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Dual-winding bearingless switched reluctance motor (BSRM) is a multivariable high-nonlinear system characterized by strong
coupling, and it is not completely reversible. In this paper, a new decoupling control strategy based on improved inverse system
method is proposed. Robust servo regulator is adopted for the decoupled plants to guarantee control performances and robustness.
A phase dynamic compensation filter is also designed to improve system stability at high-speed. In order to explain the advantages
of the proposed method, traditional methods are compared. The tracking and decoupling characteristics as well as disturbance
rejection and robustness are deeply analyzed. Simulation and experiments results show that the decoupling control of dual-winding
BSRM in both reversible and irreversible domains can be successfully resolved with the improved inverse system method. The
stability and robustness problems induced by inverse controller can be effectively solved by introducing robust servo regulator and
dynamic compensation filter.

1. Introduction

Switched reluctance motors (SRM) are favored in harsh
conditions and some high-speed driving applications owing
to their rugged structure, fault tolerance, and robustness
[1–4]. The drawback is that SRM running at high-speed
usually suffer from the mechanical friction between shaft
and bearing. Magnetic bearings (MB) present the advantages
of no lubrication and wear during high-speed operation,
but MB need extra axial space; thus, the shaft length of
magnetic-bearing SRM is usually increased, and its critical
rotating speed is limited. Bearingless switched reluctance
motor (BSRM) that combines MB with SRM is becoming
a promising alternative to the traditional SRM because of
its inherent superior features, such as zero friction, no
lubrication, no wear, short rotor shaft, high critical speed,
long life, and adjustable bearing stiffness and damping [5].

Recently, several types of BSRM have been proposed,
for example, dual-winding [6], single-winding [7, 8], hybrid-
rotor [9], hybrid-stator [10], double-stator [11], and per-
manent magnet-biased [12, 13] types. Among these types,
dual-winding BSRM possesses double saliency with two

kinds of concentrated stator windings. Dual-winding BSRM
offers simpler structure and clearer winding function and
thus receives more attention than other types of BSRM.
Conversely, the double saliency leads to complex nonlinear
characteristics, and dual-winding results in mutual coupling
between the torque and radial force.Therefore, dual-winding
BSRM is amultivariable, high-nonlinearmotor characterized
by strong coupling, which presents a challenging control
problem.

Regarding the control of dual-winding BSRM, the typ-
ical method is square-wave current control proposed by
Takemoto et al. In [14, 15], the square-wave current control
has realized the stable operation of dual-winding BSRM
from no load to full load, and the influences of magnetic
saturation and coupling effects on the torque and radial
force are considered [16, 17]. Furthermore, an independent
control strategy of average torque and radial force was
presented [18]. In this method, the current calculating algo-
rithm is deduced to minimize the magnitude of instanta-
neous torque in the levitation region. In addition, the least
magnetomotive force strategy was investigated to enhance
the availability of winding currents and to decrease the
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torque ripple and stator vibration [19]. Recently, interest in
the study on decoupling control has been increasing [20–
24], mainly including the differential geometric method [20,
21] and inverse system method [22–25]. Compared with
the former, the latter needs neither to use the complex
nonlinear coordinate transformation nor to transfer the
nonlinear control problems into geometric ones. Therefore,
the inverse system method is relatively simple to implement
in practice. In detail, the inverse system method includes
analytic inverse system [22, 23] and intelligent ones [24, 25].
Compared with analytic inverse system, intelligent ones need
not rely on the precise mathematical model, but they usually
require large allocations of computer resources that are often
typically restricted in high-speed system. Hence, analytic
inverse system method has attracted more attention than
intelligent ones in high-speed magnetically suspended field
[26, 27].

The implementation of analytic inverse system method
requires the controlled object to be reversible. However, it
is difficult to satisfy the reversibility in practical system.
According to [23], the dual-winding BSRM is not completely
reversible and its working area includes two parts: reversible
and irreversible domains. Traditional analytic inverse sys-
tem method can only realize the decoupling control in
the reversible domain, while the decoupling control in
the irreversible domain cannot be realized. To solve these
issues, a modified inverse decoupling control method for
BSRM operating in irreversible domain is proposed by
authors in [23]. However, it is known that the analytic
inverse controller usually affects the robustness and stability
of system because uncertainties and model errors always
exist in reality. Especially at high-speed, the mathemati-
cal model is not equivalent to the actual system because
the former does not consider the amplifiers bandwidth
and computation delay, and these dynamics can degrade
decoupling performance and even endanger system stability.
To combat these adverse effects, proportion-integration-
differentiation (PID) control [22–25] and internal model
control [26] have been typically employed for the decoupled
plants. Nevertheless, nearly all these methods experience
difficulty in realizing tracking and robustness independently
[27].

This study presents a novel decoupling control strat-
egy based on improved inverse system method to realize
the decoupling control of dual-winding BSRM in both
the reversible and irreversible domains. Robust servo reg-
ulator is adopted for the decoupled plants to guarantee
control performances and robustness. A phase dynamic
compensation filter (DCF) is also designed to improve
system stability at high-speed. One main contribution of
this study is to demonstrate that the decoupling control of
dual-winding BSRM at high-speed (up to 20,000 r/min) in
both reversible and irreversible domains can all be success-
fully resolved with the improved inverse system method.
The other contribution is to show that the stability and
robustness problems induced by inverse controller can be
effectively solved by introducing robust servo regulator and
DCF.
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Figure 1: Principle of radial force production of dual-winding
BSRM.

2. Principle and Characteristic Analysis of
the Dual-Winding BSRM

2.1. Radial Force Production Principle of Dual-Winding BSRM.
Figure 1 shows the principle of radial force production of
dual-winding BSRM with A-phase windings. The torque
winding 𝑁𝑚𝑎 consists of four coils connected in series,
and the suspending windings 𝑁𝑠𝑎1 and 𝑁𝑠𝑎2 consist of two
coils each. When the torque winding 𝑁𝑚𝑎 and suspending
winding 𝑁𝑠𝑎1 conduct the currents 𝑖𝑚𝑎 and 𝑖𝑠𝑎1, respectively,
the symmetrical four-pole main fluxes Ψ𝑚𝑎 and two-pole
suspending fluxes Ψ𝑠𝑎1 should be produced. The flux density
in air gap-1 increases but decreases in air gap-2. Therefore,
this superimposed magnetic field results in the radial force𝐹𝛼 acting on the rotor in the 𝛼-axis. The radial force 𝐹𝛽 in the𝛽-axis can also be produced in the samemanner. Radial force
in any desired direction can be produced by generating the
two radial forces. This principle can be similarly applied to
the B-phase and C-phase windings.

