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A new stochastic chemostat model with two substitutable nutrients and one microorganism is proposed and investigated. Firstly,
for the corresponding deterministic model, the threshold for extinction and permanence of the microorganism is obtained by
analyzing the stability of the equilibria. Then, for the stochastic model, the threshold of the stochastic chemostat for extinction and
permanence of the microorganism is explored. Difference of the threshold of the deterministic model and the stochastic model
shows that a large stochastic disturbance can affect the persistence of the microorganism and is harmful to the cultivation of the
microorganism. To illustrate this phenomenon, we give some computer simulations with different intensity of stochastic noise
disturbance.

1. Introduction

Chemostat is commonly used to describe the dynamics of
a microbial population in a continuous bioreactor in which
microorganisms grow on a substrate and has attracted great
interest of many scholars [1–8], since it was first introduced
by Monod [9]. A single simple species chemostat model with
Michaelis-Menten-Monod functional responsewas proposed
by [9] as follows:

d𝑆 (𝑡)𝑑𝑡 = 𝐷 (𝑆0 − 𝑆 (𝑡)) − 𝑟𝛿 𝑆 (𝑡)𝑋 (𝑡)𝐾 + 𝑆 (𝑡) ,
d𝑋 (𝑡)𝑑𝑡 = 𝑟𝑆 (𝑡)𝑋 (𝑡)𝐾 + 𝑆 (𝑡) − 𝐷𝑋 (𝑡) , (1)

where 𝑆(𝑡) is the concentration of the nutrient, 𝑋(𝑡) is the
concentration of the organism,𝐷 is the dilution (or washout)
rate, 𝑟 is the maximal growth rate,𝐾 is the Michaelis-Menten
(or half-saturation) constant with units of concentration, and𝛿 is a “yield” constant reflecting the conversion of nutrient to
organism.

However, experimental results have indicated that the
microorganisms depend on a variety of nutrition substances

such as carbon, nitrogen, energy, growth factors, inorganic
salts, and water. Then the model of microorganisms species
growth in the chemostat on two nutrients is considered by
[10–14]. Amodel of single-species growth in the chemostat on
two substitutable resources with Michaelis-Menten-Monod
functional response was proposed by [14] as follows:

d𝑆1 (𝑡)𝑑𝑡 = 𝐷 (𝑆0
1
− 𝑆1 (𝑡)) − 𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) ,

d𝑆2 (𝑡)𝑑𝑡 = 𝐷 (𝑆0
2
− 𝑆2 (𝑡)) − 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) ,

d𝑋 (𝑡)𝑑𝑡 = 𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) + 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) − 𝐷𝑋 (𝑡) .
(2)

However, it is now well known that stochastic noise is
widely present in biological systems and so on [15–33] and
microorganisms are inevitably influenced by some random
factors in the process of cultivation. To better understand
the dynamic behavior of the chemostat, a host of scholars
proposed a slice of stochastic chemostat models and studied
the effect of the randomnoise on the dynamic behavior of the
stochastic models. As an example, Imhof and Walcher [34]
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proposed a stochastic chemostat model for a single microor-
ganism species consuming a single nutrient. They found that
random effects may lead to extinction in scenarios where the
deterministic model predicts persistence. Recently, Xu and
Yuan [35] established a stochastic chemostat model in which
the maximal growth rate is influenced by the white noise in
environment as follows:

d𝑆 (𝑡) = (𝐷 (𝑆0 − 𝑆 (𝑡)) − 𝑚𝑆 (𝑡)𝑋 (𝑡)𝑎 + 𝑆 (𝑡) ) d𝑡
− 𝛼𝑆 (𝑡)𝑋 (𝑡) d𝐵 (𝑡)𝑎 + 𝑆 (𝑡) ,

d𝑋 (𝑡) = (𝑚𝑆 (𝑡)𝑋 (𝑡)𝑎 + 𝑆 (𝑡) − 𝐷𝑋 (𝑡)) d𝑡
+ 𝛼𝑆 (𝑡)𝑋 (𝑡) d𝐵 (𝑡)𝑎 + 𝑆 (𝑡) .

(3)

They got an analogue break-even concentration involving the
white noise which can determine the exclusion and persis-
tence of the microorganism. And more stochastic chemostat
models can be found in [36–39].

Motivated by the papers mentioned above, in this paper,
we further consider a model of single-species growth in the
chemostat on two supplementary resources with Michaelis-
Menten-Monod functional response and environmental
noise. We assume that the maximal growth rate 𝑟𝑖 (𝑖 = 1, 2) is
perturbed by white noises so that

𝑟𝑖 󳨀→ 𝑟𝑖 + 𝜎𝑖𝐵̇𝑖 (𝑡) , (4)

where𝐵𝑖(𝑡) is a standard Brownianmotionwith intensity𝜎𝑖 >0.Then the resultant model takes the following form:

d𝑆1 (𝑡) = (𝐷 (𝑆0
1
− 𝑆1 (𝑡)) − 𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) ) d𝑡

− 𝜎1𝑆1 (𝑡) 𝑋 (𝑡) d𝐵1 (𝑡)𝐾1 + 𝑆1 (𝑡) ,
d𝑆2 (𝑡) = (𝐷 (𝑆0

2
− 𝑆2 (𝑡)) − 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) ) d𝑡

− 𝜎2𝑆2 (𝑡) 𝑋 (𝑡) d𝐵2 (𝑡)𝐾2 + 𝑆2 (𝑡) ,
d𝑋 (𝑡) = (𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) + 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) − 𝐷𝑋 (𝑡)) d𝑡

+ 𝜎1𝑆1 (𝑡) 𝑋 (𝑡) d𝐵1 (𝑡)𝐾1 + 𝑆1 (𝑡)
+ 𝜎2𝑆2 (𝑡) 𝑋 (𝑡) d𝐵2 (𝑡)𝐾2 + 𝑆2 (𝑡) .

