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ABSTRACT

Realistic treatment of sea ice processes in general circulation models is needed to simulate properly global
climate and climate change scenarios. As new sea ice treatments become available, it is necessary to evaluate
them in terms of their accuracy and computational time. Here, several dynamic ice models are compared using
both a 2-category and 28-category ice thickness distribution. Simulations are conducted under normal wind
forcing, as well as under increased and decreased wind speeds. It is found that the lack of a shear strength
parameterization in the cavitating fluid rheology produces significantly different results in both ice thickness
and ice velocity than those produced by an elliptical rheology. Furthermore, use of a 28-category ice thickness
distribution amplifies differences in the responses of the various models. While the choice of dynamic model
is governed by requirements of accuracy and implementation, it appears that, in terms of both parameterization
of physical properties and computational time, the elliptical rheology is well-suited for inclusion in a GCM.

1. Introduction

Arctic sea ice plays an integral role in global climate
change. Partial or complete disappearance of the ice
cover is hypothesized to bring about profound changes
in both regional and global climate. This has been seen
in doubled CO2 experiments (e.g., Washington and
Meehl 1986; Rind et al. 1995), which indicate that CO2-
induced warming will be enhanced by the thinning and
retreat of sea ice in the Arctic. The reason for this in-
creased response is due in part to the sea ice–albedo
feedback, in which the disappearance of ice and snow
decreases the surface albedo and thereby increases the
amount of incident solar radiation absorbed at the sur-
face. This in turn brings about further melt of ice and
snow. Also important is the export of sea ice into the
Greenland–Iceland–Norwegian (GIN) Sea through
Fram Strait. Decadal-scale fluctuations in ice export are
hypothesized to be responsible for events such as the
Great Salinity Anomaly (e.g., Mysak et al. 1990; Mysak
and Power 1992; Hakkinen 1993). A substantial or com-
plete disappearance of the ice could result in an anom-
alously fresh mixed layer in the GIN Sea, suppressing
or even shutting down thermohaline circulation in this
region, and affecting climate farther south via the so-
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called ‘‘conveyor-belt’’ oceanic circulation (Broecker et
al. 1985; Mysak and Power 1992).

The importance of sea ice has been recognized by the
climate modeling community (Houghton et al. 1996),
and improved parameterizations of its thermodynamic
and dynamic processes are being included in general
circulation models (GCMs). Inclusion of sea ice in
GCMs requires accurate and computationally efficient
numerical representations of the main sea ice processes.
It is necessary not only to reproduce present-day sea
ice conditions correctly, but also to correctly predict
how the sea ice will respond to the perturbations as-
sociated with climate change.

Sea ice was treated relatively crudely in early GCMs.
Ice thermodynamics were included, but ice dynamics
were not (e.g., Washington and Meehl 1984). Manabe
and Stouffer (1980, 1988) used a simple sea ice dy-
namics model in which the ice drifted freely with the
ocean currents if it was less than a certain thickness (4
m). Thicker ice remained stationary. More recently,
GCMs have begun to incorporate sophisticated sea ice
dynamics parameterizations such as the viscous-plastic
rheology (Hibler 1979; e.g., Hibler and Bryan 1987;
Fichefet and Morales Maqueda 1997) and the cavitating
fluid rheology (Flato and Hibler 1992; e.g., Pollard and
Thompson 1994; Weatherly et al. 1997). These rheol-
ogies, along with the recently developed elastic–vis-
cous–plastic formulation (Hunke and Dukowicz 1997),
are described in section 2.

Ice dynamics plays an important role in prediction of
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climate change. The choice of ice dynamics parame-
terization affects modeled ice thickness and transport.
Several previous studies can be used to guide our un-
derstanding of these effects. Hibler (1979) investigated
the importance of parameterization of physical pro-
cesses using a model with an elliptical (viscous–plastic)
ice rheology and a 2-category ice thickness distribution
in which ice is separated into categories of thick ice and
open water (which included ice of up to 50 cm thick-
ness). Studies were performed in which the prescribed
compressive strength of ice was increased, the shear
strength was increased, strength parameterization was
altered, and open water was not allowed. Results in-
dicated that the shear strength parameterization was
most important in determining the spatial ice thickness
variations and ice export. Meanwhile, the open water
parameterization was important in determining mean
thickness and growth characteristics. However, the ef-
fects of the open water parameterization were compar-
atively small.

Using a multicategory dynamic–thermodynamic sea
ice model, Hibler (1980) found that the inclusion of
ridging substantially affects the heat exchange charac-
teristics of the Arctic, as thin ice formed by open water
production is transferred by ridging to thicker ice cat-
egories, creating open water and allowing more thin ice
to form thermodynamically. The ice cover was found
to be sensitive to both thermodynamic parameterization
(in the form of surface albedo) as well as ice strength
parameterization (in the form of frictional losses due to
ridging). Flato and Hibler (1995), using a model which
included separate distributions for level and ridged ice
as well as a parameterization for the evolution of snow
cover, found that the parameterization of the ridging
process—how much thin ice participates in the ridging
process and the thickness of the ridges formed—gov-
erned both the ice circulation and the amount of energy
dissipated by ridging during shear deformation. Factors
such as shear strength parameterization also had effects
but were not as dominant. Both Hibler (1980) and Flato
and Hibler (1995) found the use of an ice thickness
distribution produced thicker ice than occurred with the
2-category model.