2.2. Mathematical Model of Dual-Winding BSRM. Neglecting
the leakage flux and saturation effects, the theoretical formu-
lae of the torque and radial forces can be derived from the
derivatives of the stored magnetic energy 𝑊 with respect to
displacements 𝛼 and 𝛽 and rotor position 𝜃 as [17].

𝐹𝛼 = 𝜕𝑊𝜕𝛼 = 𝑖𝑚𝑎 (𝐾𝑓1 ⋅ 𝑖𝑠𝑎1 − 𝐾𝑓2 ⋅ 𝑖𝑠𝑎2) ,
𝐹𝛽 = 𝜕𝑊𝜕𝛽 = 𝑖𝑚𝑎 (𝐾𝑓2 ⋅ 𝑖𝑠𝑎1 + 𝐾𝑓1 ⋅ 𝑖𝑠𝑎2) ,
𝑇𝑒 = 𝜕𝑊𝜕𝜃 = 𝐾𝑡 (2𝑁2𝑚𝑖2𝑚𝑎 + 𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎2) ,

(1)

where 𝑁𝑚 and 𝑁𝑠 are the number of turns of torque
winding and suspending windings; 𝑖𝑚𝑎, 𝑖𝑠𝑎1, and 𝑖𝑠𝑎2 are the
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currents inA-phase torquewinding and suspendingwinding,
respectively; 𝐹𝛼 and 𝐹𝛽 are the radial force acting on rotor
in 𝛼- and 𝛽-axis; 𝑇𝑒 is the electromagnetic torque acting on
rotor; and 𝐾𝑓1, 𝐾𝑓2, and 𝐾𝑡 are the proportional coefficients
of radial force and torque, and they are the functions of the
rotor position and motor dimensions [17].

𝐾𝑓1 = 𝑁𝑚𝑁𝑠 (𝜇0𝑙𝑟 (𝜋 − 12 |𝜃|)6𝛿2
+ 32𝜇0𝑙𝑟𝑐 |𝜃|𝜋 (4𝑟𝑐 |𝜃| 𝛿 + 𝜋𝛿2)) ,

𝐾𝑓2 = 𝑁𝑚𝑁𝑠(𝜇0𝑙𝑟 (𝜋 − 12 |𝜃|) |𝜃|12𝛿2 − 2𝜇0𝑙𝛿
+ 16𝜇0𝑙𝑐 (𝑟 |𝜃|2 + 2𝛿)𝜋 (4𝑟𝑐 |𝜃| 𝛿 + 𝜋𝛿2) ) ,

𝐾𝑡 =
{{{{{{{{{

𝜇0𝑙𝑟𝛿 − 16𝜇0𝑙𝑟 (𝛿 − 𝑟 |𝜃|)(4𝛿 − 𝜋𝑟 |𝜃|)2 − 𝜋12 ≤ 𝜃 ≤ 0
−𝜇0𝑙𝑟𝛿 + 16𝜇0𝑙𝑟 (𝛿 − 𝑟 |𝜃|)(4𝛿 − 𝜋𝑟 |𝜃|)2 0 ≤ 𝜃 ≤ 𝜋12 ,

(2)

where 𝛿 is the air-gap length, 𝑟 is the radius of the rotor pole,𝑙 is the axial stack length, 𝜃 is the rotor position from the
aligned position of exciting phase, 𝜇0 is the permeability of
vacuum (4𝜋 × 10−7), and 𝑐 is a constant of 1.49.

The actual control performance of the inverse system
method largely depends on the precision of the mathematical
model.Themajor factors that affect the accuracy of themodel
are the torque and radial forces. Fortunately, the theoretical
relationships (1) are verified with experimental results in [17]
by considering cross coupling and fringing fluxes. The test
values show good agreements with those from the model,
confirming that formulae (1) are reasonable. Mathematical
model (1) is used in this study for its convenience and
accuracy.

According to Newton’s second law and rotor dynamics,
the dynamic model of the rotor can be described as

𝑚𝛼̈ = 𝐹𝛼,
𝑚 ̈𝛽 = 𝐹𝛽 − 𝑚𝑔,
𝐽𝜔̇ = 𝑇𝑒 − 𝑇𝐿,

(3)

where 𝑚 is the mass of the rotor, 𝑔 is the acceleration of
gravity, 𝐽 is the moments of inertia of the rotor, 𝛼 and 𝛽
are the linear displacements of the rotor in 𝛼- and 𝛽-axis,
respectively, 𝜔 is the mechanical angular velocity of the rotor,
and𝑇𝐿 refers to the load torque. Substituting (1) into (3) yields

𝛼̈ = 1𝑚 [𝑖𝑚𝑎 (𝐾𝑓1 ⋅ 𝑖𝑠𝑎1 − 𝐾𝑓2 ⋅ 𝑖𝑠𝑎2)] ,
̈𝛽 = 1𝑚 [𝑖𝑚𝑎 (𝐾𝑓2 ⋅ 𝑖𝑠𝑎1 + 𝐾𝑓1 ⋅ 𝑖𝑠𝑎2)] − 𝑔,

𝜔̇ = 1𝐽 [𝐾𝑡 (2𝑁2𝑚𝑖2𝑚𝑎 + 𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎2) − 𝑇𝐿] .
(4)

2.3. Nonlinearity and Coupling Characteristics of Dual-
Winding BSRM. According to the first equation of the equa-
tions set in (1), 𝐹𝛼 is the function of 𝑖𝑠𝑎1, 𝑖𝑠𝑎2, and 𝑖𝑚𝑎.
Therefore, 𝐹𝛼 is coupling with 𝐹𝛽 and 𝑇𝑒. The coupling
of 𝐹𝛽 and 𝑇𝑒 can be drawn similarly. Dynamic coupling
always exists among 𝐹𝛼, 𝐹𝛽, and 𝑇𝑒. Also from equations
set in (1), 𝑇𝑒 is quadratic to 𝑖𝑚𝑎, 𝑖𝑠𝑎1, and 𝑖𝑠𝑎2, and 𝐹𝛼 and𝐹𝛽 are proportional to the product of 𝑖𝑚𝑎, 𝑖𝑠𝑎1, and 𝑖𝑠𝑎2.
Strong nonlinearity exists between F = {𝐹𝛼, 𝐹𝛽, 𝑇𝑒} and i ={𝑖𝑚𝑎, 𝑖𝑠𝑎1, 𝑖𝑠𝑎2}, and the greater the current value, the stronger
the nonlinearity.

The coupling and nonlinearity characteristics can be seen
clearly with finite element analysis (FEA). Figure 2 shows the
FEA results of 𝑇𝑒, 𝐹𝛽, and 𝐹𝛼 at different 𝜃 with different 𝑖𝑠𝑎2
under the conditions 𝛼 = 𝛽 = 0mm, 𝑖𝑚𝑎 = 10A, and 𝑖𝑠𝑎2 =0A.

