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We develop the price game model based on the entropy theory and chaos theory, considering the three enterprises are bounded
rationality and using the cost function under the resource constraints; that is, the yield increase will bring increased costs. The
enterprises of new model adopt the delay decision with the delay parameters 𝜏1 and 𝜏2, respectively. According to the change of
delay parameters 𝜏1 and 𝜏2, the bifurcation, stability, and chaos of the system are discussed, and the change of entropy when the
system is far away from equilibrium is considered. Prices and profits are found to lose stability and the evolution of the system tends
to the equilibrium state of maximum entropy. And it has a big fluctuation with the increase of 𝜏1 and 𝜏2. In the end, the chaos is
controlled effectively. The entropy of the system decreases, and the interior reverts to order. The results of this study are of great
significance for avoiding the chaos when the enterprises make price decisions.

1. Introduction

The oligopoly is a universal market state between perfect
competition and complete monopoly. Game theory, entropy
theory, and nonlinear dynamics provide new impetus for
oligopoly theory. There are a lot of oligopolies in the market,
such as China Mobile, China Unicom, and China Telecom,
forming a complex system with increasing entropy. These
oligopoly enterprises constantly carry on the price game in
order to maximize the benefits. Many scholars have studied
the content of oligopoly game from different perspectives,
such as entropy theory, chaos, and game theory. Zhang et al.
[1] built a Bertrand repeated gamemodel with linear demand
function and studied its system complexity. Xu and Ma [2]
investigated the dynamic model of a Bertrand game with
delay in insurancemarket.They discussed the existence of the
Nash equilibrium point of the game and researched the sta-
bility of the system. Sun and Ma [3] considered a two-player
quantum game in the presence of a thermal decoherence
modeled with the method of a rigorous Davies. It shows how
the energy dissipation and pure decoherence make changes
on the payoffs of the players in the game. Dajka et al. [4]
studied the complex dynamics of a nonlinear model on the

basis of Bertrand game in Chinese cold rolled steel market.
Fanti et al. [5] analyzed the dynamics of a Bertrand duopoly
with products which become divided. The results showed
that an increase in either the degree of substitutability or
complementarity between products of different varieties was
the reason of complexity in a competition game. Xiangyu and
Xiaoyong [6] used the information theory and entropy theory
to build the models to measure the entropy of the four mar-
ket structures which are perfect competition, monopolistic
competition, oligopoly, and completemonopoly and compare
the entropy of the four market structures. Naimzada and
Tramontana [7] considered a Cournot–Bertrand duopoly
model based on linear demand and cost functions with
product differentiation. Li and Ma [8] considered the R&D
input competition model in oligopoly market on the basis
of that the players are heterogeneous, bounded rational,
and adaptive adjustment. Fan et al. [9] investigated two
types of players and concluded the output duopoly game
with heterogeneous players. They studied the influence of
players’ different behavior on the dynamics of game. Yali
[10] built a duopoly game model and investigated its stability
with bounded rationality strategy and state delay. Gao et al.
[11] discussed equilibrium stability of a nonlinear Cournot
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duopoly game, where one player can evaluate its opponent’s
output in the future in light of straightforward extrapolative
foresight. Peng et al. [12] analyzed a dynamic of triopoly
Bertrand repeated model with the zero marginal cost. Bischi
and Naimzada [13] concluded the dynamical characteristics
of bounded rationality duopoly game. Ma and Tu [14] carried
out the corresponding extension of the complex dynamics
to macroeconomic model with time delays considering the
macroeconomic model of money supply. Ma and Wang [15]
considered a closed-loop supply chain with product recovery,
which is composed of one manufacturer and one retailer.The
situation may lead to complicated dynamic phenomena such
as bifurcation and chaos. That is to say, the entropy of the
system is increasing too. Hale [16] investigated existence and
the local stable region of the Nash equilibrium point. Ma and
Si [17] studied a continuous Bertrand duopoly game model
with two-stage delay. Ma and Bangura [18] studied finan-
cial and economic system when the three parameters were
changed.