Using a fully explicit time-stepping numerical
scheme, which guarantees energetic consistency, Ip et
al. (1991) compared the results of elliptical, square, cav-
itating fluid, and Mohr–Coulomb rheologies. It was
found that the ice drift fields produced by the cavitating
fluid and Mohr–Coulomb treatments were faster than
those produced by the elliptical and square rheologies,
as was the outflow through Fram Strait. This was attri-
buted to the latter two rheologies allowing a greater
amount of shear stress. While spatial ice coverage pat-
terns were similar for all four rheologies, the total ice
volume was larger for the elliptical and square rheol-
ogies, attributed to a larger Fram Strait outflow for the
cavitating fluid and Mohr–Coulomb cases.

The effects of compressibility and shear strength were

also investigated by Flato and Hibler (1992). Comparing
a velocity field produced by an incompressible cavitat-
ing fluid model with one produced by free drift, the
effects of rheology were apparent, as regions of con-
vergence in the free drift case were removed and the
flow was steered along the coast. Allowing some com-
pressibility of the ice resulted in some areas of con-
vergent flow. Comparison of the compressible cavitating
fluid results with those of an elliptical (viscous–plastic)
rheology and a Mohr–Coulomb rheology, both of which
contain some shear strength parameterization, showed
that the lack of shear strength in the cavitating fluid
parameterization yielded dramatically increased circu-
lation compared to the other two. The Mohr–Coulomb
results were intermediate. Spatial ice thickness patterns
were similar, although the cavitating fluid case produced
thinner ice. This was due in part to increased Fram Strait
outflow in the cavitating fluid case, as well as the thinner
ice being more readily melted in the summer months.
The effects of rheology on ice growth and heat flux
were found to be small.

An extensive series of sensitivity tests was performed
on a 2-category dynamic–thermodynamic sea ice model
by Holland et al. (1993). Among these was a comparison
of viscous–plastic rheology with cavitating fluid. While
they did not find significant differences in the annual
cycles of ice thickness and ice-covered area, the kinetic
energy fields associated with the cavitating fluid rhe-
ology were 20% higher, consistent with a generally fast-
er velocity field. They also performed tests on the wind
drag parameterization, finding that while a decrease re-
sulted in little change in ice covered area and thickness,
an increase in wind drag increased the ice thickness due
to enhanced open water production. However, a more
complicated treatment of wind drag as a function of ice
compactness decreased the ice thickness slightly. More
recently, Fichefet and Morales Maqueda (1997) com-
pared the viscous–plastic and cavitating fluid rheologies
in a global sea ice–upper ocean model. They found little
difference in the seasonal cycles of ice areal coverage,
but did notice the cavitating fluid simulation showed a
small decrease in ice volume throughout the year, par-
ticularly in the Southern Hemisphere. This was due to
increased ice transport. The ice velocity fields produced
by the cavitating fluid rheology were considerably faster
than those of the viscous–plastic rheology. Also, North-
ern Hemisphere features such as the Beaufort gyre and
Transpolar Drift Stream had altered trajectories with the
cavitating fluid model, resulting in it having a different
spatial distribution of ice thickness, most notably in the
Northern Hemisphere. Cavitating fluid ice was generally
thicker than viscous–plastic ice in the Canadian basin,
while in the Eurasian basin and GIN Sea it was thinner.

The study presented here further defines the effects
of ice rheology on simulations of Arctic sea ice cover
and considers the role of ice thickness distribution in
these simulations. Three numerical formulations of ice
rheology and two ice thickness distributions are imple-
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FIG. 1. Yield curves for the elliptical (viscous–plastic, elastic–
viscous–plastic) and linear (cavitating fluid) rheologies in principal
stress space. For very small strain rates, the viscous–plastic stress
state moves inside the yield curve to the smaller (shaded) ellipse,
approximating a linear viscous fluid. After Hibler (1979), Flato and
Hibler (1992).

mented. All models are subjected to the same forcing
fields. However, the resulting baseline conditions of the
various models are not identical. While the models could
be tuned to the same baseline conditions, that there are
varied responses to the same set of forcings demon-
strates the model sensitivity to physical parameteriza-
tions. Sensitivity studies are then performed in which
each model is subjected to changes in wind speed, and
the model responses are intercompared and compared
to the baseline runs.

