
Research Article
MEnDiGa: A Minimal Engine for Digital Games

Filipe M. B. Boaventura and Victor T. Sarinho

State University of Feira de Santana, Feira de Santana, BA, Brazil

Correspondence should be addressed to Filipe M. B. Boaventura; fmbboaventura@gmail.com

Received 15 February 2017; Revised 29 May 2017; Accepted 7 June 2017; Published 11 July 2017

Academic Editor: Michael J. Katchabaw

Copyright © 2017 Filipe M. B. Boaventura and Victor T. Sarinho. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Game engines generate high dependence of developed games on provided implementation resources. Feature modeling is a
technique that captures commonalities and variabilities results of domain analysis to provide a basis for automated configuration
of concrete products.This paper presents theMinimal Engine for Digital Games (MEnDiGa), a simplified collection of game assets
based on game features capable of building small and casual games regardless of their implementation resources. It presentsminimal
features in a representative hierarchy of spatial and game elements along with basic behaviors and event support related to game
logic features. It also presentsmodules of code to represent, interpret, and adapt game features to provide the execution of configured
games in multiple game platforms. As a proof of concept, a clone of the Doodle Jump game was developed using MEnDiGa assets
and compared with original game version. As a result, a new G-factor based approach for game construction is provided, which is
able to separate the core of game elements from the implementation itself in an independent, reusable, and large-scale way.

1. Introduction

Game engines allow game developers to reuse significant
portions of key software components [1]. A game engine is
defined as “extensible software that can be used as the foun-
dation for many different games without major modification”
[1] and represents “the collection of modules of simulation
code that do not directly specify the game’s behavior (game
logic) or game’s environment (level data)” [2].

Although game engines are reusable acrossmultiple game
projects, they generate high dependence of the game on
implementation resources provided by the chosen engine
[3]. Referring collectively to game logic, object model, and
game state elements as G-factor, BinSubaih and Maddock [3]
provided a service-oriented based architecture able to sepa-
rate the core of game objects from the implementation itself
and to support the game portability among game engines.

As an attempt to identify commonalities and variabilities
in the digital game domain, Sarinho and Apolinário [4]
proposed theNarrative, Entertainment, Simulation, and Inter-
action (NESI) feature model. It is a feature-based approach
capable of representing the G-factor according to game
concepts found in the literature. Sarinho and Apolinário also

proposed the GameSystem, DecisionSupport, and SceneView
(GDS) feature model [5], which is based on game features
that describe generic configurations and behavioral aspects
found on game implementation resources identified in the
literature. GDS was also used as a reference model to a
proposed generative approach of digital games, showing as
a result the feasibility of using features in the production of
concrete digital games [5].

Although NESI and GDS models represent digital games
without relying on the structure of game engines, the large
number of proposed features became a difficulty in the design
of small and casual games such as platform, quiz, or maze
games [6]. This difficulty was confirmed during the produc-
tion of the SimplifiedPacMan version [5] using Feature-based
Environment for Digital Games (FEnDiGa) [7], a game pro-
duction environment based on a combined representation of
NESI and GDS features via Object Oriented Feature Model-
ing (OOFM) approach [8].

This paper presents theMinimal Engine for Digital Games
(MEnDiGa), an extensible collection of representative classes
based on a simplified set of NESI and GDS features that can
be used as the foundation for small and casual games without
major modification. MEnDiGa also provides a collection of

Hindawi
International Journal of Computer Games Technology
Volume 2017, Article ID 9626710, 13 pages
https://doi.org/10.1155/2017/9626710

https://doi.org/10.1155/2017/9626710

2 International Journal of Computer Games Technology

modules of code for the interpretation and adaptation pro-
cesses of represented features that do not directly specify the
game’s behavior or game’s environment.

This paper is organized as follows. Section 2 describes
important papers related to game domain engineering and
game feature modeling. Section 3 presents the proposed
MEnDiGa feature model and the resulting framework [9]
with representative classes and modules of code. Section 4
describes the development steps to provide a Doodle Jump
clone using MEnDiGa assets. Section 5 presents the software
metrics analysis for Doodle Jump game versions. Finally,
Section 6 presents the conclusions and future work of this
project.

2. Related Work

Many types of reusable approaches have been applied in
game development in recent years. They can simplify and
accelerate the production of gaming systems, focusing on
game modeling artifacts, digital game components, game
product lines, and reusable aspects in game development, for
example.

Considering the usage of software components on game
development, Folmer [10] stated that developers could reuse
specific game components to reduce the cost of building
games. Folmer [10] also proposed a Reference Architecture
for digital games as an attempt to possibly identify areas of
reuse.

Zhang and Jarzabek [11] proposed the RPG Product Line
Architecture (RPG-PLA), a group of common and variable
features of four distinct RPG games. As a result, any of the
original RPGs as well as similar ones could be derived from
feature configurations interpreted by the RPG-PLA.

Albassam and Gomaa [12] proposed the use of Software
Product Lines (SPL) in the video games domain. They have
built a feature dependency model to describe the variability
in multiplatform video games (such as different input/output
devices, user interface, and CPU) and a variable component-
based SPL suited for any video game in the product line.

Furtado et al. [13] proposed an improvement of the Sharp-
Ludus project [14], replacing the previous ad hoc approach
with a customized DSM approach called Domain-Specific
Game Development. In this approach, feature models are
used to improve the domain vocabulary and to help the
identification of specific subdomains of the SPL domain.

Müller [15] presented the DGiovanni project, an open-
source multiagent architecture for building interactive dra-
mas. It makes use of ontologies to support the creation of
different stories and to feed the system with story-related
information.

