈ Snx.

Every quasi-φ-asymptotically nonexpansive multi-valued mapping implies a quasi-φ-
asymptotically nonexpansive mapping but the converse is not true.
In , Chang et al. [] introduced the concept of total quasi-φ-asymptotically non-

expansive multi-valued mapping and then proved some strong convergence theorem by
using the hybrid shrinking projection method.
Let f : C ×C →R be a bifunction, the equilibrium problem is to find x ∈ C such that

f (x, y)≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by EP(f ). The equilibrium problem is very general
in the sense that it includes, as special cases, optimization problems, variational inequal-
ity problems, min-max problems, saddle point problem, fixed point problem, Nash EP.
In , Takahashi and Zembayashi [, ] introduced iterative sequences for finding a
common solution of an equilibrium problem and a fixed point problem. Some solution
methods have been proposed to solve the equilibrium problem; see, for instance, [–].
For a mapping A : C → E∗, let f (x, y) = 〈Ax, y – x〉 for all x, y ∈ C. Then x ∈ EP(f ) if and

only if 〈Tx, y – x〉 ≥  for all y ∈ C; i.e., x is a solution of the variational inequality.
Motivated and inspired by the work mentioned above, in this paper, we introduce and

prove strong convergence of a new hybrid projection algorithm for a fixed point of total
quasi-φ-asymptotically nonexpansive multi-valued mappings, the solution of the equilib-
rium problem, a zero point of monotone operators. Moreover, we prove strong conver-
gence to the solution of the variation inequality in a uniformly smooth and -uniformly
convex Banach space.

2 Preliminaries
A Banach space E with the norm ‖ · ‖ is called strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E
with ‖x‖ = ‖y‖ =  and x �= y. Let U = {x ∈ E : ‖x‖ = } be the unit sphere of E. A Banach
space E is called smooth if the limit limt→

‖x+ty‖–‖x‖
t exists for each x, y ∈ U . It is also called

uniformly smooth if the limit exists uniformly for all x, y ∈ U . Themodulus of convexity of
E is the function δ : [, ]→ [, ] defined by

δ(ε) = inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : x, y ∈ E,‖x‖ = ‖y‖ = ,‖x – y‖ ≥ ε

}
.
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A Banach space E is uniformly convex if and only if δ(ε) >  for all ε ∈ (, ]. Let p be a
fixed real number with p ≥ . A Banach space E is said to be p-uniformly convex if there
exists a constant c >  such that δ(ε) ≥ cεp for all ε ∈ [, ]. Observe that every p-uniform
convex is uniformly convex. Every uniformly convex Banach space E has the Kadec-Klee
property, that is, for any sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then xn → x.
Let E be a real Banach space with dual E∗, E is uniformly smooth if and only if E∗ is

a uniformly convex Banach space. If E is a uniformly smooth Banach space, then E is a
smooth and reflexive Banach space.

Remark .
• If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each
bounded subset of E.

• If E is reflexive smooth and strictly convex, then the normalized duality mapping J is
single-valued, one-to-one and onto.

• If E is a reflexive strictly convex and smooth Banach space and J is the duality
mapping from E into E∗, then J– is also single-valued, bijective and is also the duality
mapping from E∗ into E and thus JJ– = IE∗ and J–J = IE .

See [] for more details.

Remark . If E is a reflexive, strictly convex and smooth Banach space, then φ(x, y) = 
if and only if x = y. It is sufficient to show that if φ(x, y) = , then x = y. From (.) we have
‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J , one has Jx = Jy.
Therefore, we have x = y (see [, ] for more details).

Lemma . (Beauzamy [] and Xu []) If E is a -uniformly convex Banach space, then,
for all x, y ∈ E, we have

‖x – y‖ ≤ 
c

‖Jx – Jy‖,

where J is the normalized duality mapping of E and  < c≤ .

The best constant 
c in the lemma is called the p-uniformly convex constant of E.

Lemma . (Beauzamy [] and Zalinescu []) If E is a p-uniformly convex Banach
space, and let p be a given real number with p ≥ , then, for all x, y ∈ E, Jx ∈ Jp(x) and
Jy ∈ Jp(y),

〈x – y, Jx – Jy〉 ≥ cp

p–p
‖x – y‖p,

where Jp is the generalized duality mapping of E and 
c is the p-uniformly convex constant

of E.