By combining them, it is found thatmost of the studies are
based on the discrete system, and the attention to the research
of continuous system is not much, with lack of analysis
from the in-system state and entropy theory, considering
the delayed decision is less. Therefore, the model of [19] is
improved based on the entropy theory and chaos theory,
considering the three companies are bounded rationality and
using a new cost function, and its chaotic characteristics and

system entropy changes were analyzed. In the course of the
study, the special case of 𝜏1 = 𝜏2 = 𝜏 is overcome, 𝜏1 ̸= 𝜏2,
and 𝜏1 > 0, 𝜏2 > 0 are discussed. The improved model is
more fit to the reality, and the research results are of guiding
significance to the enterprise price decision.

This paper is organized as follows: in Section 2, based on
[19], a triopoly price game model with delay is improved. In
Section 3, the stability of system and the existence of Hopf
bifurcation are analyzed. In Section 4, numerical simulation
is used to find out the influence of delay on the stability
of price and profit by virtue of time series, the attractor,
bifurcation diagram, Lyapunov exponent, 3D surface chat,
and initial value sensitivity, as well as the contacts between
dynamic state and the situation of entropy change in the sys-
tem. In Section 5, the effective control of chaos is achieved by
control method of the state variables feedback and parameter
variation in the system. Finally, we have some conclusions in
the last section.

2. The Model

The triopoly dynamic game model is developed in [19]
which makes adaptive decision, bounded rational decision,
and delayed bounded rational decision, respectively. The
stability of the system and the existence of Hopf bifurca-
tion are studied in this paper. The model is described as
follows:

𝑝̇1 (𝑡) = V1𝑝1 [(𝑎 + 𝑑1𝑤𝑝2 (𝑡) + 𝑑1 (1 − 𝑤) 𝑝2 (𝑡 − 𝜏) + 𝑓1𝑝3 (𝑡) + 𝑏1𝑐1)(2𝑏1) − 𝑝1 (𝑡 − 𝜏)] ,
𝑝̇2 (𝑡) = V2𝑝2 [𝑎 − 2𝑏2𝑤𝑝2 (𝑡) − 2𝑏2 (1 − 𝑤) 𝑝2 (𝑡 − 𝜏) + 𝑑2𝑝3 (𝑡) + 𝑓2𝑝1 (𝑡) + 𝑏2𝑐2] ,
𝑝̇3 (𝑡) = V3𝑝3 [𝑎 − 2𝑏3𝑝3 (𝑡) + 𝑑3𝑝1 (𝑡) + 𝑓3𝑤𝑝2 (𝑡) + 𝑓3 (1 − 𝑤) 𝑝2 (𝑡 − 𝜏) + 𝑏3𝑐3] ,

(1)

where 𝑎, 𝑏𝑖, 𝑑𝑖, 𝑓𝑖 > 0, 𝑖 = 1, 2, 3, 𝑎 represents the largest
market demand for products, 𝑏𝑖 is elastic demand, 𝑑𝑖, 𝑓𝑖
represents the substitution rate between the two companies,
respectively, 𝑝𝑖, 𝑞𝑖 denote the price and output of the product,
respectively, 0 < 𝑤 < 1 represents the weight of the current
price, and 1 − 𝑤 represents the weight of price of 𝑡 − 𝜏 time.
The cost function with linear form is 𝐶𝑖(𝑞𝑖) = 𝑐𝑖𝑞𝑖, 𝑖 = 1, 2, 3,
and 𝑐𝑖 is marginal profit. In (1), the first enterprise adopts
the adaptive pricing strategy with delay, where 𝜏1 denotes the
delay parameter; the other two enterprises employ the finite
rational pricing strategy. In addition, the second enterprise
used the postponement strategy, where 𝜏2 stands for the delay
parameter. The linear cost function under the condition of
sufficient resources was used.Then 𝜏1 = 𝜏2 = 𝜏was discussed.