(5)

Our main objective in the rest of this paper is to investigate
the threshold dynamics of stochastic chemostat model (5)
and explore the conditions under whichmicroorganisms will
die out or exist.

2. Preliminaries

In this section, we will give some notations, definitions, and
lemmas which will be used for analyzing our main results. To
this end, throughout this paper, we let (Ω,F, {F}𝑡≥0,P) be a
complete probability space with a filtration {F𝑡}𝑡≥0 satisfying
the usual conditions: it is increasing and right continuous
whileF0 contains allP-null sets; we use 𝐵(𝑡) to represent a
scalar Brownian motion defined on the complete probability
space Ω; also let 𝑅2

+
= {𝑥𝑖 > 0, 𝑖 = 1, 2}. If for an integrable

function 𝑓 on [0, +∞), define
⟨𝑓 (𝑡)⟩ = 1𝑡 ∫𝑡0 𝑓 (𝜃) d𝜃. (6)

Then we have the following.

Definition 1. For system (5),

(i) the microorganism 𝑋(𝑡) is said to be extinctive if
lim𝑡→+∞𝑋(𝑡) = 0,

(ii) the microorganism 𝑋(𝑡) is said to be permanent in
mean if there exists a positive constant 𝜆 such that
lim inf 𝑡→+∞⟨𝑋(𝑡)⟩ ≥ 𝜆.

Then, one can show the following lemmas.

Lemma 2. The solution (𝑆1(𝑡), 𝑆2(𝑡), 𝑋(𝑡)) of model (2) or (5)
with the initial condition (𝑆1(0), 𝑆2(0), 𝑋(0)) ∈ 𝑅3+ is ultimately
bounded; that is,

lim sup
𝑡→∞

𝑆1 (𝑡) ≤ 𝑆0
1
,

lim sup
𝑡→∞

𝑆2 (𝑡) ≤ 𝑆0
2
,

lim sup
𝑡→∞

𝑀(𝑡) ≤ 𝑆0
1
+ 𝑆0
2
,

(7)

where𝑀(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) + 𝑋(𝑡).
Proof. Letting𝑀(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) +𝑋(𝑡), from system (2) or
system (5), we have

d𝑀(𝑡)
d𝑡 = 𝐷 (𝑆0

1
+ 𝑆0
2
) − 𝐷𝑀(𝑡) . (8)

This implies that

lim
𝑡→+∞

𝑀(𝑡) = 𝑆0
1
+ 𝑆0
2
. (9)

Thus, we have

lim sup
𝑡→∞

𝑆1 (𝑡) ≤ 𝑆0
1
,

lim sup
𝑡→∞

𝑆2 (𝑡) ≤ 𝑆0
2
,

lim sup
𝑡→∞

𝑀(𝑡) = 𝑆0
1
+ 𝑆0
2
.

(10)

This completes the proof of Lemma 2.
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By Lemma 2 and the strong law of large numbers for
martingales [40], we can obtain the following lemma.

Lemma 3. Letting (𝑆1(𝑡), 𝑆2(𝑡), 𝑋(𝑡)) be a solution of system
(5) with initial value (𝑆1(0), 𝑆2(0), 𝑋(0)) ∈ 𝑅3+, then

lim
𝑡→+∞

1𝑡 ∫𝑡0 𝜎1𝑆1 (𝜏)𝐾1 + 𝑆1 (𝜏)d𝐵 (𝜏) = 0,
lim
𝑡→+∞

1𝑡 ∫𝑡0 𝜎2𝑆2 (𝜏)𝐾2 + 𝑆2 (𝜏)d𝐵 (𝜏) = 0. (11)

3. Dynamics of Deterministic System (2)

In this section, we will focus on the deterministic system (2).
It is easy to see that the equilibria point of (2) satisfy

𝐷(𝑆0
1
− 𝑆1 (𝑡)) − 𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) = 0,

𝐷 (𝑆0
2
− 𝑆2 (𝑡)) − 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) = 0,

𝑟1𝑆1 (𝑡) 𝑋 (𝑡)𝐾1 + 𝑆1 (𝑡) + 𝑟2𝑆2 (𝑡) 𝑋 (𝑡)𝐾2 + 𝑆2 (𝑡) − 𝐷𝑋 (𝑡) = 0,
(12)

and, obviously, model (2) has a microorganism extinction
equilibrium 𝐸0(𝑆01, 𝑆02, 0). Let 𝐸∗(𝑆∗1 , 𝑆∗2 , 𝑋∗) be the coexis-
tence equilibrium of model (2), which satisfies𝑓 (𝑆2) š 𝑎 (𝑆2)3 + 𝑏 (𝑆2)2 + 𝑐𝑆2 + 𝑑 = 0, (13)

where𝑎 = (𝑟2 − 𝐷) (𝑟1 + 𝑟2 − 𝐷) ,𝑏 = 𝑟1𝑆02𝐷 + 𝐷𝑆0
1
𝑟2 − 2𝑟1𝐾2𝐷 − 𝑟2

2
𝑆0
1
+ 𝑟1𝐾2𝑟2 − 𝑆02𝑟22− 𝑟2

2
𝐾1 + 2𝐷2𝐾2 − 𝑆02𝐷2 − 𝑆01𝑟2𝑟1 − 2𝑟2𝐷𝐾2+ 2𝑆0
2
𝑟2𝐷 + 𝐷𝐾1𝑟2 − 𝑟1𝑆02𝑟2,𝑐 = −2𝑆0
2
𝐷2𝐾2 + 𝑟2𝐾1𝐷𝐾2 − 𝐾22𝑟1𝐷 + 𝑆0

1
𝑟2𝐷𝐾2− 𝐾2𝑆02𝑟1𝑟2 + 2𝐷𝑆02𝐾2𝑟1 + 𝐷2𝐾22 − 𝑆01𝑟2𝑟1𝐾2+ 2𝑆0

2
𝑟2𝐷𝐾2,𝑑 = 𝐾2

2
𝑆0
2
𝐷(𝑟1 − 𝐷) .