Finally, Machado et al. [16] proposed a generic repre-
sentation to model virtual agents in digital games. It allows
the implementation of adaptable behaviors for game agents
according to different features of the game environment.
Agents are modeled using a linear combination of different
variables, which are used to represent specific game features.

3. The Minimal Engine for
Digital Games (MEnDiGa)

This section presents the proposed MEnDiGa feature model,
based on a simplified collection of NESI and GDS features,
and the resulting framework, based on representative classes
and modules of code able to work with MEnDiGa features.
Together, they can configure, represent, perform, and adapt
feature specifications of digital games according to G-factor
portability for distinct game platforms.

3.1. MEnDiGa Feature Model. Originally presented by Kang
et al. [17] as part of the Feature Oriented Domain Analysis
(FODA), feature modeling allows the identification of system
properties during the domain analysis. According to them, a
feature model represents “the standard features of a family of
systems in the domain, and the relationships between them,”
and features are “aspects or characteristics of a domain which
are visible to the user.”

Following the feature modeling perspective to identify
similarities or differences between the products of a product
line [18], MEnDiGa presents digital games as collections of
three main features: Spatial, Behavior, and Observer (Fig-
ure 1).

Regarding the Spatial feature, it is a collection of Node
features that represent the elements of the game. Spatial
feature can be also anEnvironment featurewith a collection of
Location features. Each Node feature contains a CurrentLoca-
tion feature to determine its current position in a game. Each
Node feature also has a BoundingVolume feature to delimit
the collision detection space. Node features can also contain
AudioNode, GraphicNode, and PhysicsNode features, like Sce-
neNode feature from GDS model [5].

The AudioNode feature represents information about
sound effects to be used later in a digital game. It holds the
path to an audio file that contains the desired sound effect or
background music. AudioNode can also contain information
about the state of the audio file and its play mode (normal or
looping).

GraphicNode feature represents configurations related to
the graphical modeling of a certain Node feature. As a simple
Text feature, it holds information about the font and the
alignment to draw a string. As a Sprite feature, it holds infor-
mation related to how a texture, or even a region of a texture,
should be rendered. Various regions of the same texture
can be used to compose animations. As a Camera feature, it
contains information about the viewport of a Spatial.

The PhysicsNode feature contains the physical attributes
of a Node feature, such as its density, mass, and restitution
coefficient. It also allows the setting of some constraints for
physical simulation, such as the amount of gravity that acts
on the Node feature and whether it is solid or not.

Element features are specializations of Node features.
They contain one or more Property features represented with
identifier names and representative values (Speed: 50m/s;
Life: 2 lives). An Element that is responsible for user Behav-
iors is defined as a Player feature. Player behaviors (Jump
and Crouch, for instance) are related to default commands

International Journal of Computer Games Technology 3

GameSession

Spatial Behavior Observer

Environment

Location

InputObserver CollisionObserver

Node
CollisionGroupObserver

Element

Player Property

ControlMap

BoundingVolume

Box Polygon

Circle

AudioNode GraphicNode

Sprite

Text

Camera

PhysicsNode

CurrentLocation

[1..∗]

[1..∗]

[1..∗]

[1..∗]

[1..∗] [1..∗]

Figure 1: MEnDiGa feature diagram.

MEnDiGa

Behaviors Observers Spatial Adapters

Locations Nodes LibGDX

Figure 2: Package diagram of the MEnDiGa framework.

(MOVE UP, MOVE DOWN, etc.) defined on its ControlMap
feature.

Observer features are responsible for performingBehavior
features according to the evaluation of monitored resources.
For instance, an InputObserver feature can be set to evaluate
the command activation from an input device, executing the
relatedBehavior feature of thePlayer after firing it. As another
example, aCollisionObserver feature can trigger the execution
of an IncreaseScoreBehavior feature when the Player collides
with an item or execute a LoseLifeBehavior feature when it
collides with an enemy.

3.2. MEnDiGa Framework. According to Czarnecki [19], a
proposed feature model can be used to define a set of classes

capable of configuring various software systems. It is the
project stage of a software domain [20], whose objective is to
represent a feature value in each instantiated class based on a
derived framework from the associated feature model.

In this sense, a collection of classes was proposed to
represent, interpret, and adapt feature configurations derived
fromMEnDiGa feature model. The resulting framework was
organized according to the following list of packages and
classes (Figures 2 and 3):

(i) Spatials: represents the collection of spaces and game
elements using Spatial, Environment, andNode classes

(ii) Nodes: defines specializations and internal compo-
nents of the Node class, such as AudioNode, Graph-
icNode, BoundingVolume, Element, and Player classes

4 International Journal of Computer Games Technology

Observer
(from observers)

(from observers)

(from observers)

(from observers)

Location
(from spatial)

(from spatial) (from spatial)
Spatial

BoundingVolume
(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)

(from nodes)(from nodes)(from nodes)(from nodes)(from nodes)

(from locations)

(from locations)

CollisionGroupObserver

CollisionObserver

InputObserver

Map

Position

Environment

BoxBound

PolygonBound

SphereBound

GraphicNode

Property

AudioAdapter

GameSession GameAdapter Behavior

Camera

SpriteNode

TextNode

Life

Score

Velocity

MusicAdapter

SoundAdapter

Node Element Player AudioNode PhysicsNode

(from LibGDX)

(from LibGDX)

(from LibGDX)

(from MEnDiGa)(from MEnDiGa) (from behaviors)

Figure 3: Classes and type hierarchies of the MEnDiGa framework.

