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The multisensor estimation problem is considered in this paper. New distributed algorithms,
which are able to locally process the information and which deliver identical results to those
generated by their centralized counterparts are presented. The algorithms can be used to
provide robust and computationally efficient solutions to the multisensor estimation problem.
The proposed distributed algorithms are theoretically interesting and computationally attrac-
tive.
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I. INTRODUCTION

The multisensor estimation problem is of considerable practical signifi-
cance in applications such as, geophysical data processing for oil explo-
ration, process monitoring and surveillance, command, control and com-
munication systems, underwater target tracking and air traffic control
systems. In a distributed multisensor environment a large number of dif-
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ferent sensors, each equipped with its own processing facility, is utilized to
collect data. Then the overall information is used to estimate, detect or
control the state of a dynamic system.

Consider a dynamic system described by the following linear, discrete
time, state transition equation:

x(k + 1) = Ok + 1, k)x(k) + w(k) 1

where x(k) is the n-dimensional state of the system at time k, ®(k + 1,
k) is the (nxn)-state transition matrix from time k to k + 1 and w(k) is the
associated process noise, modeled as an uncorrelated white sequence with
covariance Q(k). It is assumed that the initial state vector value x(0) is
Gaussian with mean value £(010) and variance P(0!0). The initial value is
considered uncorrelated with the plant noise w(k).

In classical estimation theory, a network of sensors take measurements
z(k) of the system’s state according to the following linear equation:

2k + 1) =H(k + Dx(k + 1) + v(k + 1) (2)

where H(k) is the (mxn)-observation matrix and v(k) is the associated
observation noise modeled as an uncorrelated white Gaussian sequence
with covariance R(k). It is assumed that, E[v(j))w(k)] = 0 and E[x(0)v(j)] =
0.

In multisensor estimation problems an observation model other than the
one used in (2) is required to describe the measurement assimilation pro-
cess. Under the distributed/decentralized estimation scenario introduced in
[5] a system comprising r sensors with the composite observation model
of (2) is considered. The observation vector z(k) is partitioned into r sub-
vectors of dimension m; corresponding to the observations made by each
local sensor system.

Z'(k) = [z (k), 2,"(K),..., 2, (K], 3

The observation matrix is also partitioned into sub-matrices corresponding
to these observations as follows:

H'(k) = [H,"(k), H)'(k)...., H(K)], “)
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and thus, the observation noise vector is partitioned accordingly

Vi(k) = [v,"(k), v;"(k),..., v, k)], )

with the assumption that these partitions are uncorrelated

R(k) = E[v(k)v(k)"] = blockdiag(R}(k),..., R}(k)). 6)

The uncorrelatedness of the measurement noise partitions is justified
when the output partitioning represents different sensors [14]. This is a
valid assumption in a large number of applications, such as seismic de-
convolution for oil exploration, where the sensors (geophones) used to
capture the seismic reflection are usually placed in clusters which are
mutually independent. In any case, the designer can always find a partition
of the measurement array which satisfies (6). Thus, despite possible con-
straints on the number of local systems (r partitions) the authors would
like to emphasize that the results obtained herein are immediately appli-
cable to any sensor partitioning scenario, since the distributed estimators
discussed here allow for arbitrary partitioning of the observation array.

Under these assumptions the sensor model now consists of r equations
in the form

zik + 1) = H(k + Dx(k + 1) + vi(k + 1), @)

where, z(k + 1) is the m; -dimensional measurement vector at the local
processor system i, H(k + 1) is the m;xn local observation matrix, and v,(k
+ 1) is the m; local measurement noise vector. In this analysis, without
loss of generality, it is assumed that:

m= 3 m ®)

i=1

Given all local measurement records L; = (z(1), z/2),..., z{k + 1)), i =
1,2,..., r available at the associated local sensor groups and the corre-
sponding local estimates £;(k + 11k + 1) the optimal estimate £(k + 1lk +
1) is required (Fig. 1).
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Two different approaches can be utilized in order to obtain the required
estimates in such a multisensor environment.

e First, the so called centralized approach where all measurements from
the different sensor devices are transmitted from their local sensing
positions to a central processor. An algorithm similar to those devised
for single sensor systems can be used to process and to interpret the
measurements. The well known and widely used Kalman Filter (KF)
and the Per Step Linear Lainiotis Filter (PSLIF) have been used exten-
sively for this task [13]. However, such an approach introduces severe
computational load, and considerable communication overhead and de-
lays since all measurements have to be transferred to a central facility
for processing.