Because price information is asymmetry, we consider
three companies are bounded rationality based onmodel [19]
and build the price game model with enterprises 1 and 2 with
delay parameters 𝜏1and 𝜏2, respectively.The cost functionwill
obviously increase under limited resources; that is, 𝐶𝑖(𝑞𝑖) =𝑐𝑖0+𝑐𝑖𝑞2𝑖 𝑖 = 1, 2, 3, where 𝑐𝑖0 is the fixed cost. We further have
the improved model with price game:

𝑝̇1 (𝑡) = ]1𝑝1 [(1 + 2𝑏1𝑐1) 𝑎 − (2𝑏1 + 2𝑏21 𝑐1) 𝑝1 (𝑡 − 𝜏1)
+ (𝑑1 + 2𝑏1𝑐1𝑑1) 𝑝2 (𝑡 − 𝜏2) + (𝑓1 + 2𝑏1𝑐1𝑓1) 𝑝3 (𝑡)] ,

𝑝̇2 (𝑡) = ]2𝑝2 [(1 + 2𝑏2𝑐2) 𝑎 − (2𝑏2 + 2𝑏22 𝑐2) 𝑝2 (𝑡 − 𝜏2)
+ (𝑑2 + 2𝑏2𝑐2𝑑2) 𝑝3 (𝑡) + (𝑓2 + 2𝑏2𝑐2𝑓2) 𝑝1 (𝑡 − 𝜏1)] ,

𝑝̇3 (𝑡) = ]3𝑝3 [(1 + 2𝑏3𝑐3) 𝑎 − (2𝑏3 + 2𝑏23 𝑐3) 𝑝3 (𝑡)
+ (𝑑3 + 2𝑏3𝑐3𝑑3) 𝑝1 (𝑡 − 𝜏1)
+ (𝑓3 + 2𝑏3𝑐3𝑓3) 𝑝2 (𝑡 − 𝜏2)] .

(2)

3. Local Stability at Equilibrium Points

In a competitive market, the equilibrium points must
be nonnegative. Considering generality, we assume that𝐸∗(𝑝∗1 , 𝑝∗2 , 𝑝∗3 ) is a Nash equilibrium point of model (2),
where
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𝑝∗1 > 0,
𝑝∗2 > 0,
𝑝∗3 > 0.

(3)

We study the existence of Hopf bifurcation of the system
at 𝐸∗(𝑝∗1 , 𝑝∗2 , 𝑝∗3 ). Let ℎ1(𝑡) = 𝑝1(𝑡) − 𝑝∗1 , ℎ2(𝑡) = 𝑝2(𝑡) − 𝑝∗2 ,
and ℎ3(𝑡) = 𝑝3(𝑡) − 𝑝∗3 , with 𝑝1(𝑡), 𝑝2(𝑡), and 𝑝3(𝑡) instead ofℎ1(𝑡), ℎ2(𝑡), and ℎ3(𝑡), respectively, when ℎ = 0. We have the
linear form of the system through Jacobian matrix as follows:

̇𝑝1 (𝑡) = −V1𝑝∗1 (2𝑏1 + 2𝑏21 𝑐1) 𝑝1 (𝑡 − 𝜏1)
+ V1𝑝∗1 (𝑑1 + 2𝑏1𝑐1𝑑1) 𝑝2 (𝑡 − 𝜏2)
+ V1𝑝∗1 (𝑓1 + 2𝑏1𝑐1𝑓1) 𝑝3 (𝑡) ,

̇𝑝2 (𝑡) = −V2𝑝∗2 (2𝑏2 + 2𝑏22 𝑐2) 𝑝2 (𝑡 − 𝜏2)
+ V2𝑝∗2 (𝑑2 + 2𝑏2𝑐2𝑑2) 𝑝3 (𝑡)
+ V2𝑝∗2 (𝑓2 + 2𝑏2𝑐2𝑓2) 𝑝1 (𝑡 − 𝜏1) ,

̇𝑝3 (𝑡) = −V3𝑝∗3 (2𝑏3 + 2𝑏23 𝑐3) 𝑝3 (𝑡)
+ V3𝑝∗3 (𝑑3 + 2𝑏3𝑐3𝑑3) 𝑝1 (𝑡 − 𝜏1)
+ V3𝑝∗3 (𝑓3 + 2𝑏3𝑐3𝑓3) 𝑝2 (𝑡 − 𝜏2) .

