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Cloud computing in the field of scientific applications such as scientific big data processing and big data analytics has become
popular because of its service oriented model that provides a pool of abstracted, virtualized, dynamically scalable computing
resources and services on demand over the Internet. However, resource selection to make the right choice of instances for a
certain application of interest is a challenging problem for researchers. In addition, providing services with optimal performance
at the lowest financial resource deployment cost based on users’ resource selection is quite challenging for cloud service providers.
Consequently, it is necessary to develop an optimization system that can provide benefits to both users and service providers. In this
paper, we conduct scientific workflow optimization on three perspectives: makespan minimization, virtual machine deployment
cost minimization, and virtual machine failure minimization in the cloud infrastructure in a level-wise manner. Further, balanced
task assignment to the virtual machine instances at each level of the workflow is also considered. Finally, system efficiency
verification is conducted through evaluation of the results with different multiobjective optimization algorithms such as SPEA2
and NSGA-II.

1. Introduction

Scientific experiments in fields such as bioinformatics,
astronomy, elementary particle physics, and life science
require the storing and processing of big data.The adoption of
cloud computing to process these scientific data has increased
recently as cloud enables data correlations, pattern mining,
data predictions, and data analytics in a cost-efficientmanner.
Cloud provides resources such as networks, storage, appli-
cations, and servers can be allocated from a shared resource
pool withminimalmanagement or interaction [1]. In general,
cloud computing provides Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS)
in a pay-per-use model. Of these services, IaaS is the most
frequently utilized as it provides customers with an elastic
facility to provision or release virtual machines (VMs) in the
cloud infrastructure [2].The elastic nature of cloud facilitates
changing of resource quantities and characteristics to vary at
runtime, thus dynamically scaling up when there is a greater

need for additional resources and scaling down when the
demand is low [3]. As a result of its elastic resource provi-
sioning mechanism, the cloud is widely used in several areas
including large-scale scientific applications. With improved
service support and cloud bursting technologies, users do not
need to provision their resources for theworst-case scenarios.
In the context of cloud computing, an application’s execution
cost means the monetary cost of renting resources from the
cloud service provider. Addressing the issues of minimizing
the resource usage with the best performance is an important
research area in an IaaS cloud.

Scientific applications consist of thousands of tasks
requiring heavy computation and data transfer. Workflow
tasks also have certain dependencies during execution. Mod-
eling of these scientific applications is necessary for effective
processing. The most widely used representation model is
in the form of directed acyclic graph (DAG) in which the
structure of the workflow indicates the order of execution
of tasks. Our optimization framework deals with scientific
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workflow in the form of DAG during optimization experi-
mentations. In addition, it is assumed that the monetary cost
for workflow execution in the cloud is based on the amount
of resources used, that is, task execution cost correlated to
the total number of CPU cycles for all tasks. By using cloud
infrastructure, customers can also reduce the processing cost
of workflow applications with the aid of the cloud’s pay-per-
usemodel.Moreover, a task that shares the same time interval
with a previous task hosted in the same instance might not
produce extra cost, reducing the overall workflow execution
cost.

Khajemohammadi et al. [4] proposed a leveled fast
workflow scheduling strategy that minimizes cost and time
in a grid environment. However, in that approach, resource
utilization is only possible within predefined set of service
resources, which is irrelevant because of the dynamicity and
elasticity of the cloud. Moreover, a service only processes
one task at a time within a level. Our approach differs
from the previous work in several aspects: (1) instead of a
predefined set of service resources, randomized search on
the number of VMs and various machine instance types is
conducted during execution to benefit from cloud elasticity
and monetary facility, (2) more than one task can share a
single virtualmachine instance for better resource utilization,(3) balanced task assignment is conducted to balance the
load in each machine instance as well as reducing the wait
time to proceed to the next level of tasks, and (4)minimizing
failure of machine instances to improve the reliability during
workflow execution is considered. In that way, the system
searches for the Pareto-optimal solutions that exhibit the best
performance with minimized failure at the lowest financial
cost.

Our optimization idea is based on the widely used
scientific workflows from the Pegasus project [5], which have
control and dependencies.The experimental results obtained
comprise a series of optimized VMs with optimized machine
instance type for each level of the workflowwith their respec-
tive makespan time, cost, and minimized machine instance
failure. The current version of this paper is an extension of
the previous studies [6] in the following aspects. First, we
include another objective functionwhich ismachine instance
failure minimization function, during optimization. Second,
we extend our cloud system model from only four machine
instance types of academic private cloud to 25 machine
instance types of public cloud. The system implementation
now conducts optimization on three minimization objec-
tives (makespan, cost, and failures) with 25 virtual machine
instance types from AWS. Third, we perform experiments
and analysis on three real-world workflows using SPEA2
and NSGA-II algorithms to show the system effectiveness on
three objective functions.

The remainder of this paper is organized as follows.
Section 2 presents the theoretical background associatedwith
scientific workflows, SPEA2 and NSGA-II. Section 3 outlines
the proposed system, the objective functions used, and
the proposed workflow execution optimization algorithm.
Section 4 discusses the performance evaluation conducted.
Section 5 presents related work. Finally, Section 6 concludes
and outlines intended future work.

2. Background

This section presents the relevant theoretical background
associated with the paper. First, scientific workflows and their
features are discussed. Then, the multiobjective evolutionary
algorithms SPEA2 [7] and NSGA-II [8] are presented.

2.1. Scientific Workflows. Scientific workflows are essential to
facilitate and automate the processing of high-volume scien-
tific data in large distributed computing structure such as grid
[9].These workflows describe the set of tasks needed to carry
out computational experiments and provide scientists with
the ability to expose, share, and reuse their work. The goals
of these workflows are (i) to save human cycles by enabling
scientists to focus on domain-specific aspects of their work,
rather than dealing with complex data management and
software issues, and (ii) to save machine cycles by optimizing
workflow execution on available resources [10]. Scientific
workflows are created with a corresponding workflow editor
that usually provides a repository with predefined workflow
activities.