(14)

Then we have that𝑓 (0) = 𝐾2
2
𝑆0
2
𝐷(𝑟1 − 𝐷) ,

𝑓 (𝑆0
2
) = 𝐷𝑆0

1
𝑟2 (𝑆02)2 − 𝑟22𝑆01 (𝑆02)2 − 𝑟22𝐾1 (𝑆02)2

− 𝑆0
1
𝑟2𝑟1 (𝑆02)2 + 𝐷𝐾1𝑟2 (𝑆02)2 + 𝑟2𝐾1𝐷𝐾2𝑆02+ 𝑆0
1
𝑟2𝐷𝐾2𝑆02 − 𝑆01𝑟2𝑟1𝐾2𝑆02= 𝑟2𝑆02 (𝐷 (𝑆0

1
+ 𝐾1) (𝑆02 + 𝐾2) − 𝑆01𝑟1 (𝐾2 + 𝑆02)

− 𝑟2𝑆02 (𝑆01 + 𝐾1)) .

(15)

Denote

R = 1𝐷 ( 1𝛿1 + 1𝛿2) , (16)

where 𝛿1 = (𝐾1 + 𝑆01)/𝑟1𝑆01, 𝛿2 = (𝐾2 + 𝑆02)/𝑟2𝑆02.
Obviously, IfR > 1, we have𝑓(𝑆0

2
) < 0. If 𝑟1 > 𝐷, we have𝑓(0) > 0.Thus, equation has one positive root 𝑆2 at least, and𝑆2 ∈ (0, 𝑆02).

From the second equation of (12), one gets

𝑋 = 𝐷(𝑆0
2
− 𝑆2) (𝐾2 + 𝑆2)𝑟2𝑆2 . (17)

Substituting (17) into the first equation of (12), we have

𝑟2𝑆2𝑆21 + (𝑟1 (𝑆02 − 𝑆2) (𝐾2 + 𝑆2) − 𝑟2 (𝑆01 − 𝐾1) 𝑆2) 𝑆1− 𝑟2𝑆2𝑆01𝐾1 = 0. (18)

Let𝑔 (𝑆1)= 𝑟2𝑆2𝑆21+ (𝑟1 (𝑆02 − 𝑆2) (𝐾2 + 𝑆2) − 𝑟2 (𝑆01 − 𝐾1) 𝑆2) 𝑆1− 𝑟2𝑆2𝑆01𝐾1.
(19)

It is easy to see that

𝑔 (0) = −𝑟2𝑆2𝑆01𝐾1 < 0,
𝑔 (𝑆0
1
) = 𝑟1𝑆01 (𝑆02 − 𝑆2) (𝐾2 + 𝑆2) > 0. (20)

Thus, (18) has one positive root 𝑆1 at least, and 𝑆1 ∈ (0, 𝑆01).
From the third equation of (12), we have 0 < 𝑋 < 𝑆0

1
+ 𝑆0
2
.

Then we have the following theorem.

Theorem 4. If 𝑟1 > 𝐷 andR > 1, then system (2) has unique
positive equilibrium 𝐸∗.

Regarding the stability of these equilibria, we have the
following theorem.

Theorem 5. Then for system (2), one has the following.

(i) If R < 1, microorganism extinction equilibrium 𝐸0 is
locally stable; ifR > 1 it is unstable.

(ii) If 𝑟1 > 𝐷 andR > 1, the coexistence equilibrium 𝐸∗ is
locally stable.

Proof. Linearizing the system at the equilibrium 𝐸(𝑆∘
1
, 𝑆∘
2
, 𝑋∘)

gives the Jacobian

𝐽 = (−𝐷 − 𝑎1 0 −𝑎40 −𝐷 − 𝑎2 −𝑎3𝑎1 𝑎2 𝑎3 + 𝑎4 − 𝐷) , (21)
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where

𝑎1 = 𝐾1𝑟1𝑋∘(𝐾1 + 𝑆∘1)2 ,
𝑎2 = 𝐾2𝑟2𝑋∘(𝐾2 + 𝑆∘2)2 ,
𝑎3 = 𝑟2𝑆∘2𝐾2 + 𝑆∘2 ,
𝑎4 = 𝑟1𝑆∘1𝐾1 + 𝑆∘1 .

(22)

The characteristic equation gives

(𝜆 + 𝐷) (𝜆2 + 𝐴𝜆 + 𝐵) = 0, (23)

where

𝐴 = 2𝐷 + 𝑎1 + 𝑎2 − 𝑎3 − 𝑎4,𝐵 = 𝐷2 + 𝑎1𝐷 + 𝑎2𝐷 + 𝑎1𝑎2 − 𝑎3𝐷 − 𝑎4𝐷 − 𝑎1𝑎3− 𝑎2𝑎4.
(24)

Obviously, we have, at 𝐸0,
𝑎1 = 0,𝑎2 = 0,
𝑎3 = 𝑟2𝑆02𝐾2 + 𝑆02 ,
𝑎4 = 𝑟1𝑆01𝐾1 + 𝑆01 .