Lemma . (Kamimura and Takahashi []) Let E be a uniformly convex and smooth Ba-
nach space, and let {xn}, {yn} be two sequences of E. If φ(xn, yn) →  and either {xn} or {yn}
is bounded, then ‖xn – yn‖ → .

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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Lemma . (Alber []) Let C be a nonempty closed convex subset of a smooth Banach
space E, and let x ∈ E. Then x =�Cx if and only if

〈x – y, Jx – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Alber []) Let E be a reflexive strictly convex and smooth Banach space, C be
a nonempty closed convex subset of E, and let x ∈ E. Then

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀y ∈ C.

Lemma. (Chang et al. []) Let C be a nonempty, closed and convex subset of a uniformly
smooth and strictly convex Banach space E with the Kadec-Klee property. Let S : C → C be
a closed and total quasi-φ-asymptotically nonexpansive multi-valued mapping with non-
negative real sequence νn and μn with νn → , μn →  as n → ∞ and a strictly increasing
continuous function ϕ :R+ → R

+ with ϕ() = . If μ = , then the fixed point set F(S) is a
closed convex subset of C.

For solving the equilibrium problem for a bifunction f : C ×C → R, let us assume that
f satisfies the following conditions:
(A) f (x,x) =  for all x ∈ C;
(A) f is monotone, i.e., f (x, y) + f (y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim
t↓ f

(
tz + ( – t)x, y

) ≤ f (x, y);

(A) for each x ∈ C, y �→ f (x, y) is convex and lower semi-continuous.

Lemma . (Blum and Oettli []) Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E, let f be a bifunction from C ×C to R satisfying (A)-
(A), and let r >  and x ∈ E. Then there exists z ∈ C such that

f (z, y) +

r
〈y – z, Jz – Jx〉 ≥ , ∀y ∈ C.

Lemma . (Takahashi and Zembayashi []) Let C be a closed convex subset of a uni-
formly smooth, strictly convex and reflexive Banach space E, and let f be a bifunction from
C × C to R satisfying conditions (A)-(A). For all r >  and x ∈ E, define a mapping
Tr : E → C as follows:

Trx =
{
z ∈ C : f (z, y) +


r
〈y – z, Jz – Jx〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
() Tr is single-valued;
() Tr is a firmly nonexpansive-type mapping [], that is, for all x, y ∈ E,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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() F(Tr) = EP(f );
() EP(f ) is closed and convex.

Lemma. (Takahashi and Zembayashi []) Let C be a closed convex subset of a smooth,
strictly convex and reflexive Banach space E, let f be a bifunction fromC×C toR satisfying
(A)-(A), and let r > . Then, for x ∈ E and q ∈ F(Tr),

φ(q,Trx) + φ(Trx,x)≤ φ(q,x).

Let A be an inverse-strongly monotone mapping of C into E∗ which is said to be hemi-
continuous if for all x, y ∈ C, themapping h of [, ] into E∗, defined by h(t) = A(tx+(– t)y),
is continuouswith respect to theweak∗ topology of E∗.Wedefine byNC(v) the normal cone
for C at a point v ∈ C, that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v – y,x∗〉 ≥ ,∀y ∈ C

}
. (.)

Theorem . (Rockafellar []) Let C be a nonempty, closed convex subset of a Banach
space E, and let A be a monotone, hemicontinuous operator of C into E∗. Let B ⊂ E × E∗

be an operator defined as follows:

Bv =

⎧⎨
⎩Av +NC(v), v ∈ C;

∅, otherwise.
(.)

Then B is maximal monotone and B– = VI(A,C).

Theorem . (Takahashi []) Let C be a nonempty subset of a Banach space E, and let
A be a monotone, hemicontinuous operator of C into E∗ with C =D(A). Then

VI(A,C) =
{
u ∈ C : 〈v – u,Av〉 ≥ ,∀v ∈ C

}
. (.)

It is obvious that the set VI(A,C) is a closed and convex subset of C and the set A– =
VI(A,E) is a closed and convex subset of E.

Theorem . (Takahashi []) Let C be a nonempty compact convex subset of a Banach
space E, and let A be a monotone, hemicontinuous operator of C into E∗ with C = D(A).
Then VI(A,C) is nonempty.