(4)

The determinant of (4) is
󵄨󵄨󵄨󵄨𝜆𝐸 − 𝐽 (𝐸∗)󵄨󵄨󵄨󵄨 = 0, (5)

where

𝐽 (𝐸∗) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐽11 𝐽12 𝐽13
𝐽21 𝐽22 𝐽23
𝐽31 𝐽32 𝐽33

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

𝐽11 = −V1𝑝∗1 (2𝑏1 + 2𝑏21 𝑐1) ,
𝐽12 = V1𝑝∗1 (𝑑1 + 2𝑏1𝑐1𝑑1) ,
𝐽13 = V1𝑝∗1 (𝑓1 + 2𝑏1𝑐1𝑓1) ,
𝐽21 = V2𝑝∗2 (𝑓2 + 2𝑏2𝑐2𝑓2) ,
𝐽22 = −V2𝑝∗2 (2𝑏2 + 2𝑏22 𝑐2) ,
𝐽23 = V2𝑝∗2 (𝑑2 + 2𝑏2𝑐2𝑑2) ,
𝐽31 = V3𝑝∗3 (𝑑3 + 2𝑏3𝑐3𝑑3) ,
𝐽32 = V3𝑝∗3 (𝑓3 + 2𝑏3𝑐3𝑓3) ,
𝐽33 = −V3𝑝∗3 (2𝑏3 + 2𝑏23 𝑐3) .

(6)

Therefore the characteristic equation for system (4) is

𝜆3 + 𝑘1𝜆2 + (𝑘2𝜆2 + 𝑘3𝜆) 𝑒−𝜆𝜏1 + (𝑘4𝜆2 + 𝑘5𝜆) 𝑒−𝜆𝜏2
+ (𝑘6𝜆 + 𝑘7) 𝑒−𝜆𝜏1𝑒−𝜆𝜏2 = 0, (7)

where

𝑘1 = 2𝑏3𝑝∗3 V3 + 2𝑏23 𝑐3𝑝∗3 V3,
𝑘2 = 2𝑏1𝑝∗1 V1 + 2𝑏21 𝑐1𝑝∗1 V1,
𝑘3 = 4𝑏1𝑏3𝑝∗1𝑝∗3 V1V3 − 𝑑3𝑓1𝑝∗1𝑝∗3 V1V3

+ 4𝑏21𝑏3𝑐1𝑝∗1𝑝∗3 V1V3 + 4𝑏1𝑏23 𝑐3𝑝∗1𝑝∗3 V1V3 + ⋅ ⋅ ⋅
− 2𝑏3𝑐3𝑑3𝑓1𝑝∗1𝑝∗3 V1V3,

𝑘4 = 2𝑏2𝑝∗2 V2 + 2𝑏22 𝑐2𝑝∗2 V2,
𝑘5 = 4𝑏2𝑏3𝑝∗2𝑝∗3 V2V3 − 𝑑2𝑓3𝑝∗2𝑝∗3 V2V3

+ 4𝑏22𝑏3𝑐2𝑝∗2𝑝∗3 V2V3 + 4𝑏2𝑏23 𝑐3𝑝∗2𝑝∗3 V2V3 + ⋅ ⋅ ⋅
− 2𝑏3𝑐3𝑑2𝑓3𝑝∗2𝑝∗3 V2V3,

𝑘6 = 4𝑏1𝑏2𝑝∗1𝑝∗2 V1V2 + 4𝑏21𝑏2𝑐1𝑝∗1𝑝∗2 V1V2
+ 4𝑏1𝑏22 𝑐2𝑝∗1𝑝∗2 V1V2 + ⋅ ⋅ ⋅
− 4𝑏1𝑏2𝑐1𝑐2𝑑21𝑓2𝑝∗1𝑝∗2 V1V2,