In general, a scientific workflow is modeled as a directed
acyclic graph (DAG). A DAGworkflow,𝑊, is defined as𝑊 =(𝑇,𝐷), where 𝑇 = {𝑇0, 𝑇1, . . . , 𝑇𝑛} is a set of tasks and 𝐷 ={(𝑇𝑖, 𝑇𝑗) | 𝑇𝑖, 𝑇𝑗 ∈ 𝑇} is a set of data or control dependencies
[7]. Each task has its respective execution time, task name,
input data size, and resulting output data size. For a DAG
withmultiple entries and exits, it is necessary to add a pseudo𝑇entry and or a pseudo𝑇exit with no control and dependencies.
In this study, we assumed that all DAG workflows have
only one 𝑇entry and one 𝑇exit, and optimization is considered
for the actual processing steps inside the workflow. A DAG
is represented in either XML or JSON format and parsing
is required to get the necessary information for further
processing. A simple DAG is illustrated in Figure 1 with
respective task labels.

2.2.Multiobjective Evolutionary Algorithms (MOEAs). Multi-
objective evolutionary algorithms (MOEAs) have been pro-
posed for finding multiple Pareto-optimal solutions in one
single simulation run.MOEAs are an effective way to find the
Pareto-optimal solutions among conflicting objectives. They
produce nondominated solutions with respect to minimiza-
tion or maximization of objectives for user satisfaction.

2.2.1. Improved Strength Pareto Evolutionary Algorithm
(SPEA2). SPEA2 [7] is an improved version of the original
Strength Pareto Evolutionary Algorithm (SPEA) by means
of an improved fitness assignment scheme, nearest neighbor
density estimation technique, and new truncation method.

The algorithm starts with a population and an archive
(external set). Then it performs iterations for the evolution
process. During the update operation in the evolution pro-
cess, filling up with the dominated individuals or truncating
individuals if necessary to fit in the fixed-size archive occurs.
Unlike SPEA, SPEA2 only considers members of the archive
to participate in the mating selection process.
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Figure 1: An example DAG workflow.

The objective of the algorithm is to locate and maintain
a front of nondominated solutions, ideally a set of Pareto-
optimal solutions. This is achieved by using an evolutionary
process (with surrogate procedures for genetic recombination
and mutation) to explore the search space and a selection
process that uses a combination of the degree to which a
candidate solution is dominated (strength) and an estimation
of the density of the Pareto front as an assigned fitness.
An archive of the nondominated set is maintained separate
from the population of candidate solutions used in the
evolutionary process, providing a form of elitism.

2.2.2. Nondominated Sorting Genetic Algorithm (NSGA-II).
In 1995, nondominated sorting genetic algorithm (NSGA)
[11], which improved computational complexity via a
nonelitism approach and a sharing parameter, was developed.
In 2002, Deb et al. developed NSGA-II [8], an improved
version of NSGA which rectifies the problems found in
NSGA. NSGA-II is a popular multiobjective optimization
algorithm that is widely used in several application domains.
The main features of NSGA-II are low computational
complexity, parameter-less diversity preservation, and
an elitism approach. The major components of NSGA-II
include fast nondominated sorting and crowding distance
assignment.

Fast Nondominated Sorting. Elitism is introduced in NSGA-
II by storing all nondominated solutions discovered, starting
with the initial population [12]. Elitism enhances the con-
vergence properties towards the Pareto-optimal set. Sorting
the individuals in the population according to the level of
nondomination, each solution must be compared with every
other solution to determine if it is dominated. Firstly, two
entities are calculated for each solution: (1) 𝑛𝑝, the number
of solutions that dominate solution 𝑝, and (2) 𝑆𝑝, a set of
solutions that solution 𝑝 dominates. All solutions that have𝑛𝑝 = 0, that is, nondominated solutions, are identified and
placed in a current front list as first nondominated front list.
Then, the algorithm repeatedly finds the second front, third
front, and so on until all fronts are identified or the specified
population size is reached.

Crowding Distance Algorithm. After completing nondomi-
nated sorting, crowding distance is assigned. In this process,

all the individuals in the population are assigned a crowding
distance value and individual selection is conducted based on
rank and crowding distance. Crowding distance comparison
compares the individuals within the same front and distance
calculation is conducted. In other words, crowding distance
involves finding the Euclidean distance between each individ-
ual in a front based on their𝑚 objectives in an𝑚-dimensional
hyperspace. The individuals in the boundary are always
selected because they have infinite distance assignment [13].

The solutions found in NSGA-II are said to be Pareto-
optimal if they are not dominated by any other solutions
in the solution space. Further, the set of all feasible non-
dominated solutions in the solution space is referred to as
the Pareto-optimal set, and for a given Pareto-optimal set
the corresponding objective function values in the objective
space are called the Pareto front. The goal of multiobjective
optimization is to identify the solutions in the Pareto-optimal
set. In this proposed optimization system, we use NSGA-II
because it is one of themost popular optimization approaches
in several domains. Figure 2 depicts the process flow of
NSGA-II optimization.

3. Proposed Workflow
Optimization Framework

Search-based workflow optimization on makespan, machine
instance failure, and virtual machine deployment cost in
cloud computing environment is applied in our system with
SPEA2 and NSGA-II. The details of our system are given in
the ensuing sections.

3.1. System Overview. Figure 3 shows the architecture of our
proposed multiobjective workflow optimization system. The
operation of the system is as follows. First, workflow input
in the form of a DAX (a DAG in XML representation) is
given to the system for optimization and the systemparses the
necessary information at each level of tasks in the workflow
DAG. Then, the system performs makespan minimization,
virtualmachine deployment costminimization, andmachine
instance failure minimization based on the specific machine
instance type throughout the search space.