We make use of the following mapping V studied in Alber []:

V
(
x,x∗) = ‖x‖ – 

〈
x,x∗〉 + ∥∥x∗∥∥, ∀x ∈ E,x∗ ∈ E∗, (.)

that is, V (x,x∗) = φ(x, J–(x∗)).

Lemma . (Alber []) Let E be a reflexive strictly convex smooth Banach space, and let
V be as in (.). Then we have

V
(
x,x∗) + 

〈
J–

(
x∗) – x, y∗〉 ≤ V

(
x,x∗ + y∗), ∀x ∈ E,x∗, y∗ ∈ E∗.

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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Lemma . (Beauzamy [] and Xu []) If E is a -uniformly convex Banach space,
then, for all x, y ∈ E, we have

‖x – y‖ ≤ 
c

‖Jx – Jy‖,

where J is the normalized duality mapping of E and  < c≤ .

Lemma . (Cho et al. []) Let E be a uniformly convex Banach space, and let Br() =
{x ∈ E : ‖x‖ ≤ r} be a closed ball of E. Then there exists a continuous strictly increasing
convex function g : [,∞) → [,∞) with g() =  such that

‖λx +μy + γ z‖ ≤ ‖λx‖ + ‖μy‖ + ‖γ z‖ – λμg
(‖x – y‖)

for all x, y, z ∈ Br() and λ,μ,γ ∈ [, ] with λ +μ + γ = .

Lemma . (Pascali and Sburlan []) Let E be a real smooth Banach space, and let A :
E → E∗ be a maximal monotone mapping. Then A– is a closed and convex subset of E
and the graph G(A) of A is demiclosed in the following sense: if {xn} ⊂D(A)with xn ⇀ x ∈ E
and yn ∈ Axn with yn → y ∈ E∗, then x ∈D(A) and y ∈ Ax.

3 Main results
Theorem . Let C be a nonempty closed and convex subset of a uniformly smooth and
-uniformly convex Banach space E. Let f be a bifunction from C ×C to R satisfying con-
ditions (A)-(A), and let A be an α-inverse-strongly monotone mapping of E into E∗. Let
S : C → C be a closed and total quasi-φ-asymptotically nonexpansive multi-valued map-
ping with nonnegative real sequences νn, μn with νn → , μn →  as n → ∞ and a strictly
increasing continuous function ψ : R+ → R

+ with ψ() = . Assume that S is uniformly
asymptotically regular on C with μ =  and F := F(S) ∩ EP(f ) ∩ A– �= ∅. For arbitrary
x ∈ C, C = C, generate a sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J–(Jxn – λnAxn),

un = Trnzn,

yn = J–(αnJxn + βnJwn + γnJun), wn ∈ Snxn,

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v, zn) ≤ φ(v,xn) +Kn},
xn+ =�Cn+x, n ∈ N,

(.)

where Kn = νn supq∈F ψ(φ(q,xn)) + μn. Assume that the control sequences {αn}, {βn}, {γn},
{λn} and {rn} satisfy the following conditions:
. {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = ,

lim infn→∞ αnβn > ,
. {λn} ⊂ [a,b] for some a, b with  < a < b < cα

 and 
c is the -uniformly convex

constant of E,
. {rn} ⊂ [d,∞) for some d > ,

then {xn} converges strongly to �Fx.

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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Proof We will show that Cn is closed and convex for all n ∈ N. Since C = C is closed and
convex. Suppose that Cn is closed and convex for all n ∈ N. For any v ∈ Cn, we know that
φ(v, yn) ≤ φ(v,xn) +Kn is equivalent to

〈v, Jxn – Jyn〉 ≤ ‖xn‖ – ‖yn‖ +Kn.

That is, Cn+ is closed and convex, hence Cn is closed and convex for all n ∈N.
We show by induction that F ⊂ Cn for all n ∈ N. It is obvious that F ⊂ C = C. Suppose

that F ⊂ Cn where n ∈ N. Let q ∈ F , we have

φ(q, zn) = φ
(
q, J–(Jxn – λnAxn)

)
= V (q, Jxn – λnAxn)

≤ V
(
q, (Jxn – λnAxn) + λnAxn

)
– 

〈
J–(Jxn – λnAxn) – q,λnAxn

〉
= V (q, Jxn) – λn

〈
J–(Jxn – λnAxn) – q,Axn

〉
= φ(q,xn) – λn〈xn – q,Axn〉 + 

〈
J–(Jxn – λnAxn) – xn, –λnAxn

〉
. (.)