𝑘7 = 8𝑏1𝑏2𝑏3𝑝∗1𝑝∗2𝑝∗3 V1V2V3 − 2𝑏1𝑑2𝑓3𝑝∗1𝑝∗2𝑝∗3 V1V2V3
+ ⋅ ⋅ ⋅ − 8𝑏1𝑏2𝑏3𝑐1𝑐2𝑐3𝑑21𝑑2𝑑3𝑝∗1𝑝∗2𝑝∗3 V1V2V3.

(8)

We discuss the effects of 𝜏1, 𝜏2 on the stability of system (4)
when 𝜏1 ̸= 𝜏2, 𝜏1 > 0, 𝜏2 > 0.

At this point, the characteristic equation of system (4) is

𝜆3 + 𝑘1𝜆2 + (𝑘2𝜆2 + 𝑘3𝜆) 𝑒−𝜆𝜏1 + (𝑘4𝜆2 + 𝑘5𝜆) 𝑒−𝜆𝜏2
+ (𝑘6𝜆 + 𝑘7) 𝑒−𝜆(𝜏1+𝜏2) = 0. (9)

We consider (2) with 𝜏2 in its stable range, regarding 𝜏1 as
a parameter. Taking into account the generality, we discuss
system (2) under the casementioned in [14], and 𝜏2 ∈ [0, 𝜏20).𝜏20 is defined as in [14]. Therefore we have

𝜏(𝑗)
2𝑘

= 1
𝜔2𝑘 arccos{

(𝐷 − 𝐴𝐶)𝜔42𝑘 + (𝐴𝐸 − 𝐵𝐷)𝜔22𝑘𝐶2𝜔4
2𝑘

+ (𝐷2 − 2𝐶𝐸)𝜔2
2𝑘

+ 𝐸2 }

+ 2𝑗𝜋
𝜔2𝑘 , 𝑘 = 1, 2, 3, 4, 5, 𝑗 = 0, 1, 2, . . .

𝜏20 = min {𝜏(0)2𝑘 } , 𝑘 ∈ {1, 2, 3, 4, 5} , 𝜔20 = 𝜔2𝑘0 ,

(10)

where 𝜔2𝑘, 𝑖 = 1, 2, 3, . . . , 𝑘, are the positive roots of
𝐻1𝜔102 + 𝐻2𝜔82 + 𝐻3𝜔62 + 𝐻4𝜔42 + 𝐻5𝜔22 + 𝐻6 = 0, (11)

where

𝐻1 = 𝐶2,
𝐻2 = 𝐷2 − 2𝐶𝐸 − 2𝐵𝐶2 + 𝐴2𝐶2 − 𝐶4,
𝐻3 = 4𝐵𝐶𝐸 + 𝐸2 + 𝐴2𝐷2 + 𝐵2𝐶2 + 2𝐷2𝐵 − 2𝐴2𝐶𝐸

+ 4𝐶3𝐸 − 2𝐶2𝐷2,
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𝐻4 = 𝐴2𝐸2 − 2𝐸2𝐵 − 2𝐵2𝐶𝐸 + 𝐵2𝐷2 − 6𝐶2𝐸2 − 𝐷4
− 4𝐶𝐸𝐷2,

𝐻5 = 𝐵2𝐸2 − 2𝐷2𝐸2 + 4𝐶𝐸3,
𝐻6 = −𝐸4,
𝐴 = 𝑘1 + 𝑘2,
𝐵 = 𝑘3,
𝐶 = 𝑘4,
𝐷 = 𝑘5 + 𝑘6,
𝐸 = 𝑘7.