3.2. Level-Wise Optimization. Level-wise workflow optimiza-
tion is conducted in order not to violate the dependencies of
workflow tasks in scientific workflow executions in the cloud.
The system objective functions and balanced task assignment
in the proposed cloud system model are described in the
following sections in detail.

3.2.1. Objective Functions. Theoptimization problem involves
resource optimization for workflow execution on the cloud
infrastructure that gives the optimized makespan, cost, and
VM instance failures. The specified parameters include the
number of VM instances and the type of machine instances
at each workflow level. The number of machine instances is
encoded as integer valueswhere each value specifies the num-
ber of VM instances for the specific workflow level. Further,
the types of VM instances are also encoded as integer, where
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Figure 2: Process flow of NSGA-II optimization.
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Figure 3: Proposed multiobjective scientific workflow optimization system.

each integer value specifies one of the machine instance
types described in Table 2. Then, the functions that relate
workflowmakespan, cost, andVM instance failures for fitness
evaluations are defined.Theobjective functions utilized in the
proposed system are geared towards minimizing the overall

makespan for workflow execution, machine instance deploy-
ment cost, and instance failure during workflow execution.
They are expressed as follows:

min 𝑡 (𝑋) ,min 𝑐 (𝑋) ,min𝑓 (𝑋) , (1)
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Table 1: Machine instance CPU performance.

Number Instance type CPU type PassMark CPUMark Speedup over m3 CPU performance (%)(1) m3 Intel Xeon E5-2670 v2 14975 —(2) m4 Intel Xeon E5-2686 v4 17795 18(3) c3 Intel Xeon E5-2680 v2 16341 9(4) c4 Intel Xeon E5-2666 v3 24877 66(5) r3 Intel Xeon E5-2670 v2 14975 —

where 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑙, . . . , 𝑥𝑚] is the number of VMs
and types of VMs in each level of the DAG; 𝑡(𝑋) is total
workflow execution time; 𝑐(𝑋) is total workflow machine
instance deployment cost; 𝑓(𝑋) is total workflow machine
instance failure probability.

In scientific workflow applications, execution dependen-
cies among tasks are important. Thus, level-wise execution
resource selection is conducted in our proposed system. First,
we optimize the makespan and the number of VMs at each
execution level. Then, following optimization at all levels in
the workflow, an optimized execution plan is identified for
the overall workflow.

Moreover, the deployment cost differs per machine
instance type used and the number ofmachine instances used
during workflow optimization. According to the machine
instance type, the runtime of each task in the workflow
is also different. For the failure minimization case, the
system uses the availability factor of the virtual machine
instances provided byAmazonWeb Services (AWS).Nouser-
defined constraints are considered at this time and automatic
makespan, failure, and resource usage cost optimization are
performed by the system. The three objective functions for
level-wise makespan cost, instance deployment cost, and
virtual machine instance failure are calculated as follows:

(1) Level-wise makespan cost:

𝑡 (𝑋) = 𝐿∑
𝑘=1

⌈|𝑇𝑘|/𝑥𝑘⌉∑
𝑗=1

max
𝑥𝑘×𝑗⋃
𝑙=1+(𝑗−1)𝑥𝑘

𝑇𝑘 (𝑙) , (2)

where |𝑇𝑘| is total number of tasks in level 𝑘; 𝑥𝑘
is number of machine instances in level 𝑘; 𝑇𝑘(𝑙) is
execution time of the task in position 𝑙 in the cluster
task set with respect to the instance type; 𝐿 is total
number of levels in DAG.

(2) Level-wise virtual machine deployment cost:

𝑐 (𝑋) = 𝐿∑
𝑘=1

(⌈|𝑇𝑘|/𝑥𝑘⌉∑
𝑗=1

( 𝑥𝑘×𝑗∑
𝑙=1+(𝑗−1)𝑥𝑘

𝑇𝑘 (𝑙) × 𝑃 (𝑥𝑘𝑗))) , (3)

where 𝑃(𝑥𝑘𝑗 ) is price of the 𝑗th virtual machine at 𝑘th
workflow level.

(3) Level-wise virtual machine failure probability:

𝑓 (𝑋) = ∑𝐿𝑘=1 (∏𝑥𝑘𝑗=1𝑃fail𝑗 )𝐿 , (4)

where 𝑃fail𝑗 is failure probability of the 𝑗th virtual
machine.

3.2.2. Cloud System Model. In our study, the cloud is
modeled as a set of virtual machine instances, Ins ={ins1, ins2, . . . , ins𝑗}. Each instance, ins𝑗, can be one of 25
machine instance types and instance costs are calculated
based on instance prices for Tokyo region in AWS pricing
[14]. Table 2 shows the instance pricing used in our resource
usage calculation. The performance difference of different
machine instance types is specified based on the CPU used as
well as the number of CPU cores in each machine instance.
We refer to the CPU performance of various instances from
the PassMark benchmark [15]. Instance typem3 is assumed to
be the lowest performance machine instance with the lowest
price.The CPU performance differences of m4, c3, c4, and r3
instance types with respect to m3 machine instance type are
assumed to be as listed in Table 1.

The performance speed up of each machine instance
group is specified based on the number of CPU cores used
in each machine instance. In addition, we also assume that
all virtual machine instances share data from the same data
center. Thus, data communication and data transfer costs are
constant.