Since A is an α-inverse-strongly monotone mapping, we get

–λn〈xn – q,Axn〉 = –λn〈xn – q,Axn –Aq〉 – λn〈xn – q,Aq〉
≤ –λn〈xn – q,Axn –Aq〉
= –αλn‖Axn –Aq‖. (.)

It follows from Lemma . that


〈
J–(Jxn – λnAxn) – xn, –λnAxn

〉
= 

〈
J–(Jxn – λnAxn) – J–(Jxn), –λnAxn

〉
≤ 

∥∥J–(Jxn – λnAxn) – J–(Jxn)
∥∥‖λnAxn‖

≤ 
c

∥∥JJ–(Jxn – λnAxn) – JJ–(Jxn)
∥∥‖λnAxn‖

=

c

‖Jxn – λnAxn – Jxn‖‖λnAxn‖

=

c

‖λnAxn‖

=

c

λ
n‖Axn‖

≤ 
c

λ
n‖Axn –Aq‖. (.)

Replacing (.) by (.) and (.), we get

φ(q, zn) ≤ φ(q,xn) – αλn‖Axn –Aq‖ + 
c

λ
n‖Axn –Aq‖

= φ(q,xn) + λn

(

c

λn – α

)
‖Axn –Aq‖

≤ φ(q,xn). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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From Lemma ., we know that

φ(q,un) = φ(q,Trnzn)≤ φ(q, zn)≤ φ(q,xn). (.)

Since S is a total quasi-φ-asymptotically nonexpansive multi-valued mapping and wn ∈
Snxn, it follows that

φ(q, yn) = φ
(
q, J–(αnJxn + βnJwn + γnJun)

)
= ‖q‖ – 〈q,αnJxn + βnJwn + γnJun〉 + ‖αnJxn + βnJwn + γnJun‖

≤ αnφ(q,xn) + βnφ(q,wn) + γnφ(q,un)

≤ αnφ(q,xn) + βnφ(q,xn) + βnνnψ
(
φ(q,xn)

)
+ βnμn + γnφ(q,un)

≤ αnφ(q,xn) + βnφ(q,xn) + νn sup
q∈F

ψ
(
φ(q,xn)

)
+μn + γnφ(q,un)

= αnφ(q,xn) + βnφ(q,xn) + γnφ(q,un) +Kn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q,Trnzn) +Kn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q, zn) +Kn

≤ αnφ(q,xn) + βnφ(q,xn) + γnφ(q,xn) +Kn

≤ φ(q,xn) +Kn, (.)

where Kn = νn supq∈F ψ(φ(q,xn)) +μn.
This shows that q ∈ Cn+, which implies that F ⊂ Cn+. Hence F ⊂ Cn for all n ∈ N and

the sequence {xn} is well defined.
From the definition of Cn+ with xn = �Cnx and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, it follows

that

φ(xn,x)≤ φ(xn+,x), ∀n≥ , (.)

that is, {φ(xn,x)} is nondecreasing. By Lemma ., we get

φ(xn,x) = φ(�Cnx,x)

≤ φ(q,x) – φ(q,xn)

≤ φ(q,x), ∀q ∈ F . (.)

This implies that {φ(xn,x)} is bounded and so limn→∞ φ(xn,x) exists. In particular, by
(.), the sequence {(‖xn‖ – ‖x‖)} is bounded. This implies {xn} is also bounded. So, we
have {un}, {zn} and {yn} are also bounded.
Since xm =�Cmx ∈ Cm ⊂ Cn for allm,n≥  withm > n, by Lemma ., we have

φ(xm,xn) = φ(xm,�Cnx)

≤ φ(xm,x) – φ(�Cnx,x)

= φ(xm,x) – φ(xn,x),
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taking m,n → ∞, we have φ(xm,xn) → . This implies that {xn} is a Cauchy sequence.
From Lemma ., it follows that ‖xn – xm‖ →  and {xn} is a Cauchy sequence. By the
completeness of E and the closedness of C, we can assume that there exists p ∈ C such
that

lim
n→∞xn = p, (.)

we also get that

lim
n→∞Kn = lim

n→∞νn sup
q∈F

ψ
(
φ(q,xn)

)
+μn = . (.)