2. Governing equations and model description

The dynamics of sea ice is governed by a momentum
balance:

]u
m 5 2mf̂ k 3 u 1 t 1 t 2 mĝ=H 1 F, (1)a w]t

where, as in Flato and Hibler (1992, 1995), the nonlinear
momentum advection term is neglected. Here, m is the
ice mass per unit area, u is the ice velocity, f̂ is the
Coriolis parameter, k is a unit vector normal to the sur-
face, H is the sea surface dynamic height, ĝ the accel-
eration due to gravity, and F is the force due to variation
in internal ice stress; t a and t w are forces due to the air
and water stresses given by

t 5 r C |U |(U cosf 1 k 3 U sinf) (2)a a a g g g

t 5 r C |U 2 u|[(U 2 u) cosuw w w w w

1 k 3 (U 2 u) sinu]. (3)w

Here, Ug is the geostrophic wind, Uw is the ocean cur-
rent, Ca and Cw the air and water drag coefficients, ra

and rw the air and water densities, and f and u turning
angles at the ice–air and ice–ocean interfaces. The rhe-
ologies considered in this paper differ in their solution
for F. These methods are summarized in the next three
subsections; the reader is encouraged to refer to the
original papers for a more detailed description. Section
2d briefly describes the 2-category formulation of the
models, while section 2e describes the ice thickness
distribution (28 category) formulation. The thermody-
namics used for all models in this study are described
in Hibler (1980, appendix B).

a. Viscous-plastic model

Hibler (1979) presented a rheology in which sea ice
is modeled as a nonlinear viscous compressible fluid.
Under normal deformation rates the ice acts in a rigid–
plastic manner, while under very small deformation
rates it acts as a linear viscous fluid. The forces due to
internal stress are given by

F 5 = · s, (4)

where s is the two-dimensional stress tensor given by

pdi j
s 5 2h«̇ 1 (z 2 h)«̇ d 2 . (5)i j i j kk i j 2

Here, is the strain rate, p is the hydrostatic ice pressure«̇
(defined below), and z and h are nonlinear bulk and
shear viscosities, determined by

p
z 5 (6)

2D

z
h 5 , (7)

2e

where
2 2 22 22 2 22D 5 Ï(«̇ 1 «̇ )(1 1 e ) 1 4e «̇ 1 2«̇ «̇ (1 2 e ).11 22 12 11 22

(8)

These viscosities are defined such that the stress state
lies on an elliptical yield curve (where e is the ratio of
major to minor axes of the ellipse) for plastic flow (see
Fig. 1). For viscous flow, which occurs at very small
strain rates, maximum limits are imposed on z and h
such that the stress state lies on a smaller, concentric
ellipse.

b. Cavitating fluid model

The cavitating fluid rheology introduced by Flato and
Hibler (1992) provides a computationally simpler rhe-
ology than viscous–plastic, in which the pack ice does
not resist divergence or shear but does resist conver-
gence. The solution for F becomes simply

F 5 2=pstress, (9)

where pstress is the internal ice pressure, equal to the



OCTOBER 1999 2659A R B E T T E R E T A L .

magnitude of the principal stresses. [Note the change in
notation from Flato and Hibler (1992); pmax (their no-
tation) refers to p here.] Graphically, this yield curve
can be seen in Fig. 1. Computationally, the solution is
achieved by starting with free drift, then correcting the
velocity fields in a manner reflecting the compressive
strength of the pack ice:

= · (u 1 ũ) $ 0 if p 1 p̃ 5 0stress stress

= · (u 1 ũ) 5 0 if 0 , p 1 p̃ , pstress stress

= · (u 1 ũ) # 0 if p 1 p̃ 5 p, (10)stress stress

where the tilde indicates the corrected field. The first
term represents divergence, the third term represents
convergence, while the second term represents the in-
compressibility of the pack ice if it is subject to com-
pressive pressure less than its compressive strength p.
The iterative solution method for the cavitating fluid
rheology is detailed in Flato and Hibler (1992).

c. Elastic–viscous–plastic model

The elastic–viscous–plastic model presented by Hun-
ke and Dukowicz (1997) incorporates a numerical so-
lution of an elliptical rheology in which an elastic con-
tribution is added to the viscous–plastic equation. This
elastic component is introduced for numerical efficiency
and is not intended to be physically realistic. Rewriting
(5), we obtain

1 h 2 z p
s 1 s d 1 d 5 «̇ , (11)i j kk i j i j i j2h 4hz 4z

which represents the viscous–plastic contribution to the
strain rate. Recognizing that an ice model need only
simulate viscous–plastic behavior at timescales on the
order of the wind forcing (days), an elastic component
is added. This component, rather than a linear viscous
approximation (as in Hibler 1979), regularizes the small
strain rate case. Hunke and Dukowicz (1997) argue that
this component also provides more accuracy under tran-
sient behavior while reducing to the original viscous–
plastic behavior for longer timescales. The elastic con-
tribution is represented by

]s1 i j
5 «̇ , (12)i jE ]t

where E is a term analogous to Young’s modulus, de-
fined to be a function of compactness and thickness.
Summing (11) and (12) yields

]s1 1 h 2 z pij
1 s 1 s d 1 d 5 «̇ . (13)i j kk i j i j i jE ]t 2h 4hz 4z

The momentum equation is integrated over an effective
elastic–viscous–plastic time step (subcycle) of length
Dte 5 Dt/N, where Dt is the model time step and N is
an integer greater than 1, with the stress tensor s updated
every subcycle while the viscosities, compressive

strength, and Young’s modulus are held constant over
a model time step. In the steady-state limit of (13), the
elastic contribution disappears and the viscous–plastic
solution [(5), (11)] is recovered. As in the viscous–plas-
tic formulation, (6)–(8) are used to determine the bulk
and shear viscosities. Further details on the solution
method can be found in Hunke and Dukowicz (1997).