3.2.3. Balanced Task Assignment. Level-wise balanced task
assignment to the VMs is conducted in scientific workflow
execution because the fine-grained tasks in each workflow
must be processed in their dependency order. The objective
of balanced task assignment is to reduce the waiting time to
continue to the next level during workflow execution and to
balance the loads in each machine instance at each workflow
level allowing resource sharing facility. For those purposes,
balanced clustering of tasks at each level is considered before
execution in their respective virtual machine. Figure 4 shows
the task clustering for balanced task assignment process.
There are two stages for balanced clustering: (1) task sorting
and (2) balanced clustering. In task sorting, all the tasks in
each level are sorted according to their runtime. Then, the
task cluster size decision for each task group in the sorted task
list is conducted according to the following equation:

If (number of virtual machines for 𝑖th level =𝑛), NC = 𝑛 (1 ≤ 𝑛 ≤ 𝑝)
𝐶size𝑗 = 𝑇𝑖

NC
+ 𝑠𝑘, 𝑗 = 1, . . . ,NC, 𝑘 = 1, . . . , 𝑛, (5)

where
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Table 2: Machine instance pricing.

Number Instance type CPU (number of cores) Memory (GB) Price per second ($)
(1) m3.medium 1 3.75 0.00002667
(2) m3.large 2 7.5 0.00005361
(3) m3.xlarge 4 15 0.00010694
(4) m3.2xlarge 8 30 0.00021389
(5) m4.large 2 8 0.00004833
(6) m4.xlarge 4 16 0.00009667
(7) m4.2xlarge 8 32 0.00019306
(8) m4.4xlarge 16 64 0.00038639
(9) m4.10xlarge 40 160 0.00096583
(10) m4.16xlarge 64 256 0.00154528
(11) c3.large 2 3.75 0.00003556
(12) c3.xlarge 4 7.5 0.00007083
(13) c3.2xlarge 8 15 0.00014194
(14) c3.4xlarge 16 30 0.00028361
(15) c3.8xlarge 32 60 0.00056750
(16) c4.large 1 3.75 0.00003694
(17) c4.xlarge 4 7.5 0.00007361
(18) c4.2xlarge 8 15 0.00014750
(19) c4.4xlarge 16 30 0.00029472
(20) c4.8xlarge 36 60 0.00058944
(21) r3.large 2 15 0.00005556
(22) r3.xlarge 4 30.5 0.00011083
(23) r3.2xlarge 8 61 0.00022167
(24) r3.4xlarge 16 122 0.00044333
(25) r3.8xlarge 32 244 0.00088667
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Scientific Programming 7

Input: Workflow DAG.
Output: Task Objects, Search Space (SP), total number of levels (𝐿).
Step 1. Parse the workflow DAG
Step 2. Label tasks
Step 3. Assign workflow tasks to objects
Step 4. Retrieve maximum workflow level for chromosome length determination in optimization
Step 5. Retrieve maximum parallelization degree for search space determination

Algorithm 1: Preprocessing.

Input: Task Objects, Search Space (SP), total number of levels (𝐿),𝑁: Population size, 𝐺: number of generations,𝑂: number of objectives, MP: mutation probability, CP: crossover probability.
Output: Pareto optimal solutions,𝑊opt.
Processing
Step 1. Generate random initial population, 𝑃0 and empty archive 𝑃0 = Φ, 𝑡 = 0.

(1.1) Randomly generate integer chromosome 𝐶𝑖 (𝑖 = 1, 2, . . . , 𝑁) for 𝑃0, 𝑃0.
(truncate if necessary)

(1.2) Calculate the fitness of each random chromosome
(1.3) Copy all non-dominated individuals in 𝑃𝑡 and 𝑃𝑡 to 𝑃𝑡 + 1

Step 2. Evolve population (𝑡, 𝑃𝑡, 𝑃𝑡, 𝑃𝑡 + 1).
(2.1) Select parents using tournament selection, 𝑃𝑡 + 1
(2.2) Perform two-point dynamic crossover operation on parents with probability CP to produce offspring

population.
(2.3) Perform mutation operation with probability MP on random points applied to offspring
(2.4) Calculate fitness of new offspring population and update population
(2.5) Use non-dominated sorting to divide into several non-domination levels 𝐹1, 𝐹2,. . . , 𝐹𝑙.
(2.6) Update 𝑃𝑡 + 1

Step 3. Repeat Step 2 until termination condition is met.
Step 4. Output the list of optimal solutions at Pareto front,𝑊opt.

Algorithm 2: Workflow optimization using SPEA2.

𝑠𝑘 = {0, if 𝑇𝑖% NC = 01, if 0 < 𝑇𝑖% NC < NC
𝑇𝑖 = total number of tasks in 𝑖th level, NC = number of task clusters. (6)

3.2.4. Virtual Machine Instance Failure. In general, a cloud
uses a large number of commodity servers; thus, the possi-
bility of failure exists. Failures of cloud based resources may
lead to failures of application processing. Consequently, these
failures can have a significant impact on the performance of
the workflow execution.Thus, it is necessary to minimize the
possibility of failures in the system. Workflow task clustering
sometimes may result in a higher failure rate if more than
one task is assigned to a single machine instance [3]. In
this proposed system, we calculated the failure of each
virtual machine instance based on AWS availability with
certain additional weighted value. First, the original failure
probability of a virtual machine instance is assumed to be𝑝𝑓 = 0.02337. We assume that the more tasks in the virtual
machine, the higher the weight of failure of that virtual
machine. Weight values are calculated based on the number
of tasks in the level and the original failure probability value.
Eachmachine instance failure probability𝑃fail𝑗 is calculated as
follows:

𝑃fail𝑗 = 𝑝𝑓 + 𝑤𝑗,

𝑤𝑗 = (𝑁𝑡𝑗 − 1) (𝑝𝑓𝑇𝑘 ) ,
(7)

where𝑁𝑡𝑗 is total number of tasks in the 𝑗th virtual machine.