(iii) Locations: defines internal components of an Environ-
ment using Location,Map, and Position classes

(iv) Behaviors: defines the abstract class Behavior able to
be specialized in actions to be performed by a game

(v) Observers: defines abstract structures (Observer,
InputObserver, CollisionObserver, and CollisionG-
roupObserver) to handle fired events in a game

(vi) Adapters: declares concrete classes able to render
MEnDiGa objects in distinct game platforms

As the main class of the MEnDiGa framework, GameSes-
sion (Figure 3) has the responsibility of integrating the Spatial,
Observer, and Behavior objects derived from the proposed
MEnDiGa features. The Spatial object contains a collection
of Node instances, such as AudioNode, GraphicNode, Physic-
sNode,BoundingVolume, and Location instances.The Element
class extends theNode class, including a collection of Property
instances represented in a HashMap structure. The Player
class has been defined as an Element subclass. It contains a
control map with a collection of Behavior instances related
to player commands.The Environment class was also defined
as a Spatial specialization. It contains a collection of locations
objects such asMap and Position instances (the game space).

For eachObserver instance, there is a collection of Behav-
ior instances. They are executed according to the Observer
evaluation approach programmed for each possible event of
a game. Each Behavior instance is programmed to execute

a determined game action, modifying attributes in Node
instances and changing the current Spatial instance of the
GameSession instance in each renderization cycle of the game.

Considering the adapters classes, they are responsible for
the execution of the instantiated MEnDiGa objects using
implementation resources of a chosen game platform. For
each worked game platform, a new set of adaptation classes is
modeled only once for the first game, allowing the G-factor
portability of other MEnDiGa games for the same game
platform.

4. Case Study: A Doodle Jump Clone

A clone of the Doodle Jump game was developed to demon-
strate the feasibility of producing games with MEnDiGa
assets. The MEnDiGa version is based on a Doodle Jump
clone called Super Jumper, developed using the LibGDX
game framework [21]. Designed to faithfully reproduce the
Super Jumper version, the MEnDiGa clone was developed
using the same textures and audio files from the original
game. It also presents a similar set of features in comparison
with the original game.

This section presents an explanation of the Super Jumper
development process, showing the necessary configuration,
implementation, and adaptation steps to provide aMEnDiGa
game. For the configuration step, it illustrates some identified
Super Jumper features according to proposed MEnDiGa

International Journal of Computer Games Technology 5

Spatial

HelpSpatial

EndingSpatial

MainMenuSpatial HighscoresSpatial

WorldSpatial

HUDSpatial

Figure 4: Spatial subfeatures for the Super Jumper game.

feature model. The implementation step presents developed
classes and source codes based on designedMEnDiGa frame-
work which represent structural and dynamics aspects of the
Super Jumper game. Finally, the adaptation step describes
developed classes able to interpret MEnDiGa objects and
perform the Super Jumper game execution using LibGDX
resources.

4.1. Super Jumper Configuration. According to Super Jumper
game, the players must guide Bob (the playable character) to
the end of the level. Bob must bounce on platforms to reach
the castle, at the top of the game world. Along the way, Bob
can collect coins for points and hit springs to jump higher.
There are also obstacles, such as crumbling platforms and
flying squirrels. The game ends in victory when Bob reaches
the castle or defeat if he collides with a squirrel or falls of a
platform.

For the MEnDiGa version, each screen of the Super
Jumper game is represented using Spatial configurations,
where each one holds an appropriate set of Node features. A
Position feature contains the Cartesian coordinates of a Node
instance, and it is used to locate nodes in a Spatial feature.
Position also holds depth information used to define the over-
lapping between images on Spatial. Figure 4 illustrates this
descriptive mapping among Super Jumper game elements
and Spatial subfeatures for the Super Jumper game.

Figure 5 shows the Spatial configuration of the main
menu screen. Each option in the main menu, as well as any
clickable object in the game, is represented using Node fea-
tures.These clickable nodes hold an appropriateGraphicNode
feature (Sprite or Text), as well as a rectangular BoundingVol-
ume feature to determine the clickable area. BackgroundNode
and the TitleNode features are simply placeholders for the
background and title of the game.

Figure 6 also shows the game world represented by
the WorldSpatial feature. This spatial configuration contains
Node features that build the game level as a whole. Since
platforms and squirrels need the speed property, Platform
and Squirrel subfeatures of the Element feature are used to
represent them.Bob, thePlayer character represented as a fea-
ture, also contains a property for holding score information.

Stationary objects such as Coins, Springs, and the Castle are
modeled as subfeatures of the Node feature.

When Bob reaches the Castle at the end of the level, the
EndingSpatial feature is used to display the game’s ending.
Figure 7 shows Bob and the Princess having a conversation
in front of the Castle. The MessageNode feature contains the
GraphicNode feature responsible for displaying the line of the
dialog. Clicking anywhere on the screen will advance to the
next message or return the game to the main menu when the
last message is displayed.

Regarding the support of MEnDiGa game events, there
is a series of collision events among the Super Jumper game
elements and the Player feature itself that must bemonitored.
Figure 8 illustrates some Observer features configured to be
responsible for this collision detection and player monitoring
during the game execution. There are also Observers features
dedicated to monitoring interactions with the user interface
components, such as clicks on the screen and button press.

The actions responsible for changing Spatial feature
values are represented using Behavior features, such as Player
commands (MOVE UP, MOVE LEFT, etc.) or game dynam-
ics (increase/decrease score, win/lose game, etc.). Figure 9
presents some of these Behavior features, showing game
dynamics that were implemented in the MEnDiGa version.
It is noteworthy that Observer features will activate such
Behavior features upon confirmation of a monitored event
(ex.: BUTTON1 PRESS→ JUMP).

4.2. Super Jumper Implementation. By the definition of Super
Jumper game features, the next step consists of representing
the Super Jumper configuration according to the MEnDiGa
framework hierarchy. In this sense, Node subclasses are used
to represent the characteristics of Spatial components, such
as starting Position, Element properties, and GraphicNode
instances.