e Secondly, a distributed/decentralized approach where the data obtained
by the different local sensor subsystems are processed locally. The re-
sulting local estimates are then transmitted to a central facility, which
combines the information received (data fusion) to generate the overall
estimate. Such an architecture relieves the computational burden on the
central processor, increases robustness and survilability and delivers en-
hanced processing speed.
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FIGURE 1 Distributed State Estimation.
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Thus, a number of distributed estimation schemes have been developed and
implemented recently. In [5] Hashemipour, Roy and Laub derived a dis-
tributed Kalman estimator. The behavior of their distributed estimator when
reduced state space models are used to model the local sensor subgroups has
been examined in [14]. A similar decentralized scheme based on the square
root of the Kalman filter was introduced and studied by Carson in {4]. Fi-
nally, an decentralized estimator similar to the one introduced in [5] was
discussed in [3]. A different approach was followed in [8], [13] where new
distributed estimators and detectors based on the Per Step Linear Lainiotis
Filter (PSLLF) [9], [7] have been developed and analyzed.

In this paper, we propose new and improved distributed algorithms for
the multisensor estimation problem. The main objective is to develop es-
timation schemes, which provide redundancy and scalability, increase ro-
bustness and achieve improved performance in terms of computational
speed.

The proposed algorithms are more computationally efficient than those
already in use and can deliver excellent results in a fraction of the pro-
cessing time required by other distributed schemes. In addition, the new
algorithms are able to locally process information and can provide optimal
results even if suboptimal initial values and process noise intensity values
are used in the different local subsystems.

The paper is organized as follows: In section I, a new distributed esti-
mator, named Distributed Lainiotis Filter (DLF) is introduced and analyzed.
Its properties and its advantages over the commonly used Distributed Kal-
man Filter (DKF) are also discussed in section II. In section III, a two-stage
distributed state estimator, named Two Stage Distributed Lainiotis Filter
(TSDLF) is analyzed. Motivation, design characteristics and comparisons
with other estimators are discussed in detail. Computational and implemen-
tation issues are the subject of section IV. An important multisensor prob-
lem, namely, seismic deconvolution for oil exploration is also discussed in
section IV. Finally, section V summarizes our conclusions.

Il. THE DISTRIBUTED LAINIOTIS FILTER

The first distributed state estimator introduced is the Distributed Lainiotis
Filter (DLF). The new algorithm can be considered as the distributed
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equivalent of the Per Step Linear Lainiotis Filter (PSLLF). The new esti-
mator can be viewed as a two-filter algorithm. Namely, it utilizes a nomi-
nal Distributed Kalman Filter with zero initial conditions which operates
on the different local subsystems and a correction mechanism at the cen-
tral processor. For the multisensor problem discussed in section I, the
equations of the DLF are as follows:

Tueorem I1.1  Distributed Lainiotis Filter (DLF)

e Filter: central processor calculations:

£k + 1k + 1) = £,k + Tk + 1) + ®,(k + 1, k)P, (klk + 1%, (kik + 1) o

2(kk + 1) = [M,(k + 1) + P~ (k)£ (k)] (10)

Plk+ 1k + 1) =Pk + 1k + 1)+ @k + 1, k)P,

(kk + DDk + 1, k) (11)

P(kik + 1) = [0,(k + 1) + P~ '(klk)] (12)

Plk+ 1k+1)=Q '(k) + Bk + 1) (13)

Bk +1)= 2 (P, (k+ 1k + 1) — 0" '(k)) (14)
i=1

Fk+1)=Q '(ky®k + 1, k) (15)

@, (k+1,k) =P,k + 1k + D)F(k+ 1) (16)

with initial condition ®(0, 0) =

]nxn
0,k +1) = F,(k + )[Qk) — P,(k + 1k + DIF(k+ 1) (17
Mk +1)=Fk+ Dtk + 1k + 1) (18)

e Filter local processor calculations (for the i”* local subsystem):
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Pllk+ 1k+1)— Q '(k) = Hi(k + DR '(k + DH(k + 1) (19)

Pk + 1k + D)2,k + 1k + 1) — Pk + 1k)%,(k + 1K)

nit

= H(k + DR '(k + Dz(k + 1) (20)

The proof is given in Appendix A.