3.3. Multiobjective Workflow Optimization Algorithm. This
section presents the SPEA2 and NSGA-II based optimization
algorithms, which are the major component of the proposed
system. The system uses NSGA-II because it outperforms
other contemporary MOEAs, such as PAES [16] and SPEA
[17], in terms of finding a diverse set of solutions and in
converging near the true Pareto-optimal set [8]. SPEA2 is
used to compare the Pareto-optimal solutions obtained from
NSGA-II optimization. Algorithm 1 describes the preprocess-
ing steps necessary for parsing the workflow tasks in DAG
format to task objects.Theworkflow optimization algorithms
using SPEA2 andNSGA-II are described in Algorithms 2 and
3, respectively.
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Input: Task Objects, Search Space (SP), total number of levels (𝐿),𝑁: Population size, 𝐺: number of generations,𝑂: number of objectives, MP: mutation probability, CP: crossover probability.
Output: Pareto optimal solutions,𝑊opt.
Processing
Step 1. Generate random initial population, IP.

(1.1) Randomly generate integer chromosome 𝐶𝑖 (𝑖 = 1, 2, . . . , 𝑁).
(1.2) Calculate the fitness of each random chromosome
(1.3) Rank population 𝑃 according to non-domination

Step 2. Evolve population (𝑁, 𝑃, 𝐺).
(2.1) Select parents using tournament selection, (𝑃1, 𝑃2).
(2.2) Perform two-point dynamic crossover operation on parents (𝑃1, 𝑃2) with probability CP to produce

offspring population.
(2.3) Perform mutation operation with probability MP on random points applied to offspring
(2.4) Calculate fitness of new offspring population and update population
(2.5) Use non-dominated sorting to divide 𝑃 ← 𝑃 ∪ {𝑥𝐶} into several non-domination levels 𝐹1, 𝐹2, . . . , 𝐹𝑙.
(2.6) Calculate Crowding Distance of all solutions
(2.7) Identify the worst solution 𝑥󸀠 ∈ 𝐹𝑙 and set← 𝑃󸀠 \ {𝑥󸀠}.

Step 3. Repeat Step 2 until termination condition is met.
Step 4. Output the list of optimal solutions at Pareto front,𝑊opt.

Algorithm 3: Workflow optimization using NSGA-II.

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 5: Level-wise workflow partitioning.

3.4. System Implementation. Scientific workflows support
and automate the execution of error-prone, repetitive tasks
in scientific applications. It combines activities and com-
putations to solve scientific problems. Task partitioning is
important during workflow execution because it can affect
the performance of the application. Three approaches to
workflow partitioning before executing are reported in the
literature: (1) horizontal workflow partitioning, (2) vertical
workflow partitioning, and (3) arbitrary workflow partition-
ing.

In our proposed system, we use level-wise workflow
partitioning which is a horizontal partitioning approach. We
chose level-wise partitioning of structured scientific work-
flows because these workflows consist of different numbers
of tasks with different resource requirements at each level of
the workflow. The level-wise approach enables elastic pro-
visioning of resources and load balancing at each workflow
level. Level-wise partitioning of a simple DAG workflow is
illustrated in Figure 5.

3.4.1. DAX Parsing. In the parsing stage, task information
specified in the directed acyclic graph is retrieved. In this
system, necessary information such as total number of levels
in the workflow, task name and their relevant execution
time, and the maximum parallelization degree for the input
workflow to perform automatic optimization are retrieved.
Subsequent chromosome length determination depends on
the total number of levels in the workflow. Moreover, task
labelling is also conducted at each level of the workflow to
facilitate level-wise optimization of workflow tasks within the
optimization process during workflow parsing.

3.4.2. Multiobjective Optimization. Following parsing and
task labelling of the workflow, the system begins the mul-
tiobjective optimization process. First, random initial chro-
mosome parameter lists comprising the number of VMs and
the type of VMs suitable for each level of the workflow are
generated to initiate the process. Next, fitness calculations
are performed for the three objective functions. Genetic
operators such as selection, crossover, and mutation are then
chosen to be used during evolution. Then, the evolution
process proceeds until the specified termination criterion
is met. At this point, the Pareto front solutions from the
evolution process are retrieved and the optimized number
of VMs with optimized instance type at the Pareto front for
optimal makespan and optimal deployment cost with the
least failure for each workflow level are recommended for
processing the scientific workflow applications in the cloud.

3.4.3. Chromosome Representation. The chromosome of the
proposed system includes genes which represent the number
of VMs and the type of VMs used for each level of the
workflow. The system uses a fixed-length integer-encoding
scheme, one of the most common representations of chro-
mosomes in genetic algorithms (GA). The genes in the
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Number of VMs Instance type 
Chromosome

Encoding scheme: fixed length integer sequence

x1 x2 x3 · · · xl xl+1 xl+2 xl+3 · · · xm

1, 2, . . . , q1, 2, 3, . . . , p

Figure 6: Chromosome structure for optimization during workflow execution.
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０；Ｌ？ＨＮ1

０；Ｌ？ＨＮ2

Figure 7: Crossover operation.

5 4 3 4 2 2 1 4 2 3

5 4 3 4 2 1 4 3

p1 p2



Figure 8: Mutation operation.

chromosomes are in the form of {1, 𝑝} and {1, 𝑞} with each
gene representing the number of VMs for each level of
workflow execution for parallelization, while 𝑝 signifies the
maximum number of concurrent tasks allowable in that
workflow level, and 𝑞 signifies the total possible number of
instance types provided by the academic cloud system. A
single gene represents one level and the chromosome length
depends on the maximum number of levels in the workflow.
The chromosome length, 2𝐿, where 𝐿 is the highest level of
the workflow DAG, varies according to the input workflow
structure. Specifically, the chromosome length for a simple
workflow in Figure 5 is (2𝐿 = 12), where 𝐿 = 6 and the
gene value ranges are (1, 𝑝) = (1, 3) and (1, 𝑞) = (1, 25),
respectively. An example chromosome for the optimization
process is illustrated in Figure 6.