In case of Sprite objects used to represent GraphicNode
instances in the game, it is necessary to define the desired
region of the image that will be shown. If this information
is omitted, the whole image will be used. For each selected
region in the image, it will contain subregions called frames,
where each one will have the size set on the SpriteNode con-
structor (Algorithm 1). Each frame can be referenced using an

6 International Journal of Computer Games Technology

MainMenuSpatial

Node

HelpButtonNode

HighscoresButtonNode

PlayButtonNode

BackgroundNode

MuteButtonNode

TitleNode

Figure 5: Main menu screen and respective Spatial configuration.

WorldSpatial

Node

Element

Player

Bob

Squirrel

Platform Castle

Spring

Coin

Figure 6: Spatial configuration of the gameplay screen.

International Journal of Computer Games Technology 7

EndingSpatial

Node

Bob

Princess

BackgroundNode

MessageNode

Castle

Figure 7: Ending screen and respective Spatial configuration.

Observer

BobCollisionObserver

BobCoinCollisionObserver

BobPlatformCollisionObserver

BobSpringCollisionObserver

BobSquirrelCollisionObserver

BobCastleCollisionObserver

InputObserver

JustClickedObserver

ClickNodeObserver

GameOverObserver

HighscoreObserver

Figure 8: Observer subfeatures for the Super Jumper game.

index number (Figure 10). Animations are composed using
selected frames to be rendered and their respective frame
delay value (the amount of time that a frame will remain on
the screen).

Regarding Super Jumper game dynamics, the Super-
JumperGame class extends the GameSession class to “config-
ure” the game (Algorithm 2). This class is programmed to
instantiate AudioNode feature values, initial game observers
to start the game, and respective game behaviors to perform

the game initialization. After this, the SuperJumperGame exe-
cutes the ChangeToMainMenuScreen behavior (Algorithm 2)
to prepare the MainMenuSpatial (Figure 5) to be displayed
and start up the game.

When the player selects the “Play” option on the cre-
ated main menu, the ClickNodeObserver instance executes
ReadyGame behaviors (Figure 9). ReadyGame, in turn, exe-
cutes theGenerateLevel behavior, which is responsible for cre-
ating and randomly placing the platforms, springs, coins, and

8 International Journal of Computer Games Technology

Behavior

UpdateNode

UpdatePlatforms

UpdateBob

UpdateSquirrel

MuteGame

EndGame

ChangeSpatial

ChangeToHighscores

ChangeToMenu

ChangeToEnding

ChangeToHelp

PauseGame

ResolveCollision

BobCoin

BobPlatform

BobSquirrel

BobSpring

BobCastle

UpdateHighscores

NextTip

PlayAudioNode

HighJumpSound

CoinSound

HitSound

Music

JumpSound

ClickSound

ResumeGame

NextMessage

GenerateLevel

CreateHud

ReadyGame

ResetBob

Figure 9: Behavior subfeatures for the Super Jumper game.

32 px

3
2

px

0 1 2 3 4

Figure 10: The highlighted region is extracted from the texture, according to the GraphicNode configuration.

// Create the graphic node

SpriteNode graphicNode = new SpriteNode("bob", // sprite name

"res/superjumper/items.png", // source file path

32, 32); // width and height of a single frame within the sheet

// Select a rectangular region of the texture

graphicNode.setRegion(0, 128, // Upper left corner position

160, 32); // region width and height

// Defining animations

graphicNode.defineAnimation("jump", // Animation name

new int[]{0,1},0.2f, // Animations frame and frame delay

PlayMode.LOOP NORMAL); // Play mode

graphicNode.setCurrentAnimation("jump"); // Set "jump" as the current animation

graphicNode.setScale(l/32f); // Set the scale as 32 pixels per game unit

this.addGraphicNode(graphicNode); // Add the sprite to the node

Algorithm 1: Setting up the GraphicNode of the playable character.

International Journal of Computer Games Technology 9

public class SuperJumperGame extends GameSession {

public static enum GameState {RUNNING, PAUSED, READY, WIN}

private GameState gameState;

private AudioNode[] audioNodes;

public SuperJumperGame() {

// Configuring AudioNodes

this.audioNodes = new AudioNode[] {

new AudioNode("coinSound", "res/superjumper/coin.wav"), // ⋅ ⋅ ⋅

new AudioNode("gameMusic", "res/superjumper/music.mp3") };

// Configuring Observers

this.addObserver(new CheckForNewHighScore(this));

this.addObserver(new CheckGameOver(this));

// Configuring Behaviors

this.addBehavior("changeToMenu", new ChangeToMainMenuScreen(this));

this.addBehavior("generateLevel", new GenerateLevel(this));

this.addBehavior("createHud", new CreateHud(this));

this.addBehavior("resetBob", new ResetBob());

this.addBehavior(GameState.RUNNING.toString(), new UpdateRunning(this));

this.addBehavior("endGame", new EndGame(this));

this.addBehavior("playClickSound", new PlayClickSound(this));

}

public void initialize() {

this.getBehavior("changeToMenu").execute(); // load the game menu

this.getAudioNode(MUSIC).setState(State.PLAYING);

}

public void update(float deltaTime) {

// Perform the current Running Behavior if the game still running

if (this.gameState.equals(GameState.RUNNING)) {

this.getBehavior(this.gameState.toString()).execute(deltaTime);

}

} // ⋅ ⋅ ⋅

Algorithm 2: Partial description of the SuperJumperGame class.

squirrels on theWorldSpatial instance.With theWorldSpatial
populated, ReadyGame behavior calls the ResetBob behavior,
putting the Bob object in the initial state before inserting
it into the WorldSpatial instance. The CreateHud behavior
is executed next, creating the HUDSpatial instance that
holds the necessary Node instances for the Head-Up Display.
ReadyGame behavior also sets the observers and behaviors
required for the gameplay, such as the InputObserver instance
to control Bob, the game collision observers and related
behaviors, the behaviors to update node values during the
gameplay, and the game observers to check for high score
updates and game over events.