(25)

Then we have

𝐴 = 2𝐷 − 𝑎3 − 𝑎4,𝐵 = 𝐷 (𝐷 − (𝑎3 + 𝑎4)) , (26)

and thus if R < 1, all the eigenvalues of (23) have negative
real part; then, by the stability theory, 𝐸0 is stable.

And, at 𝐸∗, we have
𝐴 = 2𝐷 + 𝑎1 + 𝑎2 − 𝑎3 − 𝑎4 = 𝐷 + 𝑎1 + 𝑎2 > 0,
𝐵 = 𝐷2 + 𝑎1𝐷 + 𝑎2𝐷 + 𝑎1𝑎2 − 𝑎3𝐷 − 𝑎4𝐷 − 𝑎1𝑎3− 𝑎2𝑎4 = 𝑎1𝑎2 + 𝑎1 (𝐷 − 𝑎3) + 𝑎2 (𝐷 − 𝑎4) > 0;

(27)

here 𝑎3 +𝑎4 = 𝐷 is used.Then all the eigenvalues of (23) have
negative real part; thus, by the stability theory, the diseases
equilibrium is stable as long as it exists.

4. Dynamics of Stochastic System (5)

4.1. Extinction. In this section, we explore the conditions
leading to the extinction of the two infectious diseases.
Denote

R
∗ = R

− 1𝐷 (𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 − 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2) , (28)

whereR is introduced in (16). Then we have the following.

Theorem 6. For system (5), if one of the following holds,

(i) 𝜎2
1
> 𝛿1, 𝜎22 > 𝛿2, and 𝑟21/2𝜎21 + 𝑟22/2𝜎22 < 𝐷,

(ii) 𝜎2
1
> 𝛿1, 𝜎22 < 𝛿2, and −𝐷 + 𝑟2

1
/2𝜎2
1
+ 𝑟2𝑆02/(𝐾2 + 𝑆02) −(𝜎2

2
/2)(𝑆0
2
/(𝐾2 + 𝑆02))2 < 0,

(iii) 𝜎2
1
< 𝛿1, 𝜎22 > 𝛿2, and −𝐷 + 𝑟2

2
/2𝜎2
2
+ 𝑟1𝑆01/(𝐾1 + 𝑆01) −(𝜎2

1
/2)(𝑆0
1
/(𝐾1 + 𝑆01))2 < 0,

(iv) 𝜎2
1
< 𝛿1, 𝜎22 < 𝛿2, andR∗ < 1,

then the microorganism 𝑋(𝑡) of system (5) goes to extinction
almost surely. Moreover,

lim
𝑡→+∞

𝑆1 (𝑡) = 𝑆0
1
,

lim
𝑡→+∞

𝑆2 (𝑡) = 𝑆0
2
, (29)

almost surely.

Proof. Let (𝑆1(𝑡), 𝑆2(𝑡), 𝑋(𝑡)) be a solution of system (5) with
initial value (𝑆1(0), 𝑆2(0), 𝑋(0)) ∈ 𝑅3

+
. Applying Itô’s formula

to system (5) results in

d ln𝑋 (𝑡)
= (𝑟1𝜙1 (𝑡) + 𝑟2𝜙2 (𝑡) − 𝐷 − 𝜎2

12 𝜙2
1
(𝑡) − 𝜎2

22 𝜙2
2
(𝑡)) d𝑡

+ 𝜎1𝑆1 (𝑡) d𝐵 (𝑡)𝐾1 + 𝑆1 (𝑡) + 𝜎2𝑆2 (𝑡) d𝐵 (𝑡)𝐾2 + 𝑆2 (𝑡) ,
(30)

where 𝜙1(𝑡) = 𝑆1(𝑡)𝑋(𝑡)/(𝐾1+𝑆1(𝑡)), 𝜙2(𝑡) = 𝑆2(𝑡)𝑋(𝑡)/(𝐾2+𝑆2(𝑡)).
Integrating both sides of (30) from 0 to 𝑡 gives

ln𝑋(𝑡)
= ∫𝑡
0

(𝑟1𝜙1 (𝜏) + 𝑟2𝜙2 (𝜏) − 𝜎2
12 𝜙2
1
(𝜏) − 𝜎2

22 𝜙2
2
(𝜏)) d𝜏

− 𝐷𝑡 +𝑀1 (𝑡) + 𝑀2 (𝑡) + ln𝑋 (0) ,
(31)

where

𝑀1 (𝑡) = ∫𝑡
0

𝜎1𝑆1 (𝑡) d𝐵 (𝜏)𝐾1 + 𝑆1 (𝑡) ,
𝑀2 (𝑡) = ∫𝑡

0

𝜎2𝑆2 (𝑡) d𝐵 (𝜏)𝐾2 + 𝑆2 (𝑡) , (32)
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known as the local continuous martingale, and 𝑀(0) =0. Obviously, we need to estimate the maximum value of𝑟1𝜙1(𝑡) + 𝑟2𝜙2(𝑡) − (𝜎21/2)𝜙21(𝑡) − (𝜎22/2)𝜙22(𝑡).
Let us consider quadratic function

𝑔 (𝑧) = 𝑎𝑧 − 𝜎22 𝑧2, 𝑧 ∈ [0, 𝑏𝐾 + 𝑏] , 𝑏 > 0. (33)