Next, we show that p ∈ F := F(S)∩A–∩ EP(f ).
(a) We show that p ∈ F(S). By the definition of �Cnx, we have

φ(xn+,xn) = φ(xn+,�Cnx)

≤ φ(xn+,x) – φ(�Cnx,x)

= φ(xn+,x) – φ(xn,x).

Since limn→∞ φ(xn,x) exists, we get

lim
n→∞φ(xn+,xn) = . (.)

It follows from Lemma . that

lim
n→∞‖xn+ – xn‖ = . (.)

From the definition of Cn+ and xn+ = �Cn+x ∈ Cn+ ⊂ Cn, we have φ(xn+, yn) ≤ φ(xn+,
xn) +Kn →  as n→ ∞. By Lemma ., it follows that

lim
n→∞‖xn+ – yn‖ = . (.)

From limn→∞ xn = p, we also have

lim
n→∞ yn = p. (.)

By using the triangle inequality, we get ‖xn–yn‖ ≤ ‖xn–xn+‖+‖xn+ –yn‖ →  as n → ∞.
Since J is uniformly norm-to-norm continuous, we obtain ‖Jxn – Jyn‖ →  as n→ ∞. On
the other hand, we note that

φ(q,xn) – φ(q, yn) = ‖xn‖ – ‖yn‖ – 〈q, Jxn – Jyn〉
≤ ‖xn – yn‖

(‖xn + yn‖
)
+ ‖q‖‖Jxn – Jyn‖.

In view of ‖xn – yn‖ →  and ‖Jxn – Jyn‖ →  as n→ ∞, we obtain that

φ(q,xn) – φ(q, yn) →  as n → ∞. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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From Lemma ., we have

φ(q, yn) = φ
(
q, J–[αnJxn + βnJwn + γnJun]

)
≤ ‖q‖ – 〈q,αnJxn + βnJwn + γnJun〉 + ‖αnJxn + βnJwn + γnJun‖

– αnβng
(‖Jxn – Jwn‖

)
= αnφ(q,xn) + βnφ(q,wn) + γnφ(q,un) – αnβng

(‖Jxn – Jwn‖
)

≤ φ(q,xn) +Kn – αnβng
(‖Jxn – Jwn‖

)
. (.)

It follows from lim infn→∞ αnβn > , (.), (.) and the property of g that

lim
n→∞‖Jxn – Jwn‖ = .

Since J– is uniformly norm-to-norm continuous, we obtain

lim
n→∞‖xn –wn‖ = . (.)

From (.) it follows that

lim
n→∞‖wn – p‖ = . (.)

For wn ∈ Snxn, generate a sequence {sn} by

s ∈ Sw ⊂ Sx,

s ∈ Sw ⊂ Sx,

s ∈ Sw ⊂ Sx,

...

sn+ ∈ Swn ⊂ Sn+xn.

On the other hand, we have ‖sn+ – p‖ ≤ ‖sn+ – wn‖ + ‖wn – p‖. Since S is uniformly
asymptotically regular, it follows that

lim
n→∞‖sn+ – p‖ = , (.)

we have

lim
n→∞

∥∥Sn+xn – p
∥∥ = , (.)

that is, SSnxn → p as n→ ∞. From the closedness of S, we have p ∈ F(S).
(b) We show that p ∈ A–.
From the definition of Cn+ and xn+ =�Cn+x ∈ Cn+ ⊂ Cn, we have φ(xn+, zn) ≤ φ(xn+,

xn) + Kn →  as n → ∞. By Lemma ., it follows that limn→∞ ‖xn+ – zn‖ = . By the

http://www.fixedpointtheoryandapplications.com/content/2013/1/297
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triangle inequality, we get ‖xn – zn‖ ≤ ‖xn – xn+‖ + ‖xn+ – zn‖ →  as n → ∞. From
limn→∞ ‖zn – xn‖ =  and from (.), it follows that

lim
n→∞ zn = p. (.)

Since J is uniformly norm-to-norm continuous, we also have

lim
n→∞‖Jzn – Jxn‖ = . (.)

Hence, from the definition of the sequence {zn}, it follows that

‖Axn‖ = ‖Jzn – Jxn‖
λn

. (.)

From (.) and the definition of the sequence {λn}, we have

lim
n→∞‖Axn‖ = , (.)

that is,

lim
n→∞Axn = . (.)