As shown in Figure 2(a), torque 𝑇𝑒 is nonlinear to rotor
position 𝜃, and the greater the current 𝑖𝑠𝑎2, the greater the
torque 𝑇𝑒. Thus, current 𝑖𝑠𝑎2 can produce torque 𝑇𝑒; that
is, torque 𝑇𝑒 is coupling with radial force 𝐹𝛽. Figure 2(b)
illustrates that radial force 𝐹𝛽 is nonlinear to rotor position𝜃 and current 𝑖𝑠𝑎2. Figure 2(c) demonstrates that radial force𝐹𝛼 continues to exist when current 𝑖𝑠𝑎1 = 0, and the greater
the current 𝑖𝑠𝑎2, the greater the radial force 𝐹𝛼. At the same
current 𝑖𝑠𝑎2, radial force 𝐹𝛼 is greatest at 𝜃 = −15∘.

According to the aforementioned analysis, we con-
clude that the dual-winding BSRM is a multivariable high-
nonlinear motor with strong coupling, not only between
the radial forces but also between the torque and radial
forces. To realize the rotor translation and motion control,
the decoupling control between the torque and radial forces
should be achieved.

3. Decoupling Control of Dual-Winding BSRM

3.1. Reversibility of Dual-Winding BSRM. According to (4),
state variables x, input variables u, and output variables y can
be defined as follows:

x = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6]T = [𝛼, 𝛽, 𝜃, 𝛼̇, ̇𝛽, 𝜔]T , (5)

u = [𝑢1, 𝑢2, 𝑢3]T = [𝑖𝑠𝑎1, 𝑖𝑠𝑎2, 𝑖𝑚𝑎]T , (6)

y = [𝑦1, 𝑦2, 𝑦3]T = [𝛼, 𝛽, 𝜔]T . (7)
Then, the corresponding state-variable equation of the non-
linear system (4) can be rewritten as

ẋ = 𝑓 (x, u)

=

[[[[[[[[[[[[[[[
[

𝑥4𝑥5𝑥61𝑚 [𝑢3 (𝐾𝑓1 ⋅ 𝑢1 − 𝐾𝑓2 ⋅ 𝑢2)]
1𝑚 [𝑢3 (𝐾𝑓2 ⋅ 𝑢1 − 𝐾𝑓1 ⋅ 𝑢2)] − 𝑔

1𝐽 [𝐾𝑡 (2𝑁2𝑚𝑢23 + 𝑁2𝑠 𝑢21 + 𝑁2𝑠 𝑢22) − 𝑇𝐿]

]]]]]]]]]]]]]]]
]

. (8)
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Figure 2: FEA results of torque 𝑇𝑒 and radial forces 𝐹𝛽 and 𝐹𝛼 at different rotor positions with different values of 𝑖𝑠𝑎2 under the conditions𝛼 = 𝛽 = 0mm, 𝑖𝑚𝑎 = 10A, and 𝑖𝑠𝑎1 = 0A. (a) FEA results of 𝑇𝑒. (b) FEA results of 𝐹𝛽. (c) FEA results of 𝐹𝛼.

From (5)–(8), the state equation of dual-winding BSRM is
a six-order nonlinear system with three inputs and three
outputs, and its reversibility must be justified.

When analyzing the reversibility of the system, the first
step is to take the derivative of output y = [𝑦1, 𝑦2, 𝑦3]T =[𝛼, 𝛽, 𝜔]T with respect to time until the components of u =[𝑢1, 𝑢2, 𝑢3]T = [𝑖𝑠𝑎1, 𝑖𝑠𝑎2, 𝑖𝑚𝑎]T are explicitly included [28].
Then, we can obtain

J (u) = [[
[

̈𝑦1̈𝑦2̇𝑦3
]]
]

=
[[[[[[[
[

1𝑚 [𝑢3 (𝐾𝑓1 ⋅ 𝑢1 − 𝐾𝑓2 ⋅ 𝑢2)]
1𝑚 [𝑢3 (𝐾𝑓2 ⋅ 𝑢1 − 𝐾𝑓1 ⋅ 𝑢2)] − 𝑔

1𝐽 [𝐾𝑡 (2𝑁2𝑚𝑢23 + 𝑁2𝑠 𝑢21 + 𝑁2𝑠 𝑢22) − 𝑇𝐿]

]]]]]]]
]
.

(9)

Taking the derivative of J(u), we further obtain the Jacobi
matrix A as follows:

A =
[[[[[[[[
[

𝜕 ̈𝑦1𝜕𝑢1
𝜕 ̈𝑦1𝜕𝑢2

𝜕 ̈𝑦1𝜕𝑢3𝜕 ̈𝑦2𝜕𝑢1
𝜕 ̈𝑦2𝜕𝑢2

𝜕 ̈𝑦2𝜕𝑢3𝜕 ̇𝑦3𝜕𝑢1
𝜕 ̇𝑦3𝜕𝑢2

𝜕 ̇𝑦3𝜕𝑢3

]]]]]]]]
]
. (10)

Including (9) into (10), the Jacobi matrixA can be resolved as

A =
[[[[[[[[[
[

𝐾𝑓1𝑢3𝑚
−𝐾𝑓2𝑢3𝑚

𝐾𝑓1𝑢1 − 𝐾𝑓2𝑢2𝑚𝐾𝑓2𝑢3𝑚
𝐾𝑓1𝑢3𝑚

𝐾𝑓2𝑢1 + 𝐾𝑓1𝑢2𝑚
2𝐾𝑡𝑁2𝑠 𝑢1𝐽 2𝐾𝑡𝑁2𝑠 𝑢2𝐽 4𝐾𝑡𝑁2𝑚𝑢3𝐽

]]]]]]]]]
]

. (11)

Hence,
det (A)
= 2𝐾𝑡 (𝐾2𝑓1 + 𝐾2𝑓2)𝐽𝑚2 𝑢3 (2𝑁2𝑚𝑢23 − 𝑁2𝑠 𝑢21 − 𝑁2𝑠 𝑢22) .