It is easy to verify that when 𝜎2 > 𝛿 = (𝐾+𝑏)/𝑎𝑏, 𝑔(𝑧) reaches
its maximum value 𝑔max = 𝑎2/2𝜎2 at 𝑧 = 𝑎/𝜎2; and when𝜎2 < 𝛿, 𝑔(𝑧) achieve its maximum value 𝑔max = 𝛿3 = 𝑎𝑏/(𝐾+𝑏)−(𝜎2/2)(𝑏/(𝐾+𝑏))2 at 𝑧 = 𝑏/(𝐾+𝑏).Then, in (31), we have
four cases to be discussed, depending on whether 𝜎2

1
> 𝛿1 or𝜎2

2
> 𝛿2, which are as follows: Case 1: 𝜎2

1
> 𝛿1, 𝜎22 > 𝛿2; Case

2: 𝜎2
1
> 𝛿1, 𝜎22 < 𝛿2; Case 3: 𝜎21 < 𝛿1, 𝜎22 > 𝛿2; and Case 4:𝜎2

1
< 𝛿1, 𝜎22 < 𝛿2.
For Case 1, since 𝜎2

1
> 𝛿1, 𝜎22 > 𝛿2, then 𝑟1𝜙1(𝑡) +𝑟2𝜙2(𝑡)−(𝜎21/2)𝜙21(𝑡)−(𝜎22/2)𝜙22(𝑡) achieve themaximumvalue𝑟2

1
/2𝜎2
1
+ 𝑟2
2
/2𝜎2
2
.Then we can easily see from (31) that

ln𝑋 (𝑡) ≤ ( 𝑟2
12𝜎2
1

+ 𝑟2
22𝜎2
2

) 𝑡 − 𝐷𝑡 +𝑀1 (𝑡) + 𝑀2 (𝑡)
+ ln𝑋 (0) . (34)

Dividing both sides of (34) by 𝑡 > 0, we have
ln𝑋 (𝑡)𝑡 ≤ −(𝐷 − 𝑟2

12𝜎2
1

− 𝑟2
22𝜎2
2

) + 𝑀(𝑡)𝑡 + ln𝑋 (0)𝑡 (35)

and, by Lemma 3, we have

lim
𝑡→+∞

𝑀(𝑡)𝑡 = 0. (36)

Then, taking the limit superior on both sides of (35) leads to

lim sup
𝑡→+∞

ln𝑋 (𝑡)𝑡 ≤ −(𝐷 − 𝑟2
12𝜎2
1

− 𝑟2
22𝜎2
2

) < 0, (37)

which implies lim𝑡→+∞𝑋(𝑡) = 0, and here 𝑟2
1
/2𝜎2
1
+ 𝑟2
2
/2𝜎2
2
<𝐷 is used.

Case 2. 𝜎2
1
> 𝛿1 = (𝐾 + 𝑆0

1
)/𝑟1𝑆01, 𝜎22 < 𝛿2 = (𝐾 + 𝑆0

2
)/𝑟2𝑆02.

In this case, we can easily see from (31) that

ln𝑋 (𝑡) ≤ ( 𝑟2
12𝜎2
1

+ 𝑟2𝑆02𝐾2 + 𝑆02 − 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2) 𝑡

− 𝐷𝑡 +𝑀1 (𝑡) + 𝑀2 (𝑡) + ln𝑋 (0) . (38)

Dividing both sides of (38) by 𝑡 > 0, we have
ln𝑋 (𝑡)𝑡

≤ −(𝐷 − 𝑟2
12𝜎2
1

− 𝑟2𝑆02𝐾2 + 𝑆02 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2)

+ 𝑀(𝑡)𝑡 + ln𝑋 (0)𝑡
(39)

and, by Lemma 3, we have

lim
𝑡→+∞

𝑀(𝑡)𝑡 = 0. (40)

Then, taking the limit superior on both sides of (38) leads to

lim sup
𝑡→+∞

ln𝑋(𝑡)𝑡
≤ −(𝐷 − 𝑟2

12𝜎2
1

− 𝑟2𝑆02𝐾2 + 𝑆02 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2)

< 0
(41)

which implies lim𝑡→+∞𝑋(𝑡) = 0.
The same discussion can be used in Case 3; here we omit

it.
Next, we consider Case 4: 𝜎2

1
< 𝛿1 = (𝐾 + 𝑆0

1
)/𝑟1𝑆01, 𝜎22 <𝛿2 = (𝐾 + 𝑆0

2
)/𝑟2𝑆02. From (31), we have

ln𝑋(𝑡) ≤ ( 𝑟1𝑆01𝐾1 + 𝑆01 − 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 + 𝑟2𝑆02𝐾2 + 𝑆02

− 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2) − 𝐷𝑡 +𝑀1 (𝑡) + 𝑀2 (𝑡)

+ ln𝑋 (0) .
(42)

Dividing both sides of (42) by 𝑡 > 0, we have
ln𝑋 (𝑡)𝑡 ≤ −(𝐷 − 𝑟1𝑆01𝐾1 + 𝑆01 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2

− 𝑟2𝑆02𝐾2 + 𝑆02 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2) + 𝑀(𝑡)𝑡

+ ln𝑋 (0)𝑡
(43)

and, by Lemma 3, we have

lim
𝑡→+∞

𝑀(𝑡)𝑡 = 0. (44)

Then, taking the limit superior on both sides of (43) leads to

lim sup
𝑡→+∞

ln𝑋 (𝑡)𝑡 ≤ −(𝐷 − 𝑟1𝑆01𝐾1 + 𝑆01
+ 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 − 𝑟2𝑆02𝐾2 + 𝑆02 + 𝜎2