The Distributed Lainiotis Filter (DLF) introduced here is superior to the
commonly used Distributed Kalman Filter (DKF) [5], [13] from both a
theoretical and computational point of view. Namely:

1. As can be seen from (9)—(11), the new DLF constitutes a two-filter
formula which is given in terms of: (i) a forward nominal Distributed
Kalman Filter with zero initial conditions and (ii) a second filter which
operates only on the central processor and is used for the calculations
in (10), (12), (16)—(18). Thus, DKF is part of the new filter although in
a special form due to its re-initialization at every step with zero initial
conditions.

2. It must be noted that theorem 1 corresponds to the general time
varying, linear dynamic, discrete time, state space model. However, in
important application problems, such as the problem of seismic de-
convolution for oil exploration the process model is time invariant.
For such a case, DLF simplifies further by substituting the time vary-
ing matrices @k, k — 1), H/(k), R(k), Q(k) with the time invariant
matrices ©, H,, R; and Q. Thus, due to the nature of the new algo-
rithm equations (12)—(16), (17) and (19) become time invariant and
require only one calculation at the beginning of the corresponding
process. After that, the results can be stored in the memory and can be
used in the recursive calculations of the algorithm immediately, with-
out any further processing. In this way, the only calculations required
at the local level are those of (20). On the contrary, the DKF for the
time invariant model is identical to the that required for a time-
varying system due to the fact that the DKF equations have exactly
the same form for time varying, time invariant or periodic state space
models [13].

3. The Distributed Kalman Filter (DKF) although is theoretically the
optimal (in the mean square error sense) estimator is known to be
numerically unreliable due to the matrix inverse operations required
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for its implementation [S]. To overcome this limitation complex and
computationally intensive solutions, such as U-D factorization or
square root formulations have been proposed [4], [14]. On the con-
trary, DLF is numerically stable retaining at the same time the sim-
plicity of a classical Kalman-like recursive filter. Indeed, as it can be
seen from (11) and (17), the overall covariance update formula has a
natural quadratic form which prevents the propagation of numerical
errors encountered during the inversion process, and guarantees the
positive nature of the error covariance matrix. Thus, due to its qua-
dratic form and without the introduction of any numerical transforma-
tion our distributed algorithm can guarantee numerical stability during
the implementation process.

In our filter, the optimal local estimate at each of the different local
sub-systems is not required by the central processor. If however, this
estimate is requested it can be computed by each local processor in
parallel with the calculations in the central agent with out additional
computational delays. These memoryless operations can be imple-
mented using a very simple processor or even an optical device. Thus,
using DLF there is no need to install expensive computing facilities on
local sensing locations. On the contrary, the DKF requires the calcula-
tions of the optimal local estimates in a sequential form. At this point it
must be emphasized the theoretical as well as practical importance of
this formulation. Conventional distributed estimators, such as the Dis-
tributed Kalman Filter (DKF) has to rely on reduced-order suboptimal
local models in order to improve the computational efficiency of the
overall algorithm. However, the new DLF it can use the actual local
state-space model and still be computationally efficient. Its unique two-
filter structure, with the correction mechanism of (10), (12) and (16)—
(18), allows the utilization of a simplified nominal Distributed Kalman
Filter at the different local systems. These nominal filters since they are
re-initialized at every step with zero nominal initial conditions have
minimal computational complexity and require simple devices, such as
optical arrays for their implementations. Finally, due to the structure of
the proposed algorithm there is no two-way communication between
the local processors and the central computing facility. Because bi-
directional communication between slower local stations and the cen-
tral agent is not desirable in a highly parallel processing environment,
DLF has been designed with the lowest possible communication re-
quirements.
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lll. A DISTRIBUTED TWO-STAGE ESTIMATOR

Both the DKF and the DLF discussed above are based on the assump-
tions discussed in section I. However, in a actual distributed/
decentralized environment it is not realistic to expect that each local
submodule will have complete and accurate knowledge of the actual state
space model.

Decentralized and distributed algorithms available today [4], [14] al-
lows the introduction of reduced-order suboptimal local models in the
system. Their suboptimal models are usually scaled-down versions of the
equation of the system, primarily because the existing distributed algo-
rithms can not cope with the computational complexity of the model.
However, in the state estimation problem is fairly easy for each local
system to obtain a copy of the exact state transition equation, which is
determined by the laws that govern the physical phenomenon. On the
other hand, it is unrealistic to assume that the initial values and the noise
process intensity values will be perfectly known. It is well known that in
the estimation problem the level of process noise and the initial conditions
must frequently be determined on a trial and error basis. Their knowledge
is essential for the development of the recursive procedure that estimates
the states of the system. Moreover, initial conditions are crucial to the
behavior of a dynamic system during its transient response and of course
determine the convergence of the estimator [9].