UpdateNode behaviors (Figure 9) are also executed for
each generated frame in the game. They update the state of
dynamic game elements based on defined game configura-
tions and player inputs. The UpdateSquirrel and the Update-
Platform behaviors are set to change the Position of Squirrel
and Platform instances according to their speed Property
value. If a Platform instance is set to crumble, theUpdatePlat-
form behavior is responsible for updating the countdown
timer for the platform destruction. UpdateBob behavior
changes the player Position using gravity and horizontal speed
values. UpdateHighscore behavior is activated by the High-
scoresObserver when the game ends after falling down the

screen or hitting an enemy/castle, changing the score ranking
if the player has enough points.

BobCollisionObserver instances are responsible for eval-
uating collision events among the player character and
each Node instance in WorldSpatial. They fire appropriate
ResolveCollision behaviors (Figure 9) if the player’s Bound-
ingVolume intersects another Node instance. Some of these
observers only trigger collisions on specific situations. For
example, Bob instance can pass through Spring and Platform
objects from below, but ResolveCollision behaviors must be
performed if Bob hits them from above.

Bob/Coin collisions destroy the collided Coin instance
and increase the score Property value. Collisions between Bob
instance and the Platform or Spring instances increase its
jumping speed. However, hitting a Platform instance may
cause it to crumble, destroying it after a crumbling animation
is complete. Hitting a Squirrel will trigger the EndGame
behavior, showing a “Game Over” message on the HUDSpa-
tial instance as Bob goes down through the screen. After
clicking anywhere on the screen when the game is over, it will
notify the JustClickedObserver instance to trigger theChange-
ToMainMenuScreen behavior. Hitting the Castle instance will
trigger the ChangeToEndingScreen behavior, completing the
play through.

10 International Journal of Computer Games Technology

4.3. Super Jumper Adaptation. In a similar strategy to FEn-
DiGa [7], the next and final step consists of applying Super
Jumper instances to use MEnDiGa adapters. Such adaptation
classes establish an integration pattern between game con-
figurations with implementation resources of a chosen game
platform.

LibGDX has been used in this project as a target game
engine to provide MEnDiGa adapter classes. It is an open-
source framework which presents good market acceptance
to produce multiplatform Java games. Among LibGDX avail-
able adapters, SpatialRenderer, GraphicNodeRenderer, and
InputAdapter should be highlighted.

For each Spatial instance on the SuperJumperGame, a Spa-
tialRenderer needs to be created. It is responsible for loading
and rendering specified settings of each GraphicNode object
available in a Spatial. It also follows the rendering order of
the GraphicNode instances according to the informed depth
(𝑧-axis of the Position) on each Node instance.

For each GraphicNode instance to be rendered, a specific
GraphicNodeRenderer object is created based on the Graph-
icNode type. TextNodeRenderer uses the information on a
Text GraphicNode instance to set up LibGDX’s Bitmap Font
utilities, loading an image file containing the glyphs and a font
file to provide image characters. SpriteNodeRenderer uses the
information stored on a Sprite GraphicNode instance to load
the desired image file as a LibGDXTexture object.This texture
is split and its frames are stored in an array, allowing the image
usage as shown in Figure 10. In the adaptation process, the
animation information defined in the GraphicNode instance
is used to create Animations, LibGDX objects capable of
managing Sprite animations.

The InputAdapter is the class responsible for notify-
ing the InputObserver about input events. It implements
the InputProcessor, an interface provided by LibGDX to
receive input events from the keyboard, touchscreen, or
mouse. The InputAdapter has an adaptedControlMap struc-
ture thatmakes the correspondence amongPlayer commands
(MOVE LEFT, MOVE RIGHT, etc.) and the LibGDX con-
stants for input keys. If the pressed/released key corresponds
with some Player command, the InputAdapter notifies the
fired/released command to the InputObserver that performs
the appropriate playerBehavior according to the configured
game dynamics.

SuperJumperLibGDX performs the final adaptation
among MEnDiGa assets and the LibGDX engine. It imple-
ments theApplicationListener interface of the LibGDX,which
contains themethods called during the game lifecycle such as
create and render. SuperJumperLibGDX overrides the create
method to instantiate SuperJumperGame and the other
needed adapters during the application launching. Associa-
tions among Observer instances of the SuperJumperGame
and the package adapter (InputAdapter, for instance) are also
configured during the creation of the SuperJumperLibGDX.
The render method is also being overridden to continually
draw the respective SpatialRenderer and evaluate monitoring
aspects of Observer instances.

In the end, after the SuperJumperLibGDX execution,
LibGDX starts the initialization, rendering and updating
processes of adapted MEnDiGa assets, displaying as a result

the configured Super Jump game to be played. As MEnDiGa
is an open-source project, more details about the LibGDX
adaptation process can be found at https://bitbucket.org/
fmbboaventura/mendiga (master branch).

5. Super Jumper Metrics Analysis

According to Pressman [22], product metrics help software
engineers to visualize the design of the software, focusing
on specific andmeasurable attributes of software engineering
artifacts. In order to perform a comparative analysis and eval-
uate the quality of the produced digital game, a set of software
metrics was collected from the original Super Jumper version
and the respective cloned MEnDiGa version.