Since A is Lipschitz continuous, it follows from (.) that

Ap = . (.)

Again, sinceA is Lipschitz continuous andmonotone so it ismaximalmonotone. It follows
from Lemma . that p ∈ A–.
(c) We show that p ∈ EP(f ).
From xn, yn →  and Kn →  as n → ∞ and applying (.) for any q ∈ F , we get

limn→∞ φ(q,un) → φ(q,p), it follows that

φ(un,xn) = φ(Trn ,xn)

≤ φ(q,xn) – φ(q,Trnxn)

= φ(q,xn) – φ(q,un).

Taking limit as n → ∞ on the both sides of the inequality, we have limn→∞ φ(un,xn) = .
From Lemma ., it follows that

lim
n→∞‖un – xn‖ =  (.)

and

lim
n→∞un = p. (.)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞‖Jun – Jzn‖ = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/297


Saewan Fixed Point Theory and Applications 2013, 2013:297 Page 14 of 19
http://www.fixedpointtheoryandapplications.com/content/2013/1/297

Since rn >  for all n≥ , we have ‖Jun–Jzn‖
rn →  as n→ ∞ and

f (un, y) +

rn

〈y – un, Jun – Jzn〉 ≥ , ∀y ∈ C.

From (A), the fact that

‖y – un‖‖Jun – Jzn‖
rn

≥ 
rn

〈y – un, Jun – Jzn〉
≥ –f (un, y)

≥ f (y,un), ∀y ∈ C,

taking the limit as n→ ∞ in the above inequality and from the fact that un → p as n → ∞,
it follows that f (y,p) ≤  for all y ∈ C. For any  < t < , define yt = ty+(– t)p. Then yt ∈ C,
which implies that f (yt ,p) ≤ . Thus it follows from (A) that

 = f (yt , yt) ≤ tf (yt , y) + ( – t)θ (yt ,p) ≤ tf (yt , y),

and so f (yt , y) ≥ . From (A) we have f (p, y) ≥  for all y ∈ C and so p ∈ EP(f ). Hence, by
(a), (b) and (c), that is, p ∈ F(S)∩A–∩ EP(f ).
Finally, we show that p = �Fx. From xn = �Cnx, we have 〈Jx – Jxn,xn – z〉 ≥  for all

z ∈ Cn. Since F ⊂ Cn, we also have

〈Jx – Jxn,xn – p̂〉 ≥ , ∀p̂ ∈ F .

Taking limit n→ ∞, we obtain

〈Jx – Jp,p – p̂〉 ≥ , ∀p̂ ∈ F .

By Lemma ., we can conclude that p = �Fx and xn → p as n → ∞. The proof is com-
pleted. �

Next, we define zn =�CJ–(Jxn –λnAxn) and assume that ‖Ay‖ ≤ ‖Ay–Au‖ for all y ∈ C
and u ∈ VI(A,C) �= ∅. We can prove the strong convergence theorem for finding the set of
solutions of the variational inequality problem in a real uniformly smooth and -uniformly
convex Banach space.

Remark . (Qin et al. []) Let �C be the generalized projection from a smooth strictly
convex and reflexive Banach space E onto a nonempty closed convex subset C of E. Then
�C is a closed quasi-φ-nonexpansive mapping from E onto C with F(�C) = C.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
-uniformly convex Banach space E. Let f be a bifunction from C ×C to R satisfying con-
ditions (A)-(A), and let A be an α-inverse-strongly monotone mapping of C into E∗ sat-
isfying ‖Ay‖ ≤ ‖Ay – Au‖ for all y ∈ C and u ∈ VI(A,C) �= ∅. Let S : C → C be a closed
and total quasi-φ-asymptotically nonexpansive multi-valued mapping with nonnegative
real sequences νn, μn with νn → , μn →  as n→ ∞ and a strictly increasing continuous
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function ψ :R+ →R
+ withψ() = .Assume that S is uniformly asymptotically regular on

C with μ =  and F := F(S)∩ EP(f ) ∩ VI(A,C) �= ∅. For arbitrary x ∈ C, C = C, generate
a sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn =�CJ–(Jxn – λnAxn),

un = Trnxn,

yn = J–(αnJxn + βnJwn + γnJun), wn ∈ Snxn,

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v, zn) ≤ φ(v,xn) +Kn},
xn+ =�Cn+x, n ∈ N,

(.)

where Kn = νn supq∈F ψ(φ(q,xn)) + μn. Assume that the control sequences {αn}, {βn}, {γn},
{λn} and {rn} satisfy the following conditions:
. {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = ,

lim infn→∞ αnβn > ,
. {λn} ⊂ [a,b] for some a, b with  < a < b < cα

 and 
c is the -uniformly convex

constant of E,
. {rn} ⊂ [d,∞) for some d > ,

then {xn} converges strongly to �Fx.