d. Two-category formulation

A 2-category (thick ice and open water) thickness
distribution is used by Hibler (1979) using continuity
equations for thickness,

]h ](uh) ](yh)
5 2 2 1 S , (14)h]t ]x ]y

and for area,

]A ](uA) ](yA)
5 2 2 1 S (15)A]t ]x ]y

in which h is the mean thickness of the ice and A is the
fraction of ice-covered area, defined to be between zero
and unity; u and y are directional components of the
ice velocity vector u, and Sh and Sa are thermodynamic
source terms defined in Hibler (1979). The internal ice
strength is given by

p 5 p*h exp[2C(1 2 A)], (16)

where p* and C are empirical constants given in Flato
and Hibler (1992).

e. Twenty-eight-category ice thickness distribution

Following Thorndike et al. (1975) and Hibler (1980),
Flato and Hibler (1995) introduce continuity equations
for level and ridged ice:

]g ]l 5 2= · (ug ) 2 ( f g ) 1 C 1 F (17)l l l l l]t ]h

]g ]r 5 2= · (ug ) 2 ( f g ) 1 C 1 F , (18)r r r r r]t ]h

where gl and gr are the level and ridged ice thickness
distributions, and f l and f r are the level and ridged ice
thermodynamic growth rates, defined to be identical ( f r

5 f l 5 f ); c l and cr, the level and ridged ice redistri-
bution functions, and Fl and Fr, the thermodynamic
source terms, are defined in Flato and Hibler (1995). A
detailed description of the theory and numerical solution
of a two-dimensional dynamic–thermodynamic ice
thickness distribution model can by obtained by con-
sulting Hibler (1980) and Flato and Hibler (1995).

The constraint proposed by Rothrock (1975), namely
that the potential energy of the displaced water per unit
area is equal to the sum of the energy of the ice and
the energy required to displace the water, implies
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`

2p 5 C C (v 1 v )h dh, (19)f p E l r

0

where Cp is a constant depending on the densities of ice
and water and Cf is the ratio of total energy losses to
potential energy change, defined by Flato and Hibler
(1995) to be 17; vl and vr are ridging modes detailed
in Flato and Hibler (1995). A method for numerically
evaluating (19) is given in Hibler (1980, appendix C)
and is implemented here.

The total normalized energy dissipation rate can be
obtained from (5):

1
21p s «̇ 5 (D 2 «̇ ). (20)i j i j kk2

Similarly, it can be derived from (13) if the elastic con-
tribution is neglected. The right side of (20) can be
separated into components representing energy dissi-
pated by shear and by convergence, respectively:

1
21p s «̇ 5 (D 2 |«̇ |) 2 min(«̇ , 0). (21)i j i j kk kk2

The energy dissipated by ridging is taken to be

1
M 5 C (D 2 |«̇ |) 2 min(«̇ , 0), (22)s kk kk2

where M is the normalized mechanical energy dissi-
pation rate due to ridge creation; CS is the fraction of
the shearing component of mechanical energy dissipated
by ridging, and is set to 0.5 for the viscous–plastic and
elastic–viscous–plastic formulations. For the cavitating
fluid rheology, the ratio of major to minor axes e of the
‘‘elliptical’’ yield curve goes to infinity, and thus (8)
reduces to

D 5 ||«̇kk (23)

(i.e, the positive root of the square of the sum of the
principal strains), and the first term on the right-hand
side of (21) and (22) is identically zero. Thus, analogous
to the large-scale rheology, no energy is dissipated by
shear ridging in the cavitating fluid rheology; (21) and
(22) are identical, and all energy dissipated is due to
convergence (G. Flato 1997, personal communication).

3. Model implementation and the baseline runs

The models used here are identical with the exception
of ice rheology and ice thickness distribution. The ther-
modynamics are essentially the same as those described
in Hibler (1980, appendix B). The model domain is an
80-km rectangular Cartesian grid, resolving the Arctic
Ocean and adjacent seas including the GIN Sea south
to Iceland as well as portions of the Bering Sea. The
annual and monthly averages presented here consider
the Arctic basin as defined in Gloersen et al. (1992).
Forcing fields are derived from National Centers of En-
vironmental Prediction reanalysis fields for 1992 at 6-

h intervals for surface air temperature, specific humid-
ity, downwelling shortwave and longwave radiation, and
geostrophic winds computed from sea level pressure. A
latitudinally varying Coriolis parameter is used. The
models are integrated for 30 years using 6-h time steps.
The numerical solver described in Zhang and Hibler
(1997) is used for the viscous–plastic rheology, with 1,
5, and 15 iterations implemented in the solver to com-
pare approximations to a plastic response. Modifications
are also made to the cavitating fluid rheology to accom-
modate the high frequency (6 h) of the forcing by using
a tighter convergence condition. This is necessary in
order to maintain numerical stability for the cavitating
fluid solver (G. Flato 1997, personal communication).
The elastic–viscous–plastic numerical model is imple-
mented using its standard implementation of N 5 100
subcycles. While it is possible to increase or decrease
the effect of the elastic waves by decreasing or increas-
ing the value of N, this is not investigated here. The ice
thickness bins for the 28-category ice thickness distri-
bution are given in Flato and Hibler (1995). Since there
was little natural variability in the runs once equilibrium
was reached, baseline averages are obtained in all cases
by considering year 30 of the normal wind scenario.