22 ( 𝑆0
2𝐾2 + 𝑆02)

2)
< 0

(45)

which implies lim𝑡→+∞𝑋(𝑡) = 0.
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Next, we prove the last conclusion. Given 0 < 𝜀 ≪ 1, since
lim𝑡→+∞𝑋(𝑡) = 0, we have 0 < 𝑋(𝑡) < 𝜀 for 𝑡 large enough.
By the first equation of system (5), we have

d𝑆1 (𝑡) ≥ (𝐷 (𝑆0
1
− 𝑆1 (𝑡)) − 𝑟1𝑆1 (𝑡) 𝜀𝐾1 + 𝑆1 (𝑡)) d𝑡

− 𝜎1𝑆1 (𝑡) 𝜀d𝐵 (𝑡)𝐾1 + 𝑆1 (𝑡) ,
d𝑆1 (𝑡)
d𝑡 ≥ 𝐷𝑆0

1
− (𝐷 + 𝑟1𝜀𝐾1 + 𝜎1𝜀 |𝐵 (𝑡)|𝐾1 ) 𝑆1 (𝑡) .

(46)

Then when 𝜀 → 0 we have
lim inf
𝑡→+∞

𝑆1 (𝑡) ≥ 𝑆0
1
. (47)

On the other hand from the proof of Lemma 2, we have

lim
𝑡→+∞

𝑆1 (𝑡) ≤ 𝑆0
1
+ 𝜀. (48)

Let 𝜀 → 0. Then one has

lim sup
𝑡→+∞

𝑆1 (𝑡) ≤ 𝑆0
1
. (49)

From (47) and (49), we have

lim
𝑡→+∞

𝑆1 (𝑡) = 𝑆0
1 (50)

almost surely.
By employing the method similar above, it then follows

that

lim
𝑡→+∞

𝑆2 (𝑡) = 𝑆0
2 (51)

almost surely. This completes the proof of Theorem 6.

4.2. Permanence in Mean

Theorem 7. If R > 1, then the microorganism 𝑋(𝑡) is
permanent in mean; moreover,𝑋(𝑡) satisfies

lim inf
𝑡→+∞

⟨𝑋 (𝑡)⟩ ≥ 𝐷Δ (R∗ − 1) , (52)

where Δ = min{(𝐾1 + 𝑆01)𝐷/𝑟1, (𝐾2 + 𝑆02)𝐷/𝑟2}.
Proof. Integrating from 0 to 𝑡 and dividing by 𝑡 on both sides
of system (5) yield

Θ (𝑡) ≜ 𝑆1 (𝑡) − 𝑆1 (0)𝑡 + 𝑆2 (𝑡) − 𝑆2 (0)𝑡
+ 𝑋 (𝑡) − 𝑋 (0)𝑡= 𝐷 (𝑆0
1
+ 𝑆0
2
) − 𝐷 (⟨𝑆1 (𝑡)⟩ + ⟨𝑆2 (𝑡)⟩)− 𝐷 ⟨𝑋 (𝑡)⟩ .

(53)

Then one can get

𝐷⟨𝑋 (𝑡)⟩ = 𝐷 (𝑆0
1
+ 𝑆0
2
) − 𝐷 (⟨𝑆1 (𝑡)⟩ + ⟨𝑆2 (𝑡)⟩)− Θ (𝑡) . (54)

Applying Itô’s formula gives

d ln𝑋 (𝑡) = (𝑟1𝜙1 (𝑡) + 𝑟2𝜙2 (𝑡) − 𝐷 − 𝜎2
12 𝜙2
1
(𝑡)

− 𝜎2
22 𝜙2
2
(𝑡)) d𝑡 + 𝜎1𝑆1 (𝑡) d𝐵 (𝑡)𝐾1 + 𝑆1 (𝑡)

+ 𝜎2𝑆2 (𝑡) d𝐵 (𝑡)𝐾2 + 𝑆2 (𝑡)
≥ (𝑟1𝜙1 (𝑡) + 𝑟2𝜙2 (𝑡) − 𝐷 − 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2

− 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2) d𝑡 + 𝜎1𝑆1 (𝑡) d𝐵 (𝑡)𝐾1 + 𝑆1 (𝑡)

+ 𝜎2𝑆2 (𝑡) d𝐵 (𝑡)𝐾2 + 𝑆2 (𝑡) .

(55)

Integrating from 0 to 𝑡 and dividing by 𝑡 on both sides of (55)
yields

ln𝑋 (𝑡) − ln𝑋 (0)𝑡
≥ 𝑟1 1𝑡 ∫𝑡0 𝜙1 (𝜃) d𝜃 + 𝑟2 1𝑡 ∫𝑡0 𝜙2 (𝜃) d𝜃
− [𝐷 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2]

+ 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 ,

(56)

where 𝑀1(𝑡) = ∫𝑡
0
(𝜎1𝑆1(𝜏)/(𝐾1 + 𝑆1(𝜏)))d𝐵(𝜏), 𝑀2(𝑡) =∫𝑡

0
(𝜎2𝑆2(𝜏)/(𝐾2 + 𝑆2(𝜏)))d𝐵(𝜏). Noticing that
∫𝑡
0

𝜙1 (𝜃) d𝜃 = ∫𝑡
0

𝑆1 (𝜃)𝐾1 + 𝑆1 (𝜃)d𝜃 ≥ ∫𝑡
0

𝑆1 (𝜃)𝐾1 + 𝑆01 d𝜃,
∫𝑡
0

𝜙2 (𝜃) d𝜃 = ∫𝑡
0

𝑆2 (𝜃)𝐾2 + 𝑆2 (𝜃)d𝜃 ≥ ∫𝑡
0

𝑆2 (𝜃)𝐾2 + 𝑆02 d𝜃,
(57)
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then we have

ln𝑋(𝑡) − ln𝑋 (0)𝑡
≥ −[𝐷 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2]