3.4.4. Genetic Operators. The genes in the chromosomes
represent number of VMs and type of VMs at each workflow
level and the proposed workflow optimization processes
the execution of tasks in a level-wise manner to preserve
the dependencies between tasks. During optimization, the
genetic operators are used to guide the multiobjective opti-
mization algorithm towards optimal solutions to a given
problem. Three main operators, selection, crossover, and
mutation, collaborate for successful processing.

(1) Selection. The select operation gives us a straightforward
way of choosing offspring for the next generation. Tour-
nament selection is used in this system as it reduces the
computational cost associated with selection. In tournament
selection, random𝑇 (user-defined tournament selection size)
individuals from the population are chosen, their fitness val-
ues are compared, and the fittest is used in the recombination

process. The higher the 𝑇 value, the higher the selection
pressure in tournament selection.

(2) Crossover. The crossover operation takes two parent
strings called parent1 and parent2 and generates two off-
spring, offspring1 and offspring2. The decision of whether
to perform a crossover operation on the current pair of
parent chromosomes is made according to the specified
crossover probability (CP). If the random probability is less
thanCP, a crossing site is selected and partial exchange occurs
between the two parents to produce the offspring. If the
probability is greater than CP, the crossing site will be the
entire chromosome length, which has no effect because of
the crossover operator. Two-point crossover is applied in the
proposed system, as illustrated in Figure 7.

(3) Mutation. Mutation is important because it allows the
evolutionary process to explore new potential solutions to the
problem. To avoid inbreeding in a small population problem,
mutation is applied with small probability (MP) after the
crossover operation. The selected MP should be reasonable
because if it is too high or too low, a good solution will not
be found during evolution. Random two-point mutation is
used during evolution of the proposed system, as illustrated
in Figure 8.

4. Performance Evaluation

This section outlines the experimental environment and
presents the experimental results obtained for various scien-
tific workflow applications.The simulation experiments were
conducted on an Intel core i7 Dell PC with 16GB RAM with
Pegasus workflow dataset. The system implementation was
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Epigenomics Montage CyberShake

Figure 9: Structure of the experimental scientific workflows.

Table 3: Experimental workflows.

Number Workflow
application

Number of
task nodes
(input size)(1) Epigenomics 24 46 100 997(2) Montage 25 50 100 1000(3) CyberShake 30 50 100 1000

conducted using the Python programming language and the
well-known DEAP framework [18].

4.1. Experimental Scientific Workflow Applications. To
demonstrate the proposed offline workflow optimization
system, the experimentswere conducted using three scientific
workflow DAG applications (Epigenomics, Montage, and
CyberShake) from Pegasus [5, 19], with various input data
sizes. Epigenomics is a CPU-bound bioinformatics workflow
with eight levels of workflow tasks. Montage is a collection
of programs that combines multiple shots of astronomical
images to generate a custom mosaic image [20]. CyberShake
is a seismology workflow application that is used by the
Southern California Earthquake Center to characterize
earthquake hazards in a region [3]. The structures of the
applications are illustrated in Figure 9. Table 3 shows the
scientific workflows used for system evaluation along with
their respective input data sizes.

4.2. Experimental Analysis. Figures 10–13 show cost-
makespan tradeoff solutions identified by the proposed
system using NSGA-II and SPEA2. The experiments were
conducted with a population size of 100 evolving over 500
generations with crossover probability 0.7 and mutation
probability of 0.0625, 0.055, and 0.125—in accordance with
the number of levels in the given workflow.The experimental
results indicate that the system reduced the makespan
effectively with acceptable cost tradeoff. The effectiveness of
the system is reflected more in the larger data size workflows,
in which makespan is significantly improved with only a
small increase in deployment cost. For failure minimization
objective, the system gives only some significant effectiveness
in smaller input data size workflows compared with other
two objective functions.

Figure 10 shows cost-makespan tradeoff solutions for
three workflows with four input data size after 500 gener-
ations. Although the optimization was conducted on three
objective functions, the distribution of the solutions is
presented in two dimensions (2D) as 2D provides better
clarity for comparison than 3D. In the figures, it is clear
that makespan and deployment cost functions are strongly
correlated with a negative slope. That is, the higher the
makespan, the lower the deployment cost, and vice versa. As
our objective functions are minimizing functions, we would
like to choose the optimal solution which is as close to the𝑋-𝑌 origin as possible. The values in the figures also illustrate
a gentle slope in small input data size that becomes steeper
with increased data size. For the Montage case, there are gaps
in the Pareto front; the reason will be determined in future
studies.The scatter plots in Figure 11 illustrate the cost-failure
tradeoff solutions. The values in the figures highlight that
the two functions are not strongly correlated. Nevertheless,
there is a weak correlation between these two functions
except Montage 1000 task nodes and CyberShake 1000 task
nodes. In those extra-size input workflows, all Pareto front
solutions recommend to use similar instance type but with
different number ofmachine instances at eachworkflow level.
Moreover, the failure probability values of all solutions are
very similar with only small differences in the 7th position
of the fractional result values. This can affect the cost-failure
tradeoff solutions of Montage 1000 and CyberShake 1000 to
be a linear function with no correlation. For these reasons,
the best optimal solution for the three objective functions
should be selected based on the makespan, cost, and failure,
respectively. In our evaluation, we identified two extreme
points and one mid-point (the one closest to the origin)
to be makespan best, time best, and mid-point solution to
find out the system effectiveness. We found out that the
system improves by 5.6, 10 times for makespan, cost for
Epigenomics case with failure of 0.00559256, 1.5, 4.5 times
improvement with failure of 0.0149133 for Montage, and 9, 9
times improvement with failure of 0.008948 for CyberShake,
respectively. Figures 12 and 13 show the experimental results
using SPEA2 algorithm and the results are quite similar for
all three workflows.