Thus, flexibility on the selection of these parameters in the local level
and robustness of the estimator in erroneous value selections is required.
Our main objective is to develop a flexible distributed algorithm, which
can handle local information efficiently when the exact initial conditions
and process noise statistics are not available. A two stage distributed esti-
mator, is introduced here to study the effects of the initial settings and the
noise variances in a decentralized data fusion network. The cascade struc-
ture of the proposed distributed estimator provides the natural framework
for studying the effect of initial covariance and process noise intensities
not only in linear estimation but in the dual optimal control problem as
well. It must be emphasized at this point that the proposed estimator
discussed in this paper is the only algorithm which can be handle this kind
of uncertainty. To the best of the authors’ knowledge there is no other
distributed or decentralized estimator available in the literature, which is
capable of that.

To formalize the uncertainty on the initial conditions and the noise pro-
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cess, it is assumed here that the initial state condition and the process noise
vectors are decomposed into two statistically independent parts. Namely,

x(0) =x, + x,
w(k) = w, (k) + w(k)

where x, and x, are Gaussian with mean values £, and £, respectively.
Furthermore, x,, and x, have variances selected so that:

P(0I0) =P, + P,
The process noise parts w,(k), w,(j) are considered zero mean Gaussian

and statistically independent for all j and k. It also assumed that w,(k) and
w,(j) have variances Q,,(k) and Q,(j) which are selected so that:

(k) = Q,(k) + Q,(k)

Using this setting, the initial state-vector and the process noise covari-
ance are decomposed into two parts, with the remainder quantities x,, P,
and w, considered as parameters to which we adapt. The equations of the
(TSDLF) which estimates, under these assumptions, the state of the sys-
tem in (1) using the network of distributed sensors introduced in (7) are
summarized in the next theorem.

Tueorem III.1  Two Stages Distributed Lainiotis Filter (TSDLF)

Central Processor

Optimal estimator

Xk+1Uk+ 1) =%+ 1k+ 1)+ Uk + Dxnk+ 1k +1)

P(k + 1k + 1) = P,(k + 1k + 1) + U (k + DHP(K + 1lk + DUk +(212))
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Nominal estimator

£k + 1k + 1) = P,(k + LIk + 1)(P; '(k + LK%,k + 1k) + Ak + 1)()23)

Ak) = S (P (k + Tk + D (k + 1k + 1) — Py, (k + 1%,k + 11k))
i=1

(24)
Pl (k+ 1k + 1) = P, '(k + 1k) + Bk + 1) (25)
Bk + 1) = g} (P 'k + 1k + 1) — P, (k + 1Ik)) (26)
2,k + k) = Ok + 1, k)%, (klk) (27)
P,k + 1ik) = ®(k + 1, k)P, (k) (klk) + O, (k) (28)
Uk + 1) =Pk + 1k + 1P, '(k + 1Ik) (29)
Remainder Estimator
£k + 1k + 1) = Pk + 1k + 1)(P;, 'k + 1Ik),(k + 11k) +
P,k + 1)k + 1k + 1) — (k + 11k))) (30)
[k + k) = Dk + 1, kU, k), (klk) (31)

P lk+ 1k + 1) =P, \(k + 1ik) +

P,k + 1P, (KPP, \(k + 1k + 1) — P, '(k + 1Ik)) (32)

Pk + 1k) = (@k + 1, U, K)P, KK DK + 1, U, (k)" + 0k  (33)
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Local Processor

-th

For each one of the i"" local subsystems

Pk + 1k + 1) — P (k+ 1k) = Hi(k + DR '(k + DH(k + 1) (34)

Pk + 1k + 1),(k + 1k + 1) — P2k + 1K), (k + 1) =

H(k + DR '(k + Dzk + 1) (35)

The proof is given in Appendix B.

1. The two-stage distributed estimator introduced above constitute a fam-

ily of realizations of the optimal distributed estimator, one for each set
of nominal conditions x,,, P, and Q,, or equivalently one for each initial
state vector and process noise partitioning. It must be emphasized at
this point, that the Decentralized Kalman Filter (DKF) [5], [13] is a
member of this family for nominal initial conditions equal to actual
initial conditions and nominal noise process covariance equal to the
actual one. As such, all the decentralized filters discussed previously in
the literature can be viewed as special cases of the TSDLF. In a similar
manner, (30) and (32) constitute a class of two-filter smoothing formu-
las, one for each possible partitioning of the state vector x(0) and the
process noise covariance Q. In particular, the Mayne-Fraser smoothing
formula [12] is a member of this class corresponding to the choice of
zero nominal initial conditions [9], [6].