(12)
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Obviously, 2𝐾𝑡(𝐾2𝑓1 + 𝐾2𝑓2)/𝐽𝑚2 ̸= 0. Therefore, if 𝑢3 ̸= 0
and 2𝑁2𝑚𝑢23 − 𝑁2𝑠 𝑢21 − 𝑁2𝑠 𝑢22 ̸= 0, that is, if 𝑖𝑚𝑎 ̸= 0 and𝑖2𝑚𝑎 ̸= (𝑁2𝑠 𝑖2𝑠𝑎1+𝑁2𝑠 𝑖2𝑠𝑎2)/(2𝑁2𝑚), then the inequality det(A) ̸= 0
always holds, and the relative order is 𝛼 = [𝛼1, 𝛼2, 𝛼3] =[2, 2, 1], which satisfies𝛼1+𝛼2+𝛼3 = 5 ≤ 𝑛 (𝑛 is the number of
the state variables defined in (5)). According to inverse system
theory [28], the system is reversible. Contrarily, if 𝑖𝑚𝑎 = 0 or𝑖2𝑚𝑎 = (𝑁2𝑠 𝑖2𝑠𝑎1+𝑁2𝑠 𝑖2𝑠𝑎2)/(2𝑁2𝑚), then the system is irreversible.
Thus, the mathematical model of dual-winding BSRM is not
completely reversible. The working area can be divided into
reversible domainD and irreversible domain D̃.

D = {𝑖𝑚𝑎 ̸= 0, 𝑖2𝑚𝑎 ̸= 𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎22𝑁2𝑚 }
D̃ = {𝑖𝑚𝑎 = 0 or 𝑖2𝑚𝑎 = 𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎22𝑁2𝑚 } .

(13)

To realize the decoupling control of dual-winding BSRM, the
control scheme should be designed in both reversible domain
D and irreversible domain D̃.

3.2. Inversion in the Reversible Domain. From (13), the
inequality of 𝑖𝑚𝑎 ̸= 0 always holds when dual-winding BSRM
is working in reversible domainD. According to the first two
equations of the equations set in (4), we can obtain

𝑖𝑠𝑎1 = 𝑚(𝐾𝑓1𝛼̈ + 𝐾𝑓2 ̈𝛽 + 𝑔𝐾𝑓2)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
) 𝑖𝑚𝑎 ,

𝑖𝑠𝑎2 = 𝑚(𝐾𝑓1 ̈𝛽 − 𝐾𝑓2𝛼̈ + 𝑔𝐾𝑓1)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
) 𝑖𝑚𝑎 .

(14)

Then, integrating (14) into the third equation of the equations
set in (4) gives

2𝑁2𝑚𝑖4𝑚𝑎 − 𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 𝑖2𝑚𝑎 + 𝑁2𝑠𝑚2𝐾2
𝑓1
+ 𝐾2
𝑓2

[𝛼̈2 + (𝑔 + ̈𝛽)2]
= 0.

(15)

Accordingly, the discriminant of the quadratic equation (15)
can be given by

Δ = (𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 )2 − 8𝑚2𝑁2𝑚𝑁2𝑠𝐾2
𝑓1
+ 𝐾2
𝑓2

[𝛼̈2 + (𝑔 + ̈𝛽)2] . (16)

Considering that (15) is a unary quadratic equation and its
discriminant Δ ≥ 0 always holds, its roots exist undoubtedly
according to the implicit function theorem. The two roots of
(15) can be described as follows:

𝑖2𝑚𝑎1,2 = 14𝑁2𝑚 (
𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 ± √Δ) . (17)

In an actual system, if the value of torque winding current 𝑖𝑚𝑎
is small, then the bias magnetic field in dual-winding BSRM

will be weak, which is unsatisfactory to generate continuous
radial force. Hence, the value of torque winding current 𝑖𝑚𝑎
is selected as

𝑖𝑚𝑎 = 12𝑁𝑚√
𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 + √Δ. (18)

Then, substituting (18) into (14), the values of suspending
winding currents 𝑖𝑠𝑎1 and 𝑖𝑠𝑎2 can be calculated as follows:

𝑖𝑠𝑎1 = 2𝑚𝑁𝑚 (𝐾𝑓1𝛼̈ + 𝐾𝑓2 ̈𝛽 + 𝑔𝐾𝑓2)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜔̇ + 𝑇𝐿) /𝐾𝑡] + √Δ,

𝑖𝑠𝑎2 = 2𝑚𝑁𝑚 (𝐾𝑓1 ̈𝛽 − 𝐾𝑓2𝛼̈ + 𝑔𝐾𝑓1)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜔̇ + 𝑇𝐿) /𝐾𝑡] + √Δ.

(19)

According to inverse system theory [28], we define the new
input variables [𝜑1, 𝜑2, 𝜑3]T = [ ̈𝑦𝑑1, ̈𝑦𝑑2, ̇𝑦𝑑3]T; here, 𝑦𝑑𝑖 (𝑖 =1, 2, 3) denotes the desired outputs. By substituting variables[𝜑1, 𝜑2, 𝜑3]T for [ ̈𝑦1, ̈𝑦2, ̇𝑦3]T, we can obtain the current-mode
inversion of dual-winding BSRM in reversible domainD as

𝑢1 = 2𝑚𝑁𝑚 (𝐾𝑓1𝜑1 + 𝐾𝑓2𝜑2 + 𝑔𝐾𝑓2)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ,

𝑢2 = 2𝑚𝑁𝑚 (𝐾𝑓1𝜑2 − 𝐾𝑓2𝜑1 + 𝑔𝐾𝑓1)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ,

𝑢3 = √[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ(2𝑁𝑚) .

(20)

3.3. Improved Inversion in the Irreversible Domain. According
to (13), the irreversible domain of dual-winding BSRM
includes the following two parts:

D̃ = {{{{{{{
D̃1 = {𝑖𝑚𝑎 = 0}
D̃2 = {𝑖2𝑚𝑎 = 𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎22𝑁2𝑚 } . (21)

(I) In the first part of irreversible domain D̃1, substituting the
equality of 𝑖𝑚𝑎 = 0 into (4) yields

𝛼̈ = 0,
̈𝛽 = −𝑔. (22)

From (22), the rotor will be in free fall when 𝑖𝑚𝑎 = 0, because
no bias magnetic field is present to generate radial force for
balancing rotor gravity. From the radial force production
principle of dual-winding BSRM, a bias magnetic field must
exist in the dual-winding BSRM to produce radial force, and,
thus, current 𝑖𝑚𝑎 cannot be zero. The first part of irreversible
domain deduced by the theoretical analysis does not exist in
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the actual system.Therefore, it does not have to be considered
in decoupling control.

(II) In the second part of irreversible domain D̃2, equality𝑖2𝑚𝑎 = (𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎2)/(2𝑁2𝑚) always holds. Therefore, the
discriminant of (16) equals zero (i.e., Δ = 0).

(𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 )2 = 8𝑚2𝑁2𝑚𝑁2𝑠𝐾2
𝑓1
+ 𝐾2
𝑓2

[𝛼̈2 + (𝑔 + ̈𝛽)2] . (23)

From the deduction of (23), equality (23) always holds
when the dual-winding BSRM is working in the irreversible
domain; from the inverse deduction of (23), if equality
(23) holds, then the dual-winding BSRM will work in the
irreversible domain.The dual-winding BSRMworking in the
irreversible domain is equivalent to equality (23) holding;
that is, equality 𝑖2𝑚𝑎 = (𝑁2𝑠 𝑖2𝑠𝑎1 + 𝑁2𝑠 𝑖2𝑠𝑎2)/(2𝑁2𝑚) is equivalent
to (23). Based on this equivalence, the improved inverse
system method can be proposed as the following two steps.
Firstly, we can multiply modifying factors, the value of which
approximately is equal to one, to the feedback variables of𝛼̈, ̈𝛽, and 𝜔̇ in (23), respectively, to make Equality (23) not
hold, that is, to make the working area from irreversible
domain to reversible domain. Secondly, the inverse system
method can be adopted in the irreversible domain. In the
first step, modifying three feedback variables of 𝛼̈, ̈𝛽, and𝜔̇ simultaneously is difficult. To avoid this problem, ̈𝛽 is
selected tomultiplymodified factor𝐾𝛽 to build the improved
inversion in this study. By multiplying modified factor𝐾𝛽 bÿ𝛽, we can obtain the following inequality:

(𝐽𝜔̇ + 𝑇𝐿𝐾𝑡 )2 ̸= 8𝑚2𝑁2𝑚𝑁2𝑠𝐾2
𝑓1
+ 𝐾2
𝑓2

[𝛼̈2 + (𝑔 + 𝐾𝛽 ̈𝛽)2] . (24)

Hence, the working area of dual-winding BSRM is changed
from the irreversible domain to the reversible domain. Then,
substituting𝐾𝛽 ̈𝛽 for ̈𝛽 to (19), that is, substituting𝐾𝛽𝜑2 for 𝜑2
to (20), the improved inversion of the dual-winding BSRM in
the irreversible domain can be given as

𝑢1 = 2𝑚𝑁𝑚 (𝐾𝑓1𝜑1 + 𝐾𝑓2𝐾𝛽𝜑2 + 𝑔𝐾𝑓2)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ󸀠 ,

𝑢2 = 2𝑚𝑁𝑚 (𝐾𝑓1𝐾𝛽𝜑2 − 𝐾𝑓2𝜑1 + 𝑔𝐾𝑓1)
(𝐾2
𝑓1
+ 𝐾2
𝑓2
)√[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ󸀠 ,

𝑢3 = √[(𝐽𝜑3 + 𝑇𝐿) /𝐾𝑡] + √Δ󸀠(2𝑁𝑚) ,

(25)

where Δ󸀠 = ((𝐽𝜑3 +𝑇𝐿)/𝐾𝑡)2 −(8𝑚2𝑁2𝑚𝑁2𝑠 /(𝐾2𝑓1 +𝐾2𝑓2))[𝜑21 +(𝑔 + 𝐾𝛽𝜑2)2].
In comparing the improved inversion (25) in the irre-

versible domain with the inversion (20) in the reversible
domain, the improved inverse system method involves
changing the working area of dual-winding BSRM from the
irreversible domain to the reversible domain by modifying

the feedback values of the control object and then adopting
the traditional inverse system to realize the decoupling
control of the dual-winding BSRM in irreversible domain. In
addition, inversion (20) is a special case of 𝐾𝛽 = 1 of the
improved inversion (25). Hence, the improved inverse system
method is more universal and efficient than the traditional
one, and it can be applied to the irreversible system.

3.4. Design of Robust Servo Regulator. According to inverse
system theory [28], by connecting the improved inversion
(25) before dual-winding BSRM, it can be linearized and
decoupled to two second-order integral type displacement
subsystems and one first-order integral type speed subsystem.
The transfer functions are as follows:

G (s) = [𝐺𝛼 (𝑠) , 𝐺𝛽 (𝑠) , 𝐺𝜔 (𝑠)]T = [ 1𝑠2 , 1𝑠2 , 1𝑠 ]
T . (26)

However, these transfer functions (26) are the nominalmodel
of three pseudo-linear subsystems. Practically, considering
the uncertainty of parameters and model errors, the compo-
sition of the dual-winding BSRM and its improved inversion
(25) is not exactly equivalent to the linear subsystem (26).
Decoupled plants should be combinedwith robust controllers
because the remaining coupling and nonlinearity always
exist. Robust servo regulator is employed in this study
given its excellent tracking and robust performance [21],
which consists of servo compensator 𝑇(𝑠) and stabilizing
compensator𝐾(𝑠).

As for the displacement subsystems, their transfer func-
tions can be described as 𝐺𝛼(𝑠) = 𝐺𝛽(𝑠) = 𝑠−2. According to
the design method of robust servo regulator, we let 𝑇1(𝑠) =𝑇2(𝑠) = (𝑎0 + 𝑎1𝑠)/𝑠 and 𝐾1(𝑠) = 𝐾2(𝑠) = 𝑘0 + 𝑘1𝑠. Then, the
closed-loop transfer function of the displacement subsystems
can be described as

Φ (𝑠) = 𝑎1𝑠 + 𝑎0𝑠 (𝑠2 + 𝑘1𝑠 + 𝑘0) . (27)

To simplify the selection of the controller parameters, we can
design the system that comprises a pair of complex-number
dominant poles, and the other poles are far away from the
imaginary axis [21]; that is,

Φ (𝑠) = 𝜔2𝑛 (𝑠 + 𝛿)(𝑠 + 𝛿) (𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔2𝑛) . (28)

To improve the system response speed, this study selects 𝛿 =6, 𝜉 = √2/2, and 𝜔𝑛 = 800 rad/s. Combining (27) and (28)
yields the regulator parameters

𝑎1 = 𝜔2𝑛 = 640,000,
𝑎0 = 𝜔2𝑛𝛿 = 3,840,000,
𝑘1 = 2𝜉𝜔𝑛 + 𝛿 ≈ 1137.2,
𝑘0 = 𝜔2𝑛 + 2𝜉𝜔𝑛𝛿 ≈ 646,787.2.

(29)

Similarly, for the speed subsystem 𝐺𝜔(𝑠) = 𝑠−1, we let 𝑇3(𝑠) =𝑎2(𝑠 + 𝛿2)/𝑠 and 𝑘3(𝑠) = 0; here, the value of 𝑎2 and 𝛿2
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Figure 3: Closed-loop compound control system based on robust servo regulator.

is selected by simulations as 𝑎2 = 1,200 and 𝛿2 = 6. The
closed-loop transfer function of the speed subsystems can be
described as

Φ (𝑠) = 1,200𝑠 + 7,200𝑠2 + 1,200𝑠 + 7,200 . (30)

The schematic of the closed-loop compound control system
based on the improved inverse system and robust servo
regulator is shown in Figure 3. According to Figure 3, it
is divided into four parts such as robust servo regulator,
decoupling controller, DCF, and controlled object. In the
controlled object, pulse width modulation (PWM) amplifiers
are applied to the torque and suspending windings of the
dual-winding BSRM for the torque drive and suspending
force. In decoupling controller, by means of current-mode
improved inversion equation (25), it is designed and con-
nected before the controlled object so as to realize the
linearization and decoupling control. Robust servo regulator
consists of servo compensator 𝑇(𝑠) and stabilizing com-
pensator 𝐾(𝑠) is described as (27)–(30). DCF between the
decoupling controller and PWM amplifier in Figure 3 is
phase lag dynamic compensation filter, which is designed to
improve system stability to achieve 5 high-speed operation,
and the design of DCF is described in the next subsection.