For the evaluation of the evolutionary algorithms, several
quality indicators such as convergence, diversity, inverse
generational distance (IGD), and hypervolume exist. Among
these indicators, convergence and diversity values of the
optimal solutions obtained from the Pareto fronts over five
independent test runs for 500 generations were used to
calculate the average values and standard deviations listed
in Table 4. These quality indicator calculations were con-
ducted according to the DEAP framework, the smaller the
convergence and diversity values the better. Convergence is a
measure of the distance between the obtained nondominated
front and the true Pareto-optimal front. Convergence metric,𝛾, is calculated by computing the minimum Euclidean dis-
tance of each obtained solution from the chosen solutions on
the Pareto-optimal front and then averaging those distances
[13]. The metric is calculated as below:

Convergence, 𝛾 = ∑𝑁𝑖=1 󵄨󵄨󵄨󵄨𝑑𝑖󵄨󵄨󵄨󵄨𝑁 , (8)
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Figure 10: Cost Makespan Pareto solutions (a), (b), (c), and (d) for three workflows with small, medium, large, and ex-large input data size
using NSGA-II.
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Figure 11: Cost Failure Pareto solutions (a), (b), (c), and (d) for three workflows with small, medium, large, and ex-large input data size using
NSGA-II.
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Figure 12: Cost Makespan Pareto solutions (a), (b), (c), and (d) for three workflows with small, medium, large, and ex-large input data size
using SPEA2.
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Figure 13: Cost Failure Pareto solutions (a), (b), (c), and (d) for three workflows with small, medium, large, and ex-large input data size using
SPEA2.
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Table 4: Convergence, diversity, and execution time for SPEA2 and NSGA−II.
Workflow Algorithm Avg. Conv. (±𝜎) Avg. Div. (±𝜎) Avg. Exec. (sec) (±𝜎)
Epigenomics 24 SPEA2 0.0240 (±0.0011) 1.8554 (±0.0367) 406.5189 (±14.9)

NSGA-II 0.0294 (±0.0177) 1.7936 (±0.0992) 74.5451 (±6.5)
Montage 25 SPEA2 0.0060 (±0.0039) 1.0104 (±0.4130) 372.7346 (±26.9)

NSGA-II 0.0059 (±0.0005) 1.2770 (±0.1713) 68.5270 (±16.2)
CyberShake 30 SPEA2 0.0094 (±0.0012) 1.3485 (±0.0019) 414.6732 (±11.0)

NSGA-II 0.0079 (±0.0012) 1.4026 (±0.0642) 53.9493 (±1.8)
Epigenomics 46 SPEA2 0.1661 (±0.2064) 1.7670 (±0.0390) 431.8035 (±30.5)

NSGA-II 0.1118 (±0.0857) 1.7152 (±0.0918) 71.5525 (±5.5)
Montage 50 SPEA2 0.0033 (±0.0040) 1.4672 (±0.1394) 366.6482 (±21.9)

NSGA-II 0.0100 (±0.0031) 1.2758 (±0.1414) 63.8932 (±4.6)
CyberShake 50 SPEA2 0.0209 (±0.0077) 1.3629 (±0.1168) 415.7871 (±17.6)

NSGA-II 0.0224 (±0.0060) 1.3372 (±0.9048) 56.6219 (±3.5)
Epigenomics 100 SPEA2 0.1005 (±0.0518) 1.7229 (±0.0079) 388.3032 (±13.0)

NSGA-II 0.1423 (±0.1108) 1.7188 (±0.0004) 74.4787 (±6.3)
Montage 100 SPEA2 0.0178 (±0.0140) 1.1626 (±0.2073) 375.2320 (±13.3)

NSGA-II 0.0178 (±0.0055) 1.2122 (±0.1533) 71.6682 (±10.1)
CyberShake 100 SPEA2 0.0731 (±0.0116) 1.0607 (±0.0361) 388.4410 (±10.4)

NSGA-II 0.0721 (±0.0240) 1.2178 (±0.0665) 60.2484 (±5.0)
Epigenomics 997 SPEA2 2.3735 (±1.7707) 1.5694 (±0.0521) 545.0587 (±16.3)

NSGA-II 12.652 (±6.5924) 1.5404 (±0.0777) 225.4969 (±15.7)
Montage 1000 SPEA2 0.0027 (±0.0044) 1.5974 (±0.1057) 546.3927 (±27.2)

NSGA-II 0.0573 (±0.0188) 1.6398 (±0.1235) 216.1495 (±4.0)
CyberShake 1000 SPEA2 0.2783 (±0.0532) 1.1775 (±0.1606) 522.4185 (±18.7)

NSGA-II 0.3458 (±0.1087) 1.3284 (±0.0589) 170.0315 (±3.7)
where𝑑𝑖 is Euclidean distance between the obtained solutions
and the nearest member of the best nondominated front.

Diversity is a measure of the sufficiency of the obtained
nondominated solutions to represent the range of the Pareto-
optimal front [19]. The equation for diversity calculation is
described in [8] as follows:

Diversity, Δ = 𝑑𝑓 + 𝑑𝑙 + ∑𝑁−1𝑖=1 󵄨󵄨󵄨󵄨󵄨𝑑𝑖 − 𝑑󵄨󵄨󵄨󵄨󵄨𝑑𝑓 + 𝑑𝑙 + (𝑁 − 1) 𝑑 , (9)

where 𝑑𝑓, 𝑑𝑙 are Euclidean distances between the extreme
solutions and the boundary solutions; 𝑑𝑖 is a solution on the
best nondominated front 𝑑𝑖, 𝑖 = 1, 2, 3, . . . , (𝑁 − 1); 𝑑 is the
average of all distances 𝑑𝑖.