. TSDLF’s capability to incorporate arbitrary initial conditions in both
the local models as well as in the central processor is of paramount
importance in the distributed estimation of multisensor systems. The
estimator allows simplified local models based on suboptimal initial
conditions and process noise to be integrated in a distributed processing
system. At the central processor the estimator compensates for the sub-
optimal local models used. When a time invariant state space system is
used to describe the physical process the steady-state covariance of the
local subsystem can be used as the initial covariance of the local esti-
mator. Thus, each one of the local nominal Distributed Kalman filters
used in (34)—(35) reduces to a time invariant Wiener filter with consid-
erable computational savings [2].
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In this paper only the distributed/hierarchical form of the algorithm is
considered. The distributed scheme described in Fig. 1 requires the exist-
ence of a central processing facility (central node) and of several periph-
eral computing devices installed at the local sensor clusters. We adopted
this data fusion network configuration since this is the most commonly
used configuration in practice. However, our distributed formulation is
immediately applicable to any type of distributed or decentralized data
fusion network. Specifically, in case that no central agent is present, each
local processor can be considered to be a central node. If the optimal
overall estimate of the system state is required at a particular location then
this node can act as central node and generate the overall estimate, con-
sidering all the other nodes as local sensing groups, with exactly the same
equations.

IV. DISTRIBUTED ALGORITHMS: MULTISENSOR
APPLICATIONS

A. Computational Requirements of the Distributed Algorithms

Apart from the numerical behavior of any proposed algorithm, its compu-
tational complexity is a realistic measure of its practicality and usefulness
since it determines the required computing power and processing (execu-
tion) time. A general framework to evaluate the computational require-
ments of recursive algorithms is given in [7], [11]. In this work, the rules
defined there are used in the comparative evaluation of the Distributed
Kalman Filter (DKF) and the Distributed Lainiotis Filter (DLF).

Due to the fact that the algorithms provide the solution in a recursive
manner, the algorithms’ total execution time is equal to the product of its
per recursion computational complexity times the number of recursions
required to obtain a solution. The comparisons introduced in this paper are
on a per recursion basis. Two more assumptions are introduced in order to
have a meaningful comparison among the algorithms.

1. First, the overall computational requirements for- a distributed algo-
rithm, per recursion, are computed as the sum of the per recursion
calculation requirements in one of the local processors plus the com-
putational requirements in the central processor since the calculations
in all local models are performed in parallel.
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2. Secondly, the fundamental operations involved in the recursive solution
are matrix and vector operations. A detailed analysis of the computa-
tional involved in the evaluation in such operations is provided in [7],
[13]. The interested reader can refer to them for more information on
the subject. In this context, the total time required to complete an
operation (or a sequence of operations) is proportional to the normal-
ized total number of equivalent scalar operations, defined as:

Time = kX(4X(MULTS) + (ADDS) + 6X(DIVS) + 25X(SQRTS))

where MULTS is the number of scalar multiplications required, ADDS is
the number of scalar additions required, DIVS is the number of scalar
divisions required and SQRTS is the number of the scalar square roots. The
weights used in the above formula do not refer to any particular machine.
Rather than that, they can be considered mean values of those coefficients
commonly encountered. All the qualitative results presented in the se-
quence hold even if the weighting coefficients in the above formula are
different for a specific computing platform [7], [13].

B. Application to Seismic Deconvolution

Two distributed estimators, namely DKF and DLF, as well as their cen-
tralized counterparts, the Centralized Kalman Filter (CKF) and the Cen-
tralized Lainiotis Filter (CLF) [13] are compared using the framework
compared above. The test problem selected, is that of seismic deconvolu-
tion for oil exploration.