(12)

Let 𝜆 = 𝑖𝜔1 (𝜔1 > 0) be a root of (9). Then

𝐴4 sin𝜔1𝜏1 + 𝐵4 cos𝜔1𝜏1 = 𝜔31 ,
𝐶4 sin𝜔1𝜏1 + 𝐷4 cos𝜔1𝜏1

= 𝑘1𝜔21 + 𝑘4𝜔21 cos𝜔1𝜏2 − 𝑘5𝜔1 sin𝜔1𝜏2,
(13)

where

𝐴4 = 𝑘2𝜔21 − 𝑘6𝜔1 sin𝜔1𝜏2 − 𝑘7 cos𝜔1𝜏2,
𝐵4 = 𝑘3𝜔1 + 𝑘6𝜔1 cos𝜔1𝜏2 − 𝑘7 sin𝜔1𝜏2,
𝐶4 = 𝑘3𝜔1 + 𝑘6𝜔1 cos𝜔1𝜏2 − 𝑘7 sin𝜔1𝜏2,
𝐷4 = 𝑘6𝜔1 sin𝜔1𝜏2 − 𝑘2𝜔21 + 𝑘7 cos𝜔1𝜏2.

(14)

For (13), we can obtain that

sin𝜔1𝜏1 = 𝑁1𝜔41 + 𝑁2𝜔31 + 𝑁3𝜔21 + 𝑁4𝜔1𝑁10𝜔41 + 𝑁11𝜔31 + 𝑁12𝜔21 + 𝑁13𝜔1 + 𝑁14 ,

cos𝜔1𝜏1 = 𝑁5𝜔51 + 𝑁6𝜔41 + 𝑁7𝜔31 + 𝑁8𝜔21 + 𝑁9𝜔1𝑁10𝜔41 + 𝑁11𝜔31 + 𝑁12𝜔21 + 𝑁13𝜔1 + 𝑁14 ,
𝑁1 = 𝑘6 cos𝜔1𝜏2 − 𝑘2𝑘4 cos𝜔1𝜏2 − 𝑘1𝑘2 + 𝑘3,
𝑁2 = 𝑘4𝑘6 cos𝜔1𝜏2 sin𝜔1𝜏2 + 𝑘1𝑘6 sin𝜔1𝜏2

− 𝑘7 sin𝜔1𝜏2 + 𝑘2𝑘5 sin𝜔1𝜏2,
𝑁3 = 𝑘4𝑘7 cos2 𝜔1𝜏2 + 𝑘1𝑘7 cos𝜔1𝜏2

− 𝑘5𝑘6 sin2 𝜔1𝜏2,
𝑁4 = 𝑘5𝑘7 cos𝜔1𝜏2 sin𝜔1𝜏2,
𝑁5 = 𝑘2,
𝑁6 = −𝑘6 sin𝜔1𝜏2,
𝑁7 = 𝑘1𝑘3 + 𝑘1𝑘6 cos𝜔1𝜏2 + 𝑘3𝑘4 cos𝜔1𝜏2

+ 𝑘4𝑘6 cos2 𝜔1𝜏2 − 𝑘7 cos𝜔1𝜏2,

𝑁8 = 𝑘1𝑘7 sin𝜔1𝜏2 − 𝑘4𝑘7 cos𝜔1𝜏2 sin𝜔1𝜏2
+ 𝑘5𝑘6 sin𝜔1𝜏2 cos𝜔1𝜏2
+ 𝑘3𝑘5 sin𝜔1𝜏2,

𝑁9 = 𝑘5𝑘7 sin2 𝜔1𝜏2,
𝑁10 = 𝑘22,
𝑁11 = −2𝑘2𝑘6 sin𝜔1𝜏2,
𝑁12 = 𝑘23 + 2𝑘3𝑘6 cos𝜔1𝜏2 + 𝑘26 − 2𝑘2𝑘7 cos𝜔1𝜏2,
𝑁13 = −2𝑘3𝑘7 sin𝜔1𝜏2,
𝑁14 = 𝑘27.