Table 1 presents the collected OO metrics of both games
using the Eclipse Metrics plugin [23]. It provides metrics
calculation and dependency analysis according to Number of
Classes, Number of Attributes, Number of Methods, Number of
Static Attributes, Number of Static Methods, Number of Pack-
ages, Number of Overridden Methods, Average Number of
Parameters, Total Lines of Code, Average Lines of Code per
Method, Abstractness (A), Afferent Coupling (Ca), Efferent
Coupling (Ce), Instability (I), Normalized Distance fromMain
Sequence (Dn), Lack of Cohesion of Methods (LOCOM),
Average Nested Block Depth,Cyclomatic Complexity,Weighted
Methods per Class (WMC), and Depth of Inheritance Tree
(DIT).

Number of Classes, Number of Attributes, Number ofMeth-
ods, Number of Static Attributes, Number of Static Methods,
Number of Packages, Number of OverriddenMethods, Average
Number of Parameters, Total Lines of Code, and Average Lines
of Code per Method are simple and straightforward metrics,
with a detailed explanation about them being unnecessary.
Abstractness (𝐴) represents the ratio of the number of abstract
classes and interfaces to the total number of classes in the
selected scope. It varies from zero to one, with 𝐴 = 0 indi-
cating a completely concrete solution and 𝐴 = 1 indicating a
completely abstract solution.Afferent Coupling (Ca) indicates
the number of classes outside of the selected package which
depend on the classes inside the package [24]. It also indicates
the level of responsibility of the given package. Efferent
Coupling (Ce) indicates the number of classes inside a package
which depend on classes from other packages [24]. Instability
(𝐼) is obtained using 𝐶𝑒/(𝐶𝑎 + 𝐶𝑒). It indicates the level of
instability of a package, where 𝐼 = 0 indicates a completely
stable package and 𝐼 = 1 a completely unstable package [24].
Normalized Distance from Main Sequence (Dn) is calculated
using |(𝐴 + 𝐼) − 1|. It measures how far away a package is
from the idealized line 𝐴 + 𝐼 = 1, called the Main Distance
[24]. The distance should be close to zero for packages with
a good balance between stability and abstractness. Lack of
Cohesion of Methods (LOCOM) is calculated using (𝑀 −
sum(𝑀𝐹)/𝐹)(𝑀 − 1), where𝑀 is the number of methods in
the class,𝐹 is the number of fields,𝑀𝐹 is the number ofmeth-
ods accessing a particular field of the class, and sum(𝑀𝐹) is
the sum of 𝑀𝐹 over all fields of the class. As a measure of
the cohesiveness of a class, this metric is calculated using
theHenderson-Sellersmethod [25]. A low LOCOM indicates
a cohesive class, while a LOCOM close to 1 indicates lack of

https://bitbucket.org/fmbboaventura/mendiga
https://bitbucket.org/fmbboaventura/mendiga

International Journal of Computer Games Technology 11

Table 1: OO metrics from original Super Jumper and cloned MEnDiGa version.

Metric property Original Super Jumper Cloned MEnDiGa version
Abstractness (𝐴) 0,107 0,042
Afferent Coupling (Ca) 14,8 2
Depth of Inheritance Tree (DIT) 2,231 1,87
Efferent Coupling (Ce) 13 17
Instability (𝐼) 0,41 0,895
Lack of Cohesion of Methods (LOCOM) 0,023 0,267
Cyclomatic Complexity 1,576 2,18
Average Lines of Code per Method 7,129 7,57
Average Nested Block Depth 1,242 1,6
Normalized Distance from Main Sequence (Dn) 0,483 0,064
Number of Attributes 44 90
Number of Classes 65 23
Number of Methods 131 94
Number of Overridden Methods 43 18
Number of Packages 5 1
Average Number of Parameters 0,856 0,64
Number of Static Attributes 41 72
Number of Static Methods 1 6
Total Lines of Code 1912 1310
Weighted Methods per Class (WMC) 208 218

cohesion. Average Nested Block Depth indicates the average
number of nested code blocks in the selected scope. Too
many nested blocks lead to a more complex and less readable
solution.

Cyclomatic Complexity is used to identify the complexity
of a piece of code based on the amount of execution flows
[26]. It is the number of independent paths in the source
code and it is calculated for methods only. High values of
this metric imply a complex solution that can be difficult to
understand. Weighted Methods per Class (WMC) is the sum
of the complexity of all methods in the selected class [27] (for
this work, the measure of complexity of methods is Cyclo-
matic Complexity). Classes with high WCM tend to be
complex and hard to reuse. Depth of Inheritance Tree (DIT)
is the maximum length from the class to the root of the
inheritance tree [27].Hierarchies of classes with highDIT can
contribute to reuse because the deeper classes in the hierarchy
inherit more methods. However, very deep trees tend to be
more complex because there are more classes and methods
involved [27].

Analyzing the obtained metric results, it is possible to
verify the following:

(i) Normalized Distance fromMain Sequence (Dn),Affer-
ent Coupling (Ca), Efferent Coupling (Ce), and Insta-
bility (I) show strong game dependency of the cloned
version to MEnDiGa structures in contrast with
original game version.

(ii) Abstractness (𝐴), Depth of Inheritance Tree, Total Lines
of Code, Number of Methods, Number of Static Meth-
ods, Average Number of Parameters, Number of Pack-
ages, Number of Classes, and Number of Overridden
Methodsmetrics confirm the structural simplification
of the cloned version in comparison with the original
version, despite a higher Number of Attributes and
Number of Static Attributes.

(iii) Average Lines of Code per Method, Average Nested
Block Depth, Cyclomatic Complexity, and Weighted
Methods per Class (WMC) indicate a small incre-
ment in the complexity of game production with
MEnDiGa.

(iv) Lack of Cohesion of Methods (LOCOM) presents a
higher result in MEnDiGa version, something that
can be explained due toBehavior andObserver classes
created to configure and monitore other classes
instead of itself.