+ 𝑟1𝐾1 + 𝑆01 ⟨𝑆1 (𝑡)⟩ + 𝑟2𝐾2 + 𝑆02 ⟨𝑆2 (𝑡)⟩ + 𝑀1 (𝑡)𝑡
+ 𝑀2 (𝑡)𝑡

= −[𝐷 + 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2]

+ 𝑟2(𝐾2 + 𝑆02) (𝑆01 + 𝑆02)
+ ( 𝑟1𝐾1 + 𝑆01 − 𝑟2𝐾2 + 𝑆02)⟨𝑆1 (𝑡)⟩
− 𝑟2𝐾2 + 𝑆02 ⟨𝑋 (𝑡)⟩ − 𝑟2𝐾2 + 𝑆02 Θ (𝑡)𝐷 + 𝑀1 (𝑡)𝑡
+ 𝑀2 (𝑡)𝑡 .

(58)

If 𝑟1/(𝐾1 + 𝑆01) ≤ 𝑟2/(𝐾2 + 𝑆02), we can get

ln𝑋 (𝑡) − ln𝑋 (0)𝑡
≥ −[𝐷 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2]

+ 𝑟2(𝐾2 + 𝑆02) (𝑆01 + 𝑆02)
+ ( 𝑟1𝐾1 + 𝑆01 − 𝑟2𝐾2 + 𝑆02)𝑆0

1
− 𝑟2𝐾2 + 𝑆02 ⟨𝑋 (𝑡)⟩

− 𝑟2𝐾2 + 𝑆02 Θ (𝑡)𝐷 + 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡
≥ −[𝐷 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2 + 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2]

+ 𝑟2𝑆02𝐾2 + 𝑆02 + 𝑟1𝑆01𝐾1 + 𝑆01 − 𝑟2𝐾2 + 𝑆02 ⟨𝑋 (𝑡)⟩
− 𝑟2𝐾2 + 𝑆02 Θ (𝑡)𝐷 + 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 .

(59)

By inequality (59), we have

⟨𝑋 (𝑡)⟩ ≥ 𝐾2 + 𝑆02𝑟2 ( 𝑟1𝑆01𝐾1 + 𝑆01 + 𝑟2𝑆02𝐾2 + 𝑆02
− 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 − 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2 − 𝐷)

− 𝐾2 + 𝑆02𝑟2 ( ln𝑋 (𝑡) − ln𝑋(0)𝑡 + 𝑟2𝐾2 + 𝑆02 Θ (𝑡)𝐷
+ 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 ) .

(60)

By Lemma 3, we get that lim𝑡→+∞(𝑀(𝑡)/𝑡) = 0. Accord-
ing to Lemma 2, one sees that lim sup

𝑡→+∞
𝑆1(𝑡) ≤ 𝑆0

1
,

lim sup
𝑡→+∞

𝑆2(𝑡) ≤ 𝑆0
2
, and lim sup

𝑡→+∞
𝑋(𝑡) ≤ 𝐶0 + 𝑆02, and

then one has lim𝑡→+∞(ln𝑋(𝑡)/𝑡) = 0 and lim𝑡→+∞Θ(𝑡) = 0.
Thus taking the inferior limit of both sides of (60) yields

lim inf
𝑡→+∞

⟨𝑋 (𝑡)⟩ ≥ (𝐾2 + 𝑆02)𝐷𝑟2 (R∗ − 1) . (61)

And if 𝑟1/(𝐾1 + 𝑆01) ≥ 𝑟2/(𝐾2 + 𝑆02), we can get

ln𝑋 (𝑡) − ln𝑋(0)𝑡 ≥ −[𝐷 + 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2

+ 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2] + 𝑟1𝐾1 + 𝑆01 ((𝑆01 + 𝑆02)

− ⟨𝑆2 (𝑡)⟩ − ⟨𝑋 (𝑡)⟩ − Θ (𝑡)𝐷 ) + 𝑟2𝐾2 + 𝑆02 ⟨𝑆2 (𝑡)⟩
+ 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 = −[𝐷 + 𝜎2

12 ( 𝑆0
1𝐾1 + 𝑆01)

2

+ 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2] + 𝑟1𝑆01𝐾1 + 𝑆01 + 𝑟2𝑆02𝐾2 + 𝑆02

− 𝑟1𝐾1 + 𝑆01 ⟨𝑋 (𝑡)⟩ − 𝑟2𝐾2 + 𝑆02 Θ (𝑡)𝐷 + 𝑀1 (𝑡)𝑡
+ 𝑀2 (𝑡)𝑡 ,

(62)

where 𝑀1(𝑡) = ∫𝑡
0
(𝜎1𝑆1(𝜏)/(𝐾1 + 𝑆1(𝜏)))d𝐵(𝜏), 𝑀2(𝑡) =∫𝑡

0
(𝜎2𝑆2(𝜏)/(𝐾2 + 𝑆2(𝜏)))d𝐵(𝜏).
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Inequality (62) can be rewritten as

⟨𝑋 (𝑡)⟩ ≥ (𝐾2 + 𝑆02)𝑟2 ( 𝑟1𝑆01𝐾1 + 𝑆01 + 𝑟2𝑆02𝐾2 + 𝑆02
− 𝜎2
12 ( 𝑆0

1𝐾1 + 𝑆01)
2 − 𝜎2
22 ( 𝑆0

2𝐾2 + 𝑆02)
2 − 𝐷)

− (𝐾2 + 𝑆02)𝑟2 ( ln𝑋 (𝑡) − ln𝑋(0)𝑡 + 𝑟1𝐾1 + 𝑆01 Θ (𝑡)𝐷
+ 𝑀1 (𝑡)𝑡 + 𝑀2 (𝑡)𝑡 ) .