Recently, the Sea Ice Model Intercomparison Project
(SIMIP) (Lemke et al. 1997; see also http://
www.ifm.uni-kiel.de/me/research/Projekte/SIMIP/sim-
ip.html) has compiled requirements for a numerical
model to be considered a valid implementation of a
plastic rheology. Namely, the scheme should asymp-
totically approach the exact solution for the stress state
with a sufficient number of iterations on the numerical
solver. As noted in Zhang and Hibler (1997), the line-
arization of the bulk and shear viscosities in their so-
lution procedure yields only an approximation to plastic
flow. Thus, it is necessary to repeat the solution pro-
cedure a number of times for each time step. Zhang and
Hibler (1997) recommend 15 iterations as close to true
plastic flow; thus, we choose viscous–plastic with 15
iterations as our reference solution for this study. Figure
2 shows the normalized stress states (s/p) for a typical
day in winter once equilibrium has been reached. It is
seen that, for both 2- and 28-category formulations,
nearly all of the stress states lie on or within the elliptical
yield curve.

a. Two-category simulations

The annual averages of thickness, areal coverage, and
total kinetic energy per unit mass, as well as the March
and September monthly means from the baseline two-
layer simulations are given in Table 1. It is seen that
the values for the viscous–plastic rheologies increase
asymptotically with increased number of iterations used
in the numerical solver. Values of total kinetic energy
per unit mass, indicative of the overall motion of the
ice, decrease asymptotically with the number of itera-
tions on the plastic solver for the annual averages. For
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FIG. 2. Normalized stress states for a typical winter day for the viscous–plastic model with 15 iterations on
the numerical solver: (a) 225% wind speed case, 2 categories (left) and 28 categories (right); (b) normal wind
speed case, 2 categories (left) and 28 categories (right); (c) 125% wind speed case, 2 categories (left) and 28
categories (right).
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the March values (high areal coverage), the speed of the
flow increases slightly, while for September (low areal
coverage) there is no pattern. However, these results
suggest that a better approximation of a plastic solution
may be important.

The elastic–viscous–plastic model gives ice thickness
slightly thinner (about 5 cm) than the viscous–plastic
formulation, while areal ice coverage is about the same.
The total kinetic energy values are about 10% higher
for the annual and March averages, although the Sep-
tember values are actually lower than those of the vis-
cous–plastic results. This results from the slightly dif-
ferent treatment of the small strain rate regime. Stress
state plots (not shown, see e.g., Hunke and Zhang 1999)
indicate that the solution method is not obeying the
elliptical yield curve rule. The cavitating fluid rheology
average thicknesses are notably thinner than any of the
elliptical yield curve results (viscous–plastic, elastic–
viscous–plastic), while there is slightly more ice-cov-
ered area. We note also that the spatial thickness pattern
of the cavitating fluid rheology differs from that of the
elliptical formulations (not shown, see e.g., Flato and
Hibler 1992). Furthermore, kinetic energy values for
cavitating fluid are higher than any of the elliptical yield
curve cases. This is primarily due to the lack of shear
strength in the cavitating fluid rheology.

b. Ice thickness distribution simulations

The average thicknesses and areal coverages and total
kinetic energy per unit mass for the 28-category sim-
ulations are given in Table 2. While the tendencies seen
in the 2-category simulations are repeated here, the ad-
dition of a multiple layer ice thickness distribution not
only substantially increases the average ice thicknesses,
but also enhances the differences between the different
rheologies. This is most obvious in comparing the cav-
itating fluid rheology with the elliptical yield curve re-
sults. The increased difference between the elastic–vis-
cous–plastic and viscous–plastic formulations is not in-
significant, however. Average areal coverages are also
increased, most significantly in September. Kinetic en-
ergy per unit mass values decrease for all cases, most
notably in March, due to the substantial increase in ice
thickness (mass).

The thickness differences are examined spatially in
Fig. 3. Here, the spatial thickness pattern of the viscous–
plastic 15-iteration run for March is shown. The other
solutions are subtracted from the reference, and their
thickness anomalies are shown. The most obvious dif-
ferences are again with the cavitating fluid model, where
it is readily seen that the ice is thinner over most of the
model domain. The viscous–plastic solution with one
iteration has thicker ice along the Canadian coast, while
a slightly thinner area in the region north of Fram Strait.
The viscous–plastic 5-iteration solution is nearly iden-
tical to the 15-iteration reference solution. The elastic–
viscous–plastic solution has thinner ice over most of the
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Arctic Basin, particularly in the Beaufort Sea and in the
area surrounding Svalbard, including Fram Strait.