6. Conclusions and Future Work

This paper presented MEnDiGa, a game engine proposal
based on the simplification of the NESI and GDS feature
models. For this, MEnDiGa provides a minimal collection
of necessary features capable of designing small and casual
games. MEnDiGa also provides an implementation frame-
work that can be configured and performed according to

12 International Journal of Computer Games Technology

game designer intentions. Together, theseMEnDiGa artifacts
are able to realize the G-factor portability followed by NESI
and GDSmodels and provide a product line solution capable
of building G-factor based games in large scale.

Regarding the game platform portability, MEnDiGa
assets were implemented and adapted to be interpreted using
LibGDX game engine. Per FEnDiGa results [7] and by the
production of respective adapter classes, it is possible to
affirm that MEnDiGa structure is capable of being extended
to additional Java game engines, such as jMonkeyEngine
[28], JGame [29], and GTGE [30]. For other game platforms
based on different types of programming languages, such as
Unreal Engine 4 [31] that uses C++, it is necessary to reimple-
ment MEnDiGa classes to the respective support language.
To facilitate this conversion process among game engines
based on distinct programming languages, a common XML
specification ofMEnDiGa games will be defined in the future
for generative [5] and interpretive [7] game development
approaches.

Regarding the production of games from interactive
GUIs, game platforms with graphical support environment
such as Unity [32], Godot [33], and Scratch [34] have been
widely used to produce digital games. However, it is impor-
tant to reinforce the fact that important game engines still use
the API programming approach to implement the game logic
for designed games, such as PixiJS [35] and Panda3D [36].
As described in this paper, MEnDiGa follows the traditional
API programming approach to implement desired behav-
iors, define observer criteria, and “configure” classes of the
proposed MEnDiGa framework. In the future, a graphical
support environment for MEnDiGa will be developed to
allow the visual configuration of a future XML representation
of MEnDiGa games.

Moreover, regarding the complexity and variability in the
production of digital games, dedicated game platforms for
specific game categories [6], such as RPG Maker [37] and
AdventureGame Studio [38], have beenwell accepted in digi-
tal game productions.MEnDiGa in its currentmodeling does
not include specific game domains resources, being focused
on providing generic elements available in casual and small
games. To improve MEnDiGa as a dedicated game platform,
it is necessary to define features and classes able to represent
game structures of specific game categories, such as menus,
HUDs, user interfaces, game rules, and game elements. The
provided collection of dedicated features and classes will be
able to produce casual games for specific game categories in a
highly reusable way, evolving MEnDiGa consequently to the
status of product line for specific game domains in the future.

Finally, clone implementation of the Doodle Jump game
using MEnDiGa assets was also demonstrated in this paper.
As an equivalent example of casual games available today, the
developed clone game has similar mechanics, dynamics, and
aesthetics characteristics [39] in comparison to the original
Super Jumper version. It is an important verification/valida-
tion step of this project as an attempt to show the feasibility of
MEnDiGa assets in the generation of concrete digital games.
SomeOOmetrics were also collected from the original Super
Jumper and cloned MEnDiGa version. By comparison, they
confirm that, with a simpler structure and a small increase

in complexity, MEnDiGa allows the configuration of digital
games from a core structure that follows theG-factor concept
of game portability across distinct game platforms.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding any product or concept discussed in this article.

Acknowledgments

The authors acknowledge the Foundation for Research Sup-
port of the State of Bahia (FAPESB) for granting a scholarship
to the graduate and coauthor Filipe M. B. Boaventura during
the development of a preliminary proposal of this work [40].

References

[1] G. Jason, Game Engine Architecture, CRC Press, 2009.
[2] M. Lewis and J. Jacobson, “Games engines in scientific research,”

Communications of the ACM, vol. 45, no. 1, p. 21, 2002.
[3] A. BinSubaih and S. Maddock, “Game Portability Using a

Service-Oriented Approach,” International Journal of Computer
Games Technology, vol. 2008, Article ID 378485, 7 pages, 2008.

[4] V. Sarinho and A. Apolinário, “Feature Model Proposal for
Computer Games Design,” in Proceedings of the VII Brazilian
Symposium on Computer Games and Digital Entertainment, pp.
54–63, 2008.

[5] V. T. Sarinho and A. L. Apolinário, “A generative programming
approach for game development,” in Proceedings of the 8th
Brazilian Symposium on Games and Digital Entertainment
(SBGAMES’ 09), pp. 83–92, Rio de Janeiro, Brazil, October 2009.

[6] M. Wolf, The Medium of the Video Game, University of Texas
Press, Tex, USA, 2002.

[7] V. T. Sarinho, A. L. Apolinário Jr., and E. S. Almeida, “A feature-
based environment for digital games,” in Proceedings of the 10th
International Conference on Entertainment Computing (ICEC’
12), vol. 7522, pp. 518–523, Springer, Berlin, Germany, 2012.

[8] V. Sarinho and A. Apolinário, “Detailing the UML Profile of the
OOFMTechnique,” inProceedings of the 3rd BrazilianWorkshop
on Model Driven Development (WB-DSDM’ 12), vol. 8, pp. 25–
32, 2012.

[9] E. Fayad, C. Schmidt, and R. Johnson, Building Application
Frameworks Object-Oriented Foundations of Framework Design,
John Wiley Sons, 1999.

[10] E. Folmer, “Component based game development: a solution
to escalating costs and expanding deadlines?” in Proceedings of
the 10th International ACM SIGSOFT Symposium Component-
Based Software Engineering (CBSE’ 07), vol. 4608, Springer,
Berlin, Germany, 2007.