Proof For q ∈ F and �C is quasi-φ-nonexpansive mapping, we have

φ(q, zn) = φ
(
q,�CJ–(Jxn – λnAxn)

) ≤ φ
(
q, J–(Jxn – λnAxn)

)
.

So, we can show that p ∈ VI(A,C).
Define B ⊂ E × E∗ by Theorem ., B is maximal monotone and B– = VI(A,C). Let

(z,w) ∈G(B). Since w ∈ Bz = Az +NC(z), we get w –Az ∈NC(z).
From zn ∈ C, we have

〈z – zn,w –Az〉 ≥ . (.)

On the other hand, since zn =�CJ–(Jxn – λnAxn). Then, by Lemma ., we have

〈
z – zn, Jzn – (Jxn – λnAxn)

〉 ≥ ,

and thus
〈
z – zn,

Jxn – Jzn
λn

–Axn
〉
≤ . (.)

It follows from (.) and (.) that

〈z – zn,w〉 ≥ 〈z – zn,Az〉

≥ 〈z – zn,Az〉 +
〈
z – zn,

Jxn – Jzn
λn

–Axn
〉

= 〈z – zn,Az –Axn〉 +
〈
z – zn,

Jxn – Jzn
λn

〉
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= 〈z – zn,Az –Azn〉 + 〈z – zn,Azn –Axn〉 +
〈
z – zn,

Jxn – Jzn
λn

〉

≥ –‖z – zn‖‖zn – xn‖
α

– ‖z – zn‖‖Jxn – Jzn‖
a

≥ –M
(‖zn – xn‖

α
+

‖Jxn – Jzn‖
a

)
,

where M = supn≥ ‖z – zn‖. From ‖xn – zn‖ →  as n → ∞ and (.), taking limn→∞ on
the both sides of the equality above, we have 〈z–p,w〉 ≥ . By themaximality of B, we have
p ∈ B–, that is, p ∈ VI(A,C). FromTheorem ., we have p ∈ F(S)∩EP(f )∩VI(A,C). The
proof is completed. �

Let A be a strongly monotone mapping with constant k, Lipschitz with constant L > ,
that is,

‖Ax –Ay‖ ≤ L‖x – y‖, ∀x, y ∈D(A),

which implies that


L

‖Ax –Ay‖ ≤ ‖x – y‖, ∀x, y ∈ D(A).

It follows that

〈Ax –Ay,x – y〉 ≥ k‖x – y‖ ≥ k
L

‖Ax –Ay‖

hence A is α-inverse-strongly monotone with α = k
L . Therefore, we have the following

corollaries.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth
and -uniformly convex Banach space E. Let f be a bifunction from C × C to R sat-
isfying conditions (A)-(A), and let A : E → E∗ be a strongly monotone mapping with
constant k, Lipschitz with constant L > . Let S : C → C be a closed and total quasi-
φ-asymptotically nonexpansive multi-valued mapping with nonnegative real sequences
νn, μn with νn → , μn →  as n → ∞ and a strictly increasing continuous function
ψ : R+ → R

+ with ψ() = . Assume that S is uniformly asymptotically regular on C with
μ =  and F := F(S) ∩ EP(f ) ∩ A– �= ∅. For arbitrary x ∈ C, C = C, a sequence {xn} is
generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J–(Jxn – λnAxn),

un = Trnzn,

yn = J–(αnJxn + βnJwn + γnJun), wn ∈ Snxn,

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v, zn) ≤ φ(v,xn) +Kn},
xn+ =�Cn+x, n ∈ N,

(.)

where Kn = νn supq∈F ψ(φ(q,xn)) + μn. Assume that the control sequences {αn}, {βn}, {γn},
{λn} and {rn} satisfy the following conditions:
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. {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = ,
lim infn→∞ αnβn > ,