Figure 4 shows the mean ice drift for the month of
March. While all formulations show the same general
pattern, the cavitating fluid model shows faster drift,
particularly in the Beaufort Sea. This increased ice speed
is typical of cavitating fluid and has been observed be-
fore (e.g., Ip et al. 1991; Flato and Hibler 1992; Holland
et al. 1993; Fichefet and Morales Maqueda 1997). Also
of note is a region of eastward transport north of the
coast of Greenland that is much slower in the other
rheologies. This is due to the lack of shear strength in
the cavitating fluid rheology. Ice flow is unimpeded,
even in areas of thick ice where shear strength would
otherwise inhibit the flow. As will be seen later, the
outflow of ice through Fram Strait is also affected by
the rheology. The viscous–plastic models show increas-
ing ice drift with increased iterations on the numerical
solver, while the elastic–viscous–plastic solution resem-
bles the viscous–plastic cases, with slightly faster drift
in the Beaufort Sea.

As the 28-category ice thickness distribution explic-
itly includes ridged ice, the fraction of ridged ice-cov-
ered area can be determined, as seen in Fig. 5. Again,
the most obvious differences are between cavitating flu-
id and the elliptical models. The cavitating fluid results
show substantially less ridged ice, with most of it con-
centrated along the Canadian archipelago and the north
coast of Alaska. As explained in section 2e, the only
energy dissipated by the ridging process is due to con-
vergence. The ridging parameterization is driven by net
convergence into a grid cell (Hibler 1980), and thicker
ice is more incompressible, resisting this convergence.
Thus, with no shear contribution to ridging, there is less
ridged ice than in the elliptical yield curve results in
which shear deformation contributes to the production
of ridged ice. The elliptical yield curve results vary
slightly but are in general agreement as to the location
and amount of ridged ice.

c. Computational time requirements

It is worthwhile to consider the central processing
unit (CPU) time required for each model, as this is a
consideration for inclusion in GCMs. Table 3 summa-
rizes the total CPU time required for a 20-yr simulation.
It is seen that the addition of a 28-category ice thickness
distribution substantially increases the CPU time re-
quired for all rheologies. While Zhang and Hibler (1997)
recommend 10 to 15 iterations to more fully approxi-
mate a plastic solution, a substantial amount of CPU
time is required for increased iterations. The use of a
viscous–plastic rheology with only one iteration on the
numerical solver was fastest, but both Zhang and Hibler
(1997) and Hunke and Dukowicz (1997) indicate that
one iteration is not sufficient to approximate a plastic
solution. The cavitating fluid rheology requires nearly
twice as much CPU time as the elastic–viscous–plastic
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FIG. 3. (a) Baseline March ice thickness results (m) for viscous-plastic, 15 iterations. (b–e) Thickness anomaly (m)
from viscous-plastic, 15 iterations, for (b) viscous-plastic, 1 iteration, (c) viscous-plastic, 5 iterations, (d) elastic-
viscous-plastic, (e) cavitating fluid. Negative anomalies are gray shaded.
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FIG. 4. Baseline March ice drift results for (a) viscous-plastic, 15 iterations, (b) viscous-plastic, 1 iteration, (c) viscous-
plastic, 5 iterations, (d) elastic-viscous-plastic, (e) cavitating fluid.



2666 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 5. Baseline March fraction of ridged-ice-covered area for (a) viscous-plastic, 15 iterations, (b) viscous-plastic, 1
iteration, (c) viscous-plastic, 5 iterations, (d) elastic-viscous-plastic, (e) cavitating fluid.
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TABLE 3. CPU time required for 20-yr spinup runs.*

Rheology
2-category

(h)
28-category

(h)

Viscous–plastic, 1 iteration
Viscous–plastic, 5 iterations
Viscous–plastic, 15 iterations
Cavitating fluid
Elastic–viscous–plastic

3.66
12.15
25.70
21.27
12.07

27.33
37.97
53.94
50.50
38.58

* Runs were performed on a Silicon Graphics Power Challenge XL
R10000.

rheology for the two-layer case, and is comparable to
the viscous–plastic rheology with 15 iterations. This
arises because of the more strict convergence criterion
used. As mentioned in Zhang and Hibler (1997), their
technique can also be used to solve the cavitating fluid
equations. Such an implementation would be much fast-
er than any of the viscous–plastic cases (G. Flato 1997,
personal communication). However, this more efficient
scheme was not used with the cavitating fluid rheology
in this study. We note also that improved numerical
solution techniques are constantly under development,
some of which could substantially improve upon the
CPU times presented here. We do not investigate these
methods, as our study is focused primarily on comparing
the sensitivity of the various ice dynamics formulations.