[11] W. Zhang and S. Jarzabek, “Reuse without Compromising Per-
formance: Industrial Experience from RPG Software Product
Line for Mobile Devices,” in Proceedings of the 9th International
Conference on Software Product Lines (SPLC’ 05), vol. 3714 of
Lecture Notes in Computer Science, pp. 57–69, Springer, Berlin,
Gemany, 2005.

[12] E. Albassam and H. Gomaa, “Applying software product lines
to multiplatform video games,” in Proceedings of the 2013 3rd
International Workshop on Games and Software Engineering:
Engineering Computer Games to Enable Positive, Progressive
Change (GAS’ 13), pp. 1–7, San Francisco, CA, USA, May 2013.

International Journal of Computer Games Technology 13

[13] A. W. B. Furtado, A. L. M. Santos, and G. L. Ramalho, “Sharp-
Ludus revisited: From ad hoc and monolithic digital game
DSLs to effectively customizedDSMapproaches,” inProceedings
of the Compilation of The Co-Located Workshops on DSM’11,
TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, pp. 57–
62, ACM, Portland, Oregon, USA, October 2011.

[14] A. W. B. Furtado and A. L. M. Santos, “Using domain-specific
modeling towards computer games development industrializa-
tion,” in Proceedings of the 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM’ 06), October 2006.

[15] V.M.Müller, “An open source architecture for building interac-
tive dramas,” in Proceedings of the 10th Brazilian Symposium on
Computer Games and Digital Entertainment (SBGames’ 11), pp.
89–100, Salvador, Brazil, November 2011.

[16] M. C. Machado, G. L. Pappa, and L. Chaimowicz, “Character-
izing and modeling agents in digital games,” in Proceedings of
the XI Brazilian Symposium on Computer Games and Digital
Entertainment, pp. 26–33, 2012.

[17] K. Kang, S. Cohen, J. Hess,W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA): feasibility study,” Tech. Rep.,
Software Engineering Institute, Pa, USA, CMU/SEI-90-TR-21,
1990.

[18] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: feature mod-
eling plug-in for eclipse,” in Proceedings of the 004 OOPSLA
Workshop on Eclipse Technology eXchange, pp. 67–72, Vancou-
ver, British Columbia, Canada, October 2004.

[19] K. Czarnecki, “Overview of generative software development,”
in Proceedings of Unconventional Programming Paradigms
(UPP), vol. 3566 of Lecture Notes in Computer Science, pp. 326–
341, Springer, Berlin, Germany, 2004.

[20] D. A. Beuche and M. A. Dalgarno, “Software product line
engineering with feature models,”Methods & Tools, vol. 14, no.
4, pp. 9–17, 2006.

[21] LibGDX, “Desktop/Android/BlackBerry/iOS/HTML5 Java
game development framework,” http://libgdx.badlogicgames
.com.

[22] R. Pressman, Engenharia de Software: Uma Abordagem Profis-
sional, McGraw-Hill, 7th edition, 2011.

[23] Eclipse Metrics Plugin, http://metrics.sourceforge.net/.
[24] R. Martin, “OO Design Quality Metrics An Analysis of Depen-

dencies,” in Proceedings of the in Proceedings of the Workshop
Pragmatic and Theoretical Directions in Object-Oriented Soft-
ware Metrics (OOPSLA ’94), 1994.

[25] B. Henderson-Sellers, Object-Oriented Metrics: Measures of
Complexity, Prentice Hall, 1996.

[26] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[27] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[28] jMonkeyEngine, A cross-platformgame engine for adventurous
Java developers, http://jmonkeyengine.org/.

[29] JGame - a Java/Flash game engine for 2D games, http://www
.13thmonkey.org/∼boris/jgame/.

[30] GTGE, Golden T Game Engine - Game Programming for Java
Programmer, http://goldenstudios.or.id/products/GTGE/.

[31] Unreal, Unreal Engine 4, https://www.unrealengine.com/what-
-is-unreal-engine-4.

[32] Unity, Unity 3D Game Engine, https://unity3d.com.
[33] Godot, https://godotengine.org/.

[34] Scratch, “Imagine, Program, Share”, https://scratch.mit.edu/.
[35] PixiJS, PixiJS v4 - The HTML5 Creation Engine, http://www

.pixijs.com/.
[36] Panda3D, Free 3D Game Engine, https://www.panda3d.org/.
[37] RPGMaker, https://en.wikipedia.org/wiki/RPG Maker.
[38] Adventure Game Studio - AGS, https://www.adventuregame-

studio.co.uk/.
[39] R. Hunicke, M. Leblanc, and R. Zubek, “MDA: A formal

approach to game design and game research,” in Proceedings of
the AAAI-04 Workshop on Challenges in Game AI, pp. 1–5, July
2004.

[40] V. T. Sarinho and F.M. B. Boaventura, “Uma Proposta deMotor
de Jogos Baseado em um Conjunto Simplificado de Features de
Jogos Digitais,” in Anais da ERBASE - Escola de Computação
Bahia-Alagoas-Sergipe, pp. 1–10, 2014.

http://libgdx.badlogicgames.com
http://libgdx.badlogicgames.com
http://metrics.sourceforge.net/
http://jmonkeyengine.org/
http://www.13thmonkey.org/~boris/jgame/
http://www.13thmonkey.org/~boris/jgame/
http://goldenstudios.or.id/products/GTGE/
https://www.unrealengine.com/what-is-unreal-engine-4
https://www.unrealengine.com/what-is-unreal-engine-4
https://unity3d.com
https://godotengine.org/
https://scratch.mit.edu/
http://www.pixijs.com/
http://www.pixijs.com/
https://www.panda3d.org/
https://en.wikipedia.org/wiki/RPG_Maker
https://www.adventuregamestudio.co.uk/
https://www.adventuregamestudio.co.uk/

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