In such a problem the signal received by a seismic sensor is described
by the following convolution summation [10]:

k
2(k) = V(k)g + n(k) = X, V' (k = j) + n(k) (36)
j=1

where V(k)y is the noise free seismic trace, h(k) is the measurement noise,
V*(k — j) is a sequence associated with the basic seismic wavelet and u(j)
is the reflection coefficient sequence, which is modeled as white random
noise.
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The signal V(k)g is a superposition of wavelet replica reflected from the
interfaces of earth’s sub-surface layers, while p(j) is related to interface
reflection and transmission coefficients. Following the work in [10] we
assume a state-space equivalent description of (36):

xtk + 1) = Ox(k) + vy 37
zZk+1)=Hxtk+1)+v (38)

where x(k) is the n-dimensional state vector, ® is the time invariant, nxn
state transition matrix, H is the time invariant, mxn output matrix, z(k) is
the m-dimensional measurement vector and p, v(k) are uncorrelated, zero
mean sequences. The plant and measurement noise covariances are ¢, and
R respectively. The initial value x(0) of the state vector x(k) at time ¢, =
0 is modeled as Gaussian random variable with mean (0/0) and variance
P(010) and it is assumed independent of both p and v.

The measurement dimensionality is higher than the state dimensionality
since in case of n > m the measurements provide only partial information
about the system state. In practice, the number of sensors (geophones)
used to capture the seismic reflection varies from a few hundred to several
thousand. To reduce uncertainty and to obtain complete knowledge of the
state of nature, the sensors are not placed in the same location but usually
are allocated in different local subsystems (geophone clusters).

For such a time invariant state space model, the computational require-
ments for the implementation of the CLF algorithm are divided into two
parts. The first part, called preliminary, summarizes the computational
requirements for the operations that are calculated only once (or during the
system’s period) and the second part, named per step operations, summa-
rizes the requirements for the per step calculations [13]. Similarly, the
computational requirements of the DLF approach are also divided into two
parts. As before, the first part, called preliminary, summarizes the compu-
tational requirements for the operations that are calculated only once (or
during the system’s period) and the second part, named per step opera-
tions, summarizes the requirements for the per step calculations. The com-
putational requirements of the different algorithms (in terms of the nor-
malized operations) when they applied to the problem of seismic
deconvolution are summarized in table I.
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TABLE I Seismic Deconvolution: Computational Requirements

method normalized operations

CKF 7.50° + 6.5n% + 7.5n%*m + 7.5nm* + 13mn + 6m? + 2.5m> + 32.5m —n — 6

CLF 12.512° + 23.5n> + 64n + 10nm — 12

DKF 250 + 58n% + 123n + #(0.5n% + 1.5n) + 2.5m% + 7.5n%m, + 7.50m; + 13nm,
+ 6m} + 32.5m;, — 24

DLF 12.57% + 34n® + 62n — 24 + (0.51% + n)r + Snm,

Up until now we have discussed the computational requirements of the
different approaches to the problem when implemented in a centralized or
distributed fashion. An answer however, to a fundamental question often
posed by filter designers and practitioners was not given. Is the difficulty
of implementation inherent in a distributed realization compensated by the
gain in computing speed?

To answer this question and to compare the algorithms’ computational
efficiency, the total normalized operations required by centralized and dis-
tributed algorithms were plotted against measurement dimensionality
(number of geophones) as well as against the number of local systems
(geophone clusters). Total operations are computed using the framework
explained in the previous paragraph. In this analysis the parameters are the
number of channels/sensors m, and the local systems (geophone clusters)
r. The values used for the state dimensionality (n) (the order of the seismic
wavelet) are n = 1, n = 4 and n = 9 respectively. The number of geo-
phone clusters, when is not a parameter, it is assumed to be r = 5.

Finally, a typical seismic deconvolution example is introduced. The
time invariant wavelet used to describe the signal received by the seismic
sensors is assumed of order n = 4 [10]. To capture the seismic trace m =
1000 sensors divided in » = 10 local geophone clusters, are utilized. The
computational requirements for the different estimators are summarized in
table II.

From the analysis and the simulation studies the following conclusions
can be drawn regarding our distributed state estimators:

1. Both the DLF and the TSDLF introduced in this work provide the
optimal (in the minimum mean square error sense), estimate of the
system state in (1). Thus, the algorithms are globally optimal and there
is no loss of performance.
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2. Both the DLF and TSDLF require only simple, memoryless, non-
recursive calculations for their implementation at the local level. As a
result are computationally efficient, communicate less than the DKF
with the central processor and can yield supreme input data rates and
excellent computational data speeds as it can be seen from the simula-
tion studies reported here (see tables I, II).
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3. Due to their natural quadratic nature, both our filters are numerically
stable and reduce the effect of ill conditioning without additional nu-
merical transformations, such as U-D factorization.