4. The effects of a momentum flux perturbation

In order to investigate the sensitivity of the sea ice
models as a function of rheology, each was subjected
to a momentum flux perturbation. Cases were run for
30 years, the first 20 under baseline forcing. For the last
10 years, the winds were either increased or decreased
by 25%. All other forcing remained the same.

a. Two-category simulations

The responses of the 2-category simulations to per-
turbations in momentum flux are shown in Table 1. The
most drastic differences are seen in the response of the
cavitating fluid model compared to the elliptical yield
curve models. While an increase in wind speed brings
about an increase in ice thickness in the other models,
it decreases the average thickness in the cavitating fluid
case. Increasing the wind speed increases open water
production. This is seen as a decrease in ice covered
area within the Arctic basin in all models. With in-
creased open water (leads), more ice production and
hence a greater mean ice thickness should result, as seen
in the elliptical yield curve models. However, the in-
creased wind speed also brings about an increase in ice
drift and ice transport, as indicated by the kinetic energy
per unit mass.

The model responses to a decrease in wind speed are
not as straightforward. Annual averages show an in-
crease in mean thickness for all models except the elas-

tic–viscous–plastic model. The cavitating fluid responds
with an increase in mean thickness for March and Sep-
tember, while the elliptical yield curve rheologies all
have a decrease in March mean thickness but an increase
in September. The reason for this is that the decreased
wind speed means decreased open water production
compared to a baseline. This can be seen by increases
in ice-covered areas for all the models, and the sub-
stantial decrease (greater than 75%) in March kinetic
energy. It is also suggested by Fig. 2, in which more
stress states lie within the ellipse, where the viscous
flow regularization for small strain rates is in effect. In
the winter, there are fewer leads and thus less new ice
growth, and the mean thickness drops. However, less of
this ice is advected out of the region, leaving more of
it at the beginning of the summer melt season. Thus,
more ice persists throughout the summer, increasing the
mean thickness compared to the baseline. The range of
response of the viscous–plastic models with varying it-
erations on the numerical solver is interesting. It will
be more relevant in the next subsection, in which the
28-category ice thickness distribution proves to be im-
portant.

b. Ice thickness distribution simulations

The results for the 28-category model simulations are
given in Table 2. The cavitating fluid response seen in
the 2-category models is repeated here. Thus, the in-
creased thermodynamic resolution provided by the ad-
ditional thickness categories does not affect the cavi-
tating fluid rheology’s response to perturbations in mo-
mentum flux. Meanwhile, the elliptical curve model re-
sponses are also analogous to the 2-category
simulations. The spatial distribution of thickness anom-
alies for increased winds compared to the baseline is
shown in Fig. 6. As in the 2-category cases, the response
is dependent on the shape of the yield curve. It is clear
from the figure that the decrease in thickness for the
cavitating fluid rheology is nearly basinwide. The el-
liptical yield curve models, however, show an increase
in thickness along the Canadian Archipelago and the
north coast of Alaska. When the ice drift (Fig. 4) and
ridged ice location (Fig. 5) are taken into account, the
regions of increased thickness correspond with regions
of convergence and high concentrations of ridged ice.
The patterns for the various viscous–plastic results and
the elastic–viscous–plastic results are generally similar.
Slight differences in the spatial location and magnitude
of ice thickness anomalies can be seen throughout the
basin, however.

The response of the models to a decrease in wind
speed is more interesting. The viscous–plastic results
for average ice thickness are strongly dependent on the
number of iterations on the numerical solver. With only
one iteration, the annual average thickness is 4.21 m,
with 98.2% of the Arctic basin covered with sea ice,
and a total kinetic energy of 0.0856 J kg21. Increasing
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FIG. 6. March thickness anomaly (m), 125% increased winds minus baseline for (a) viscous–plastic, 15 iterations,
(b) viscous-plastic, 1 iteration, (c) viscous-plastic, 5 iterations, (d) elastic–viscous-plastic, (e) cavitating fluid. Negative
anomalies are gray-shaded.
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TABLE 4. Annual Fram Strait ice export results, 28-category models.

Rheology

Export (Sv)

Baseline
125%
winds

225%
winds

Mean thickness in Strait (m)

Baseline
125%
winds

225%
winds

Mean u velocity (cm s21)

Baseline
125%
winds

225%
winds

Viscous–plastic, 1 iterations
Viscous–plastic, 5 iterations
Viscous–plastic, 15 iterations
Elastic–viscous–plastic
Cavitating fluid

0.103
0.096
0.098
0.107
0.061

0.154
0.142
0.142
0.149
0.071

0.043
0.053
0.056
0.067
0.049

4.45
4.46
4.50
4.24
2.62

5.34
5.27
5.27
4.88
2.37

3.10
3.48
3.55
3.48
2.98

3.92
3.65
3.68
4.21
3.80

4.95
4.60
4.64
5.14
4.86

2.52
2.66
2.70
3.23
2.74

to five iterations, the average thickness drops nearly one-
half meter, to 3.77 m, 96.8% ice-covered area, and
0.1310 J kg21 kinetic energy. A further increase in it-
erations decreases the thickness to 3.70 m, 96.5% ice
covered area, and 0.1378 J kg21. Corresponding behav-
ior is seen in the March and September values, partic-
ularly in March. While not as important in the 2-cate-
gory cases, the number of iterations on the viscous–
plastic solver becomes crucial when a 28-category ice
thickness distribution is used. The elastic–viscous–plas-
tic results compare well with those of the viscous–plas-
tic models for spatial patterns of thickness and area,
although the ice motion in the elastic–viscous–plastic
cases is somewhat faster. We again note that the stress
state plots (not shown) indicate that the elastic–viscous–
plastic model is not adhering to the elliptical yield curve
rule.