The current research work focuses on optimization of
scientific workflow executions in the cloud through multiob-
jective evolutionary algorithms such as SPEA2 and NSGA-II.
According to the experimental results, the ability to identify
the Pareto-optimal solutions of SPEA2 and NSGA-II is
virtually the same. In some cases, SPEA2 gives better conver-
gence and diversity values than NSGA-II. However, a longer
execution time is required by SPEA2 which is very important
for the search process during workflow optimization. In
multiobjective evolutionary algorithms such as SPEA2 and
NSGA-II, the most important parts of the algorithms are in
fitness assignment based on Pareto-domination: domination
counts, nondominated sorting, and identification of the
nondominated solutions.These processes can be done within

𝑂(𝑀𝑁2), where 𝑀 is the number of objectives and 𝑁 is
the population size in both SPEA2 and NSGA-II. The time
complexities of SPEA2 and NSGA-II are beyond the scope
of this paper, but interested readers can refer to Jessen [21]
for further details on the time complexities of multiobjective
evolutionary algorithms.

5. Related Work and Discussion

The use of cloud in scientific experiments is a popular
alternative because transferring large volumes of data to
processing nodes is impractical in this era of continuously
increasing big data. However, the right virtual machine
instance selection for a specific application is a challenging
problem for the cloud users. Thus, optimization system
approaches that easily facilitate optimized cloud resource
selection are actively being researched. Thus, various single-
objective and multiobjective optimization strategies have
been proposed.

The proposed single-objective optimization strategies
primarily focused on developing effective scheduling strate-
gies to reduce makespan. For example, Tanaka and Tatebe
[20] proposed a data-aware scheduling strategy that reduces
makespan by minimizing data movement between cluster
nodes was presented. However, their strategy can only oper-
ate with homogeneous resources during workflow execution
and is not suitable for use in cloud environments. Chen
and Deelman [1] proposed a workflow scheduling strategy
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that uses horizontal or vertical task clustering techniques to
reduce the schedule overhead during workflow execution.
Yan et al. [22] proposed a novel probability evaluation-based
scheduling algorithm to address the problem of workflow
deadline guarantee. They showed that their approach is
effective in terms of adaptability and predictability under
deadline constraints, but improvements in deadline distri-
bution are still necessary. Kaur and Mehta [23] proposed
workflow scheduling in clouds using augmented shuffled
frog leaping algorithm (ASFLA). They improved the original
shuffled frog leaping algorithm (SFLA) to speed up the overall
execution time of the workflow. Experiments conducted
showed significant reduction in overall workflow execution
time, but resource usage cost was not accounted for in the
system.

Poola et al. [24] presented a resource scheduling algo-
rithm for workflow execution on heterogeneous cloud
resources along withmakespan and cost minimization. How-
ever, the robustness and effectiveness of their proposed sys-
tem depend on an increased budget. Zhu et al. [2] proposed
a multiobjective workflow scheduling approach for cloud
infrastructure. In their proposed approach, they enhance
the evolution process of their optimization by introducing
two novel crossover andmutation operators.They conducted
experiments based on actual pricing and resource parameters
on Amazon EC2 but did not consider task dependencies
during workflow executions and simply assumed that all
tasks can be executed in parallel. Zhang et al. [25] proposed
biobjective workflow optimization on energy consumption
and reliability in heterogeneous computing systems.

Single-objective and multiobjective workflow execution
optimization has been conducted on cluster, grid, and cloud
infrastructure in recent years. Single-objective optimiza-
tion approaches are focused on minimizing the workflow
makespan through scheduling [20, 22, 23] and task cluster-
ing approach [1]. However, single-objective optimization is
not sufficient for data intensive workflows. Our proposed
method is focused on multiobjective workflow execution
optimization in the cloud infrastructure. Although similar
work [23, 24] has been carried out on cloud infrastructure, the
approaches employed have limitations in terms of resource
elasticity and task dependencies. Moreover, previous studies
do not cover important issues associated with VM instances
such as VM failure probability. Our proposed approach
addresses these issues as follows:(1)Randomized search-based resource selection to better
fit resource usage(2) Level-wise task processing approach for task depen-
dencies and resource elasticity(3) Balanced task clustering for better load balancing and
resource sharing(4) Optimized workflow execution on three objectives
(including cloud SLA related objectives)

In this way, the proposed system helps with the selection
of the right resources through multiobjective optimization
during workflow executions that benefits both stakeholders
(users and cloud service providers).

6. Conclusion and Future Work

Machine instance resource selection for scientific work-
flow applications with the best performance, the cheapest
deployment cost, and minimum failure probability is still
challenging in the cloud. Without proper resource selection,
it may lead to user dissatisfaction (owing to high costs
and unreliable result data) which can affect the service
providers’ business. In this study, we addressed this problem
by modeling the workflow optimization problem as a three-
objective optimization problem using SPEA2 and NSGA-II
in the cloud. During workflow optimization, a fixed-length
integer chromosomewas used to represent a randomnumber
ofVMs that can be deployed in each level of theworkflow.The
optimization process was conducted based on the random
initial chromosome population and the respective fitness
values of the chromosomes calculated. Our experimental
results obtained on three real-world workflows available
from the ongoing Pegasus research project [5] show that the
proposed system reduces makespan with an acceptable cost
tradeoff and instance failure. The results also indicated that
the two objective functions (makespan and instance cost) are
strongly related to each other, whereas failure minimization
objective values are weakly related to or have no relation with
the other two functions in some cases. Moreover, we found
out that c4.xlarge machine instance type was a dominant
instance type during optimization according to our model.
In future work, we plan to include result comparisons with
other multiobjective optimization algorithms such as NSGA-
III and MOEA/D. In addition, many-objective optimization
with makespan and budget constraints during workflow
execution will be considered.
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