4. The TSDLF introduced in this paper constitutes a family of distributed
estimators and smoothers. Well known and extensively used distributed
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estimators, such as the Distributed Kalman Filter (DKF) [5] can be
viewed as special case of TSDLF. More robust and computationally
attractive filters can be derived from our framework using different
partitions of the initial conditions and the process noise.
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TABLE II  Seismic Deconvolution: Example

method normalized operations
CKF 2.4e +09

CLF 4.24e+04

DKF 2.61¢+06

DLF 3.37¢+03

5. Both the DLF and the TSDLF are well suited for fault detection and

V.

In

isolation, since the local filters operate in parallel without interaction.
In fact the new filters are more suitable than the DKF for this task since
they use simpler local processor and utilize an additional correction
mechanism at the central processing unit.

Regarding the computational requirements, the following conclusions
can be drawn:

The computational requirements for estimating the state of a multisen-
sor linear system, using a distributed approach are less than the compu-
tational requirements for solving the same problem using a centralized
filter. The distributed algorithm delivers the same performance as its
centralized counterpart at a fraction of the centralized implementation
computational requirements. For the problem of seismic deconvolution
discussed above the CLF provides better results than DKF. However,
our DLF is the most computationally efficient method as we can see
from the illustrative example in table II.

Using DLF only a few per step calculations are required at the local
level. Thus, DLF has significant less computational requirements com-
pared to the DKF or to centralized approaches where actual measure-
ments are communicated from the dispersed sensor locations to the
computing facility at each time step.

CONCLUSION

conclusion, two new distributed state estimators were introduced in this

paper. The two new estimators provide modularity, flexibility and in-
creased robustness. The TSDLF introduced here can be viewed as a gen-
eralizations of many well known distributed filters. Its capability to allow
for suboptimal local estimators enhances the flexibility and robustness of
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the estimation procedure. Although only hierarchical, distributed algo-
rithms were discussed here, the new algorithms can be be extended to
arbitrary network topology and is not limited to the hierarchical network
presented here. All the above make our distributed state estimators ideal
for real-time multisensor applications, such as seismic deconvolution for
oil exploration.

VI. APPENDIX A

Proof of Theorem 11.1  DLF utilizes a Distributed Kalman Filter with zero
initial conditions in order to generate the nominal results required by (11)
and (14). Since the derivation of the DKF is trivial, we concentrate our
attention in the derivation of the correction filter employed by the DLF.
The most important step is to obtain an expression for the nominal
observability matrix O,(k + 1) which does not use any matrix associated
with the measurement equation. We start with an interim result, the ex-
pression for the filter transition matrix ®,(k + 1, k). By definition [9], [13]

@, (k+ 1,k) = [I - K,k + DH(k + DDk + 1, k) (39)

Moreover,

P (kk)Q™'(k = 1) = [I — K, (kH(k)] (40)
since the nominal Distributed Kalman Filter (DKF) utilized by our filter at
each one of the r local systems is reinitialized at every step with zero
initial conditions. Thus, P,(klk — 1) = Q(k — 1) and £,(klk — 1) = 0

withi = 1, 2,..., r. Therefore, the filter transition matrix for the distributed
filter can be written as:

D (k+ 1,k = Pn(klk)Q_'(k - DDk + 1, k) 4n
After that, the nominal observability matrix [9], [13] is calculated as:

0,k + 1) = K, (k + DH(k + D®(Kk + 1, k) (42)
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K, (k+ 1) = ®"(k + 1, H(k + 1P,k + 1Ik) (43)

Simple algebraic calculations of the standard Kalman filter gain equation
lead us to the following solution:

K, (k+1)=dk+ 1,00 (k)

P,k + 1k + DH (k + DR '(k + DH(k + )Pk + 1, k) (44)

From the nominal Distributed Kalman Filter, utilized in the DLF the
expression for the estimation covariance is as follows:

P (k) — Q" '(k — 1) = H' ()R '(k)H(k) (45)

Utilizing this result the nominal observability matrix for the distributed
solution can be written after some simple manipulations as follows:

Fk+1) =0 '"(ldPk+ 1,k (46)

O,k +1)=F(k+ D)[Qk) — Pk + 1k + DIF(k + 1) (47)