3.5. Design of Dynamic Compensation Filter. Mathematical
model (4) is not dynamically equivalent to actual system
because it does not consider the amplifier bandwidth and
computation delay. These dynamics can deteriorate decou-
pling performance and even endanger system stability, espe-
cially at high-speed [26, 27]. One method to solve this issue
is introducing compensation filters [29]. The rated speed
of dual-winding BSRM is 20,000 r/min; that is, the control
bandwidth employed is approximately 333Hz. To resolve
its compensation filter, the frequency response of PWM
amplifier is measured via a sine sweep test; the blue thin
line in Figure 4 shows the positive frequency phase response

curve drawn by an Agilent 35670A dynamic signal analyzer.
The phase lag at 333Hz is nearly 5∘. Generally, the desired
phase lag is 45∘, and, thus, the phase lag that should be
compensated at the rated speed frequency is approximately
40∘.

Based on the aforementioned analysis and considering
the simplicity of filter realization, a second-order filter is
designed, and the transfer function of the designed filter is
given as

Φ (𝑠) = 2.1𝑠2 + 3,400𝑠 + 4.8 × 106𝑠2 + 2,080𝑠 + 4.8 × 106 . (31)

The red thick line in Figure 4 shows the positive frequency
phase response curve after phase compensation. The phase
lag at the rated speed frequency around 333Hz has increased
from 5∘ to nearly 45∘. This trend demonstrates that the
relative stability of dual-winding BSRM system can be greatly
increased by employing DCF.

4. Simulation and Experimental Results

4.1. Experimental Setup. A test machine of a dual-winding
BSRM is illustrated in Figure 5, and many extensive experi-
ments have been carried out on this testmachine, where dual-
winding BSRM uses a 3-degree of freedom (DOF) hybrid
magnetic bearing (HMB) to realize 5-DOF active control, and
it is controlled by a separate controller. We take 2-DOF dual-
winding BSRM as the experimental subject. Two assistant
bearings are installed in the test machine, and the average air
gap between the rotor shaft and assistant bearing is 0.2mm.
The specifications of dual-winding BSRM are presented in
Table 1.

The simulation is developed based on the Sim-Power-
System and the Simulink of MATLAB. The proposed decou-
pling control algorithm is implemented in the digital signal
processor (DSP) chip TMS320F28335, and the analog-to-
digital converter 1674 is employed. Both the sampling and
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Figure 5: Experimental test machine of the dual-winding BSRM.

servo frequency are set to 6.7 kHz, and the PWM frequency
is 20 kHz. In the proposed motor, an incremental optical
electrical encoder is employed to be angular position sensor.
The displacement sensor is made based on the eddy current
principle. Each channel has two displacement sensors. These
tools are used to supply rotor eccentric displacement and the
phase commutation logic signals and calculate the rotational
speed for displacement and speed closed-loop control.

The structure of the entire control system and the
flowchart of decoupling control are shown in Figures 3 and
6, respectively.

According to Figure 3, the radial displacements and
rotational speed are compared with the reference values, and
the errors are fed to robust servo regulator. The robust servo
regulator outputs are then fed to improved inverse system
to realize the decoupling, and, through the composition
of the DCF, the duty cycles of the PWM are generated.
Then the control of dual-winding BSRM can be divided
into two independent parts, that is, the torque drive and
suspending force. In the part of torque drive, the direct
control currents im from PWM amplifier are applied on the
torque. Consequently, the torque 𝑇𝑒 is generated. By means
of the rotor motion equation, when the generated torque is

Table 1: Specifications of dual-winding BSRM.

Parameter Value
Rated power of torque winding, kW 2
Rated power of suspending winding, kW 1
Rated voltage of torque winding, V 110
Rated voltage of suspending winding, V 110
Rated speed, r/min 20,000
Rated frequency, Hz 333
Torque winding turns, turns 17
Suspending winding turns, turns 15
Stator outer diameter, mm 130
Stator pole arc, deg. 15
Stator yoke width, mm 10
Rotor diameter, mm 60
Rotor pole arc, deg. 15
Rotor yoke width, mm 10
Air-gap length, mm 0.25
Axial stack length, mm 70
Mass of the rotor, Kg 1
Moments of inertia of the rotor, kg⋅m2 9 × 10−3

Stator/rotor core material DW360 50

Table 2: Computer run time of different control methods.

Method Computer run time
Square-wave currents control [14] 145.4 𝜇s
Analytic inverse plus PID control [22] 98.8𝜇s
Neural network inverse control [24] 425.8𝜇s
Support vector machine inverse control [25] 308.5 𝜇s
Proposed control method 99.4 𝜇s

larger than the load torque 𝑇𝐿, the rotor can speed up. In
the part of suspending force, control currents is1 and is2 are
generated by the PWM amplifiers, which are applied on the
suspendingwindings.Then, the suspending control flux from
the control currents is1 and is2 is composited with bias flux
from the torque winding current im. Therefore, resultant flux
generated the suspending force.

As shown in Figure 6, the decoupling control flowchart
mainly includes four steps. The first step is to establish
the mathematical model and analyze its reversibility. The
second one is to divide the work area into reversible and
irreversible domain based on the model reversibility analysis
and construct the inversion and the improved inversion
before the controlled object to realize the linearization and
decoupling. The third is to design the robust servo regulator
and DCF, so as to build the closed-loop compound control
system.The fourth step, that is, the last step, is the simulation
and experiment research, and in this step the controller
parameters should bemodified until the control performance
requirements are met.

The computer run time of different methods is tested (see
Table 2). The computer run time of the proposed method is
shorter than those of the square-wave current control, much
shorter than those of the neural network inverse and support
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vector machine inverse control methods, and similar to that
of the analytic inverse system plus PID control method.
Consistentwith the analysis in Section 1, this finding indicates
that the proposed control method can greatly simplify the
industrial realization comparedwith the square-wave current
control and intelligent inverse system decoupling control
strategy.