. {λn} ⊂ [a,b] for some a, b with  < a < b < ck
L and 

c is the -uniformly convex
constant of E,

. {rn} ⊂ [d,∞) for some d > ,
then {xn} converges strongly to �Fx.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth and
-uniformly convex Banach space E. Let f be a bifunction from C ×C to R satisfying con-
ditions (A)-(A), and let A : C → E∗ be a strongly monotone mapping with constant k,
Lipschitzwith constant L >  satisfying ‖Ay‖ ≤ ‖Ay–Au‖ for all y ∈ C andu ∈ VI(A,C) �= ∅.
Let S : C → C be a closed and total quasi-φ-asymptotically nonexpansive multi-valued
mapping with nonnegative real sequences νn, μn with νn → , μn →  as n → ∞ and a
strictly increasing continuous function ψ : R+ → R

+ with ψ() = . Assume that S is uni-
formly asymptotically regular on C with μ =  and F := F(S) ∩ EP(f ) ∩ VI(A,C) �= ∅. For
arbitrary x ∈ C, C = C, generate a sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn =�CJ–(Jxn – λnAxn),

un = Trnxn,

yn = J–(αnJxn + βnJwn + γnJun), wn ∈ Snxn,

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v, zn) ≤ φ(v,xn) +Kn},
xn+ =�Cn+x, n ∈ N,

(.)

where Kn = νn supq∈F ψ(φ(q,xn)) + μn. Assume that the control sequences {αn}, {βn}, {γn},
{λn} and {rn} satisfy the following conditions:
. {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = ,

lim infn→∞ αnβn > ,
. {λn} ⊂ [a,b] for some a, b with  < a < b < ck

L and 
c is the -uniformly convex

constant of E,
. {rn} ⊂ [d,∞) for some d > ,

then {xn} converges strongly to �Fx.

Let F be a Fréchet differentiable functional in a Banach space E and ∇F be the gradient
of F , denote (∇F)– = {x ∈ E : F(x) = miny∈E F(y)}. Baillon and Haddad [] proved the
following lemma.

Lemma . (Baillon and Haddad []) Let E be a Banach space. Let F be a continuously
Fréchet differentiable convex functional on E and ∇F be the gradient of F . If ∇F is 

α
-

Lipschitz continuous, then ∇F is an α-inverse strongly monotone mapping.

We replace A in Theorem . by ∇F , then we can obtain the following corollary.

Corollary . Let C be a nonempty closed and convex subset of a uniformly smooth
and -uniformly convex Banach space E. Let f be a bifunction from C × C to R satisfy-
ing conditions (A)-(A). Let F be a continuously Fréchet differentiable convex functional
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on E and ∇F be 
α
-Lipschitz continuous. Let S : C → C be a closed and total quasi-

φ-asymptotically nonexpansive multi-valued mapping with nonnegative real sequences
νn, μn with νn → , μn →  as n → ∞ and a strictly increasing continuous function
ψ : R+ → R

+ with ψ() = . Assume that S is uniformly asymptotically regular on C with
μ =  and F := F(S) ∩ F(T) ∩ EP(f ) ∩ A– �= ∅. For an initial point x ∈ E, C = C, define
the sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zn = J–(Jxn – λn∇Fxn),

un = Trnxn,

yn = J–(αnJxn + βnJwn + γnJun), wn ∈ Snxn,

Cn+ = {v ∈ Cn : φ(v, yn)≤ φ(v, zn) ≤ φ(v,xn) +Kn},
xn+ =�Cn+x, n ∈ N,

(.)

whereμn = sup{μS
n,μT

n }, νn = sup{νS
n ,νT

n },ψ = sup{ψS,ψT }, kn = νn supq∈F ψ(φ(q,xn))+μn.
Assume that the control sequences {αn}, {βn}, {γn}, {λn} and {rn} satisfy the following

conditions:
. {αn}, {βn} and {γn} are sequences in (, ) such that αn + βn + γn = ,

lim infn→∞ αnβn >  and lim infn→∞ αnγn > ,
. {λn} ⊂ [a,b] for some a, b with  < a < b < cα

 and the -uniformly convex constant 
c

of E,
. {rn} ⊂ [d,∞) for some d > ,

then {xn} converges strongly to �Fx.
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