Vil. APPENDIX B

Proof of Theorem 111.1  As in the development of the Distributed Laini-
otis Filter (DFL) presented in Appendix A, our main objective in the
derivation of the Two Stage Distributed Lainiotis Filter is to re-write the
equations of the optimal estimator without any measurement-related ma-
trix. Thus, we modify the equations of the two-stage centralized filter
introduced in [2]. A centralized Kalman filter is used in the first part of the
estimator in [2] to provide nominal estimates. Therefore, the distributed
form of the Kalman filter (DKF) can be used as nominal estimator in the
new distributed two stage estimator. Since the DKF is fairly known and its
equation can be found in [5], [13] we discuss here only the derivation of
the distributed remainder estimator.
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In the centralized algorithm of [2] the remainder state estimator has the
following form:

£ (klk) =
(I — K(OHK)Dk, k — DU,k — D2,k — 1k — 1) + K,(k)2,(kk — 1)
= U ()@, k — DUk — DE(k — 1k — 1) + K,(b)2,(kk — 1) (48)

Utilizing the formula reported in [2] for the gain of the remainder esti-
mator the ‘correction term’ of the remainder filter is defined as:

K (k)2 (kk — 1) =

P, (kik — DH (k)P2, (kik — 1)%,(klk — 1)

The nominal state estimate £, (klk) is calculated by the Kalman filter as
follows:

X, (kk) = x,(klk — 1) + K, (k)Z,(klk — 1) 49

with the gain of the nominal Kalman filter defined as:
K, (k) = P, (kk — I)HT(k)P:_,,I(ka -1 (50)

Combining the above two equations we can see that:
P, (kk — 1)(&,(kik) — %,(kik — 1)) = H'(k)P.,'(kk — 1)3,(kk — 1) (51)
Thus, the ‘correction term’ in the remainder estimator can be re-written as:
K, (k)z,(kk — 1) = P (klk — 1)P; '(klk — 1)(%,(kik) — £,(klik — 1)) (52)
The filter transition matrix in [2] is defined as:

Uik) = (I — K (k)H(k)) (53)

and the covariance associated with the remainder estimate of the state as:
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P (kik) = U (k)P (kik — 1) (54)

Combining the above two equations the following relation holds:

U, (k) = P (kik)P; '(kik — 1) (55)

Thus, we can obtain an expression for the remainder estimate £,(klk)
which does not require the explicit knowledge of any measurement equa-
tion.

X, (klk) = P (klk)
(P '(klk — 1) (kik — 1) + P '(klk — 1)(£,(Rlk) — £,(kIk — 1))
(56)
In a similar manner we will derive e recursive formula for covariance
update which will not rely in any system measurement equation. The

covariance update equation in the centralized algorithm derived in [2] is
given as:

P (klk) = U, (k)P (kik — 1)
P(klk) = (I — K,H(k))P,(kik — 1)
= (I — P(klk — DH(k)(H(k)P (klk — 1)H' (k)
+ P (kk — 1)) 'H(k))P (klk — 1)
= P (klk — 1) =P (kik — )H (k)(H(k)P,(kik — 1)H"(k)
+P_(klk — 1)) 'H(k)P,(klk — 1) (57)

Using the matrix inversion lemma in [1] (pp. 138-140) and the symmetry
of the covariance matrix the following relation holds:

P (kik) = P; (ki — 1) + H'PS\(kik — 1)H(k) (58)
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It is not hard to see that the above equation is a generalization of the
covariance updating formula encountered in the information version of the
Kalman filter. However, there is an important difference. The innovation
covariance matrix of the nominal distributed filter is used instead of the
actual noise covariance. Thus, the above is in fact not a simple equation
but a family of covariance update equations each one of them matched to
a specific partition of the initial conditions and the process noise. After,
simple algebraic calculations

H(k)P,\(kik — 1) = P, '(kik — 1)P,(kik)H" (k)R (k) (59)

n

and thus,
Pk + Lk + 1) =
Pk + 1k) + P, '(k + 1k)P,(kik)(P, '(k + 1k + 1) — P, '(k + 1Ik))
(60)

It must be emphasized in this point that (56) and (60) although part of the
TSDLF estimator, constitute a family of distributed smoothers. In fact, for
the trivial case of the zero initial conditions as x,, = 0., P, = 0. and Q,, =
0. respectively, the distributed form of the Mayne-Fraser smoother can be
obtained from (56) and (60). However, this smoother is just only one of
the possible smoothers which can be derived using different initial quan-
tities in (56) and (60). More important smoothers from a theoretical as
well as from an application point of view can be derived utilizing our
framework [6].
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