4.2. Decoupling Performance. To further verify the decou-
pling control performance between the proposedmethod and

the analytic inverse plus PID control [22], hereafter referred
to as traditional method, many comparative simulations
and experiments have been developed. In the traditional
method, as shown in [22], the values of coefficients for
displacement-PID and speed-PID are given as 𝑘𝑝 = 0.32,𝑘𝑖 = 0.2, and 𝑘𝑑 = 0.05 and 𝑘𝑟𝑝 = 4.3, 𝑘𝑟𝑖 = 1.6,
and 𝑘𝑟𝑑 = 0.4, respectively. In this study, the method
of choice for PID coefficients in traditional method is
skipped. Interested readers are referred to [22] for detailed
information.
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Figure 7: Simulation and experimental comparison of decoupling performance in the reversible domain based on two different control
methods. (a) Simulation results by traditional method. (b) Simulation results by the proposedmethod. (c) Experimental results by traditional
method. (d) Experimental results by the proposed method.

4.2.1. Decoupling in the Reversible Domain. In the reversible
domain, comparative simulation and experiments between
the two different methods have been developed with various
rotational speeds and displacements. At time 𝑡 = 0.5 s, the
reference translation displacement𝛼 steps from0 to−0.1mm,
at time 𝑡 = 2 s, and the reference rotational speed 𝜔 steps
from 10,000 to 12,000 r/min. Figure 7 shows the results of
comparative simulation and experiments.

The step of 𝛼 does not bring a marked effect on 𝛽
and 𝜔 through both the traditional and proposed methods.
However, as shown in Figure 7(a), the step of 𝜔 results in
distinct fluctuations of approximately 80 and 100𝜇mon𝛼 and𝛽, respectively, with the traditional method, whereas it has
slight effect on 𝛼 and 𝛽 with the proposed control strategy, as
shown in Figure 7(b). Similar conclusions can be drawn from
the experimental results as shown in Figures 7(c) and 7(d).
Although the experimental and simulation results slightly

vary because of noise and dynamic imbalances, they agree
well overall. This conclusion can also be observed in later
comparisons.

These results indicate that the traditional method can
realize the decoupling between two translation motions, but
it cannot completely eliminate the coupling between the rota-
tion and translation motions. That is, the traditional method
can only realize the decoupling between the two translation
motions but not the decoupling among the rotation and
translation motions.

Comparedwith the traditionalmethod, the proposed one
possesses more decoupling DOF.

4.2.2. Decoupling in the Irreversible Domain. To further vali-
date the decoupling performance of the proposed algorithm
in the irreversible domain, comparative simulation and
experiments of the traditional method and the proposed one
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Figure 8: Simulation and experimental comparison of decoupling performance in the irreversible domain based on two different control
methods. (a) Simulation results by traditional method. (b) Simulation results by the proposedmethod. (c) Experimental results by traditional
method. (d) Experimental results by the proposed method.

have been carried out under the conditions 𝜔 = 10,000 r/min
and 𝛼 = 𝛽 = 0.

The simulation and experimental results by the two
methods are shown in Figure 8. As shown in Figure 8(a),
when dual-winding BSRM works from reversible domain to
irreversible domain at time 𝑡 = 1 s, significant fluctuations
exist as large as approximately 120𝜇m and 100 𝜇m on dis-
placement 𝛼 and displacement 𝛽 as well as roughly 400 r/min
on speed 𝜔 with the traditional method. Strong fluctuations
also appear repeatedly as the adjusted time lasts as long
as nearly 3 s. By contrast, according to Figure 8(b), when
the proposed control method is adopted, the above values
of fluctuation are reduced to 80 𝜇m, 50 𝜇m, and 100 r/min,
respectively. Strong fluctuation only appears once because the
adjusted time is shortened to 1.5 s, which is roughly 50% of
that in the traditional method. Similar conclusions can be

drawn from the experimental results (see Figures 8(c) and
8(d)).

These results indicate that the proposed method has real-
ized the decoupling control of dual-windings BSRM in the
irreversible domain, and the control precision of the rotation
and translation motions has been improved evidently by
adopting the presented strategy.

4.3. Tracking Performance. To demonstrate the tracking per-
formance of the proposed strategy, three different shape
signals are utilized to test the tracking precision. In detail,
the reference displacement 𝛼 tracks the sine wave signal0.1 sin(2𝜋𝑡 + 0.2𝜋)mm, the reference displacement 𝛽 tracks
the sawtooth wave signal 0.1sawtooth(2𝜋𝑡)mm, and the
reference speed 𝜔 steps from 10,000 to 12,000 r/min at time𝑡 = 0.5 s and then back to 11,000 r/min at time 𝑡 = 3.5 s.
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Figure 9: Simulation and experimental comparison of tracking performance based on two different control methods. (a) Simulation results
by traditional method. (b) Simulation results by the proposed method. (c) Experimental results by traditional method. (d) Experimental
results by the proposed method.

Figure 9 shows the comparative simulation and experi-
mental results between the traditional and the proposed
methods.

Figures 9(a) and 9(b) illustrate that both the traditional
and the proposed methods do not bring any marked over-
shoot on speed 𝜔 when reference 𝜔 tracks the step signal,
and the accelerating time from 10,000 to 12,000 r/min is less
than 2min. This finding indicates that the proposed method
exhibits a good tracking performance aswell as the traditional
one.

However, as Figure 9(a) shows, with the traditional
method, pulse disturbances exist on 𝛼 and 𝛽 when 𝜔 tracks
the step signal, and the peak amplitude of disturbances on 𝛼
and 𝛽 are roughly 90 and 100𝜇m. By contrast, Figure 9(b)
demonstrates that such issue is nonexistent when employing

the proposed method, because the decoupling between the
translation and rotation motions has been realized by this
method, as verified in the last subsection.

Figures 9(a) and 9(b) also show that, at the valley points
of the sin wave and the sawtooth wave signals, the proposed
method has higher tracking accuracy than the traditional
method.

These comparative results further confirm that the pre-
sentedmethod show great improvements in terms of tracking
performance. Similar conclusions can be drawn from the
experimental results (see Figures 9(c) and 9(d)).