c. Fram Strait ice export

Ice export through Fram Strait is the main connection
between the Arctic Basin and the North Atlantic Ocean,
and thereby the global ocean. It is important, then, to
be able to model the Fram Strait export correctly, in
both regular and climate change scenarios. Table 4 sum-
marizes the annual export for the 28-category models.
Except for the cavitating fluid model, these results are
comparable to the climatological value of 0.097 Sv (Sv
[ 106 m3 s21), derived from Aagard and Carmack
(1989). There is considerably more seasonal variability
in the cavitating fluid ice export than in the elliptical
models. The baseline March values (not shown) for the
viscous–plastic models are typically 50% higher than
the annual averages, and about 75% higher for the elas-
tic–viscous–plastic, while the cavitating fluid March ice
export is nearly 150% higher than its annual average.
While all models show an increase in ice export with
increased winds, the mean ice thickness in Fram Strait
for the cavitating fluid model decreases. Thus, the in-
crease in export there is due to thinner ice that is moving
faster. Increases in the elliptical model ice export are
due to both increased ice thickness and ice velocity. The
viscous–plastic results depend on the number of itera-
tions on the numerical solver, while the elastic–viscous–
plastic results show generally slightly thinner, faster-
moving ice than the viscous–plastic results.

5. Summary and conclusions

An intercomparison of three sea ice dynamic models
and two ice thickness distributions has been presented.
By assessing not only the differences among the baseline
results but also the responses of the various models to
a momentum flux perturbation, insight is given into their
physical behavior. This is useful for appraising the util-
ity of the various models in global climate and climate
change studies. It is seen that inclusion of a 28-category
ice thickness distribution that explicitly calculates ridg-
ing and open water production substantially increases
ice thickness throughout the year as well as summer
areal coverage. Thus, new ice growth and exchange of
heat and moisture between the atmosphere and ocean is
affected.

The response of the cavitating fluid model, which
lacks a parameterization for shear resistance, differs
greatly from those of the viscous–plastic and elastic–
viscous–plastic formulations, both of which contain a
shear strength parameterization. In the 2-category for-
mulation, the responses of the elliptical models are near-
ly identical, and the number of iterations on the viscous–
plastic solver has a small, although nonnegligible, ef-
fect. The addition of a 28-category ice thickness dis-
tribution, however, accentuates the differences between
the elliptical rheologies, as well as the importance of
the number of iterations on the viscous–plastic numer-
ical solver. Furthermore, it is shown that, in particular,
the Fram Strait ice export is sensitive to the type of
dynamic model used.

The cavitating fluid model was originally developed for
use with smoothed forcing in long-term, crude-resolution
climate applications (Flato and Hibler 1992). It lent itself
well to implementation in GCMs, necessitated by their
requirement for computational speed and efficiency. Cur-
rently, several GCMs use the cavitating fluid rheology
(e.g., Weatherly et al. 1998). Our results emphasize the
importance of including shear strength in the parameter-
ization of sea ice, and given the ongoing improvements
in numerical solvers, these more physically realistic rhe-
ologies now lend themselves well to GCM use.

While widely accepted among the sea ice modeling
community, we would like to emphasize that the ellip-
tical yield curve for sea ice is not necessarily the most
correct dynamic parameterization available (e.g., Hibler
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and Schulson 1997). However, it does reproduce well
many of the observed physical characteristics of sea ice
most important for large-scale modeling, and thus ap-
pears adequate for climate model simulations. Here, we
have compared a new elliptical numerical method, the
elastic–viscous–plastic model, with several formula-
tions of the viscous–plastic model. The elastic–viscous–
plastic model gives results generally comparable with
the viscous–plastic model. In terms of accuracy, it has
been argued by many (e.g., Zhang and Hibler 1997;
Kreyscher et al. 1997) that a viscous–plastic model, es-
pecially with a sufficient number of iterations on the
numerical solver to approximate a plastic solution, is
the most accurate of the dynamic ice models in wide
use, at least when monthly and longer averages are con-
sidered. A companion study (Arbetter and Meier 1998
unpublished manuscript) compares modeled ice motions
for various implementations of an elliptical yield curve
with daily observations derived from satellite and buoy
data.

Comparison of stress states of the two models (e.g.,
Zhang and Hibler 1997; Hunke and Zhang 1999) in-
dicate that the viscous–plastic model obeys the elliptical
yield curve constraint much more consistently than the
elastic–viscous–plastic model; indeed, the best that the
elastic-viscous-plastic model can possibly do is emulate
the viscous–plastic model with one iteration (E. Hunke
1997, personal communication). However, Hunke and
Zhang (1999) suggest that the elastic–viscous–plastic
model is better suited than the viscous–plastic model
for implementation on multiprocessor machines. Thus,
the choice of which numerical model to use is somewhat
dependent on its application. Nevertheless, the results
of this study indicate that a elliptical yield curve rhe-
ology is well-suited for inclusion in a GCM.
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