(15)
For (15), we obtain the following equation:

𝑀10𝜔101 + 𝑀9𝜔91 + 𝑀8𝜔81 + 𝑀7𝜔71 + 𝑀6𝜔61 + 𝑀5𝜔51
+ 𝑀4𝜔41 + 𝑀3𝜔31 + 𝑀2𝜔21 + 𝑀1𝜔1 + 𝑀0 = 0,

𝑀10 = 𝑁25 ,
𝑀9 = 𝑁21𝑁26 + 2𝑁5𝑁7 − 𝑁210,
𝑀8 = 2𝑁5𝑁6,
𝑀7 = 2𝑁1𝑁2 + 2𝑁5𝑁8 + 2𝑁6𝑁7 − 2𝑁10𝑁11,
𝑀6 = 𝑁22 + 2𝑁1𝑁3 + 𝑁27 + 2𝑁6𝑁8 + 2𝑁5𝑁9 − 𝑁211

− 2𝑁10𝑁12,
𝑀5 = 2𝑁1𝑁4 + 2𝑁2𝑁3 + 2𝑁7𝑁8 + 2𝑁6𝑁9

− 2𝑁10𝑁13 − 2𝑁11𝑁12,
𝑀4 = 𝑁23 + 2𝑁2𝑁4 + 𝑁28 + 2𝑁7𝑁9 − 𝑁212 − 2𝑁11𝑁13

− 2𝑁10𝑁14,
𝑀3 = 2𝑁3𝑁4 + 2𝑁8𝑁9 − 2𝑁12𝑁13 − 2𝑁11𝑁14,
𝑀2 = 𝑁24 + 𝑁29 − 𝑁213 − 2𝑁12𝑁14,
𝑀1 = −2𝑁13𝑁14,
𝑀0 = −𝑁214.

(16)

Suppose that (𝐻1): (16) has finite positive roots. We define
the roots of (16) as 𝜔11, 𝜔12, 𝜔13, . . . , 𝜔1𝑘. For every fixed 𝜔1𝑖
(𝑖 = 1, 2, 3, . . . , 𝑘), there exists a sequence 𝜏(𝑗)1𝑖 | 𝑗 = 0, 1, 2, . . .
which satisfies (16). It is

𝜏(𝑗)1𝑖 = 1
𝜔1𝑖

⋅ arccos{ 𝑁5𝜔51𝑖 + 𝑁6𝜔41𝑖 + 𝑁7𝜔31𝑖 + 𝑁8𝜔21𝑖 + 𝑁9𝜔1𝑖𝑁10𝜔41𝑖 + 𝑁11𝜔31𝑖 + 𝑁12𝜔21𝑖 + 𝑁13𝜔1𝑖 + 𝑁14}

+ 2𝑗𝜋
𝜔1𝑖 , 𝑖 = 1, 2, 3, . . . , 𝑘, 𝑗 = 0, 1, 2, . . . .

(17)
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Let

𝜏10 = min {𝜏(𝑗)1𝑖 | 𝑖 = 1, 2, 3, . . . , 𝑘, 𝑗 = 0, 1, 2, . . .} ,
𝜔10 = 𝜔1𝑖0 .

(18)

When 𝜏1 = 𝜏10, (9) has a pair of purely imaginary roots ±𝑖𝜔10
for 𝜏2 ∈ [0, 𝜏20). In the following, we take the derivative of𝜆 with respect to 𝜏1 in (9) for the transversality condition of
Hopf bifurcation, and we have

[ 𝑑𝜆
𝑑𝜏1 ]
−1 = −3𝜆2 − 2𝑘1𝜆 − (2𝑘2𝜆 + 𝑘3) 𝑒−𝜆𝜏1 − (2𝑘4 + 𝑘5) 𝑒−𝜆𝜏2 − 