4.4. Disturbance Rejection and Robustness Performances. To
further verify the robustness performances of the proposed
control algorithm, the reference steps, external disturbances,
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Figure 10: Comparative simulation and experimental results of disturbance rejection and robustness performances of the traditional method
with different controller parameters. (a) Comparative simulation results with different values of 𝑘𝑑 and 𝑘𝑟𝑑. (b) Experimental results with 𝑘𝑑 =
0.05 and 𝑘𝑟𝑑 = 0.4. (c) Experimental results with 𝑘𝑑 = 0.03 and 𝑘𝑟𝑑 = 0.1.

and parameter variations are imposed on the system. At time𝑡 = 0.5 s, the reference displacement 𝛼 and displacement 𝛽
step from 0 to 0.1mm, and the reference speed 𝜔 steps from
10,000 to 12,000 r/min. At time 𝑡 = 3 s, a radial disturbing
force 10N and a load torque −0.8N⋅m are imposed on the
rotor, and, at time 𝑡 = 4 s, we assume that the coefficients

of radial force 𝐾𝑓2 increase by 25% and the coefficients of
torque 𝐽𝑡 decrease by 30%. Comparative simulations and
experiments with different values of 𝑘𝑑 and 𝑘𝑟𝑑 in the
traditional controller and different values of 𝜉 and 𝛿2 in
the proposed one are also performed in Figures 10 and 11,
respectively.
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Figure 11: Comparative simulation and experimental results of disturbance rejection and robustness performances of the proposed method
with different controller parameters. (a) Comparative simulation results with different values of 𝜉 and 𝛿2. (b) Experimental results with 𝜉 = 0.5
and 𝛿2 = 4. (c) Experimental results with 𝜉 = 0.707 and 𝛿2 = 6.

From Figure 10(a), for the traditional controller, the
external disturbance and parameter variations result in
roughly 80 𝜇m, 50𝜇m, and 800 r/min disturbances on 𝛼,𝛽, and 𝜔, respectively. Although this outcome has been
greatly improved by decreasing the differential coefficients𝑘𝑑 (from 0.05 to 0.03) and 𝑘𝑟𝑑 (from 0.4 to 0.1), its response
time prolongs when tracking the reference displacement or

speed. That is, the traditional method cannot adjust the
performances of the tracking, disturbance rejection, and
robustness independently. Concretely speaking, the decrease
of 𝑘𝑑 and 𝑘𝑟𝑑 can improve disturbance rejection and robust-
ness performances, but it sacrifices the tracking performance.

By contrast, according to Figure 11(a), with the proposed
strategy, the external disturbance and parameter variations



Mathematical Problems in Engineering 15

do not bring obvious disturbances into 𝛼, 𝛽, and 𝜔. In
addition, the increase of 𝜉 (from 0.5 to 0.707) and 𝛿2 (from
4 to 6) can decrease the values of disturbances without any
effects on the tracking performance. That is, the proposed
control strategy can adjust tracking, disturbance rejection,
and robustness performances independently.The experimen-
tal results, as shown in Figures 10(b), 10(c), 11(b) and 11(c),
further verify the correctness of the simulation.

In conclusion, the traditional control method cannot
adjust the control performances of the tracking, disturbance
rejection, and robustness independently. Seeking its optimal
coefficients is rather difficult. Often, even if the coefficients
have been selected, the traditional method cannot satisfy the
control performances of the tracking, disturbance rejection,
and robustness simultaneously. Contrarily, the proposed
control strategy can adjust the control performances of
the tracking and robustness independently. Therefore, this
method not only simplifies the adjustment of parameters but
also improves tracking, disturbance rejection, and robustness
performances simultaneously.

5. Conclusion

In this study, the model and reversibility analysis of dual-
winding BSRM were explored, and a new decoupling control
method based on improved inverse system and robust servo
regulator was proposed.The following five conclusions can be
drawn from this study:

(i) Dual-winding BSRM is a multivariable, high-nonlin-
ear motor with strong coupling, not only between the
radial forces but also between the torque and radial
forces. It is also an incomplete reversible system,
whoseworking area can be divided into reversible and
irreversible domains.

(ii) To generate the radial force for balancing rotor grav-
ity, themain winding current of conducting phase 𝑖𝑚𝑎
of dual-winding BSRM cannot be zero, so 𝑖𝑚𝑎 = 0 in
the irreversible domain analysis does not exist in the
real system. The decoupling control of dual-winding
BSRM in the irreversible domain need not consider
the case of 𝑖𝑚𝑎 = 0.

(iii) The proposed improved inverse system method
involves modifying the state feedback of the con-
trolled system. The traditional inverse method is
equivalent to the special case of the modified factor𝑘𝛽 = 1 in the improved inverse system, so the
improved inverse system is more universal and gen-
eralized than the traditional inverse system method.

(iv) Simulation and experimental results confirm that the
robustness and stability problems induced by the
inverse controller can been successfully solved by
introducing robust servo regulator and DCF, and the
proposed method exhibits more decoupling DOF,
higher precision, better tracking, and stronger dis-
turbance rejection and robustness performances than
the traditional one.

(v) The improved inverse system method can realize the
decoupling control of dual-winding BSRM in both
reversible and irreversible domains with a satisfied
stability and the static as well as dynamic perfor-
mance. Hence, the working area of dual-winding
BSRM is expended from the reversible domain to
both the reversible and irreversible domains by adopt-
ing proposed method.

Nomenclature

𝐹𝛼, 𝐹𝛽: Radial forces acting on rotor in 𝛼- and𝛽-axis, respectively𝑁𝑚,𝑁𝑠: Number of turns of torque winding
and suspending winding, respectively𝜃: Rotor position from the aligned
position of exciting phase𝑙: Axial stack length of the iron core𝑟: Radius of the rotor pole𝑐: Constant 1.49𝑚: Mass of the rotor𝛼, 𝛽: Rotor displacements in 𝛼- and 𝛽-axis,
respectively𝑇𝐿: Load torque𝑘𝑝, 𝑘𝑖, and 𝑘𝑑: Proportional, integral, and differential
coefficients of the displacement-PID
controller in traditional method𝑇𝑒: Electromagnetic torque acting on rotor𝑖𝑚𝑎, 𝑖𝑠𝑎1, and 𝑖𝑠𝑎2: Currents in A-phase torque winding
and suspending winding, respectively

im = (𝑖𝑚𝑎, 𝑖𝑚𝑏, 𝑖𝑚𝑐): Control currents in three-phase torque
windings

is1 = (𝑖𝑠𝑎1, 𝑖𝑠𝑏1, 𝑖𝑠𝑐1): Control currents in three-phase
suspending windings in the 𝛼-axis

is2 = (𝑖𝑠𝑎2, 𝑖𝑠𝑏2, 𝑖𝑠𝑐2): Control currents in three-phase
suspending windings in the 𝛽-axis𝐾𝑓1, 𝐾𝑓2, and𝐾𝑡: Proportional coefficients of radial force
and torque, respectively𝛿: Air-gap length𝜇0: Permeability of vacuum𝑔: Acceleration of gravity𝐽: Moments of inertia of the rotor

DD̃: Reversible and irreversible domain,
respectively𝜔: Mechanical angular velocity of the
rotor𝑘𝑟𝑝, 𝑘𝑟𝑖, and 𝑘𝑟𝑑: Proportional, integral, and differential
coefficients of the speed-PID controller
in traditional method.
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