(63)

Taking the inferior limit of both sides of (63) yields

lim inf
𝑡→+∞

⟨𝑋 (𝑡)⟩ ≥ (𝐾1 + 𝑆01)𝐷𝑟1 (R∗ − 1) . (64)

Let Δ = min{(𝐾1 + 𝑆01)𝐷/𝑟1, (𝐾2 + 𝑆02)𝐷/𝑟2}, and we get from
(61) and (64)

lim inf
𝑡→+∞

⟨𝑋 (𝑡)⟩ ≥ 𝐷Δ (R∗ − 1) . (65)

This completes the proof of Theorem 7.

Remark 8. Theorems 6 and 7 show that the condition for the
microorganism to go to extinction or permanence depends
on the intensity of the noise disturbances completely. And
small noise disturbanceswill be beneficial to the cultivation of
the microorganism; conversely, large white noise disturbance
is harmful to the cultivation of the microorganism.

5. Conclusion and Numerical Simulation

This paper proposes and investigates a new stochastic
chemostat model with two substitutable nutrients and one
microorganism. Then main objective in this paper is to
investigate the threshold dynamics of stochastic chemostat
model (5) and explore the conditions which can determine
the extinction and permanence of the microorganism using
two substitutable nutrients. Firstly, for the corresponding
deterministicmodel, the threshold for extinction or existence
of the microorganism is obtained by analyzing the stability of
the equilibria.Then the threshold of the stochastic chemostat
for the extinction and the permanence in mean of the
microorganism is explored.The results show that there exists
a significant difference between the threshold of the deter-
ministic system and the stochastic system, which makes the
persistent microorganism of a deterministic system become
extinct due to large stochastic disturbance. That is, large
stochastic disturbance is harmful to the cultivation of the
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Figure 1: Time series for the paths 𝑆
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2
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microorganism. It is worth mentioning that this paper is a
promotion of the work of Xu and Yuan [35].

Next, using the Euler Maruyama (EM) method [40], we
give some numerical simulation to illustrate the extinction
and persistence of the microorganism in stochastic system
and corresponding deterministic system for comparison.

Firstly, we begin from a deterministic system; the basic
parameters are set as 𝐷 = 3.8, 𝑆0

1
= 1, 𝑆0

2
= 2,𝑟1 = 2.5, 𝑟2 = 4, 𝐾1 = 1, and 𝐾2 = 1. Direct

calculation shows that 𝛿1 = 0.8, 𝛿2 = 0.375, and R =1.0307 > 1. Then according to Theorems 4 and 5, the
deterministic system has a unique stable positive equilib-
rium 𝐸∗(0.9295785859, 1.848231322, 0.2221900926), which
is locally stable and the deterministic system is permanent
(see Figure 1).

Next, we consider the influence of stochastic disturbance
on the above deterministic system. According to Theorem 6,
different parameters are chosen to give insights into the
reasonability of the results stated inTheorem 6.

We choose different value of parameters 𝜎1 and 𝜎2 and
discuss below five different cases.

Case 1. Choose 𝜎1 = 1.6, 𝜎2 = 1.8, by direct calculation;
we have 𝑟2

1
/2𝜎2
1
+ 𝑟2
2
/2𝜎2
2
= 3.6898 < 𝐷 = 3.8. Then, by

Theorem 6, the microorganism eventually tends to be extinct
(see Figure 2(a)).

Case 2. Choose𝜎1 = 1,𝜎2 = 0.5, by direct calculation; we have𝑟2
1
/2𝜎2
1
+ 𝑟2𝑆02/(𝐾2 + 𝑆0

2
) − (𝜎2

2
/2)(𝑆0
2
/(𝐾2 + 𝑆0

2
))2 = 0.5139 <𝐷 = 3.8.Then, by Theorem 6, the microorganism eventually

tends to be extinct (see Figure 2(b)).
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Figure 2: Time series for the paths 𝑆
1
(𝑡), 𝑆
2
(𝑡),𝑋(𝑡) for the stochastic system.

Case 3. Choose 𝜎1 = 0.7, 𝜎2 = 1.3, by direct calculation; we
have 𝑟2

2
/2𝜎2
2
+𝑟1𝑆01/(𝐾1+𝑆01)−(𝜎21/2)(𝑆01/(𝐾1+𝑆01))2 = 3.5450 <𝐷 = 3.8.Then, by Theorem 6, the microorganism eventually

tends to be extinct (see Figure 2(c)).

Case 4. Choose 𝜎1 = 0.7, 𝜎2 = 0.6, by direct calculation; we
haveR󸀠 = 0.9935 < 1.Then, byTheorem 6, the microorgan-
ism eventually tends to be extinct (see Figure 2(d)).

Case 5. Choose 𝜎1 = 0.2, 𝜎2 = 0.3, by direct calculation;
we have R󸀠 = 1.0241 > 1. Then, by Theorem 7, the
microorganism is persistent (see Figure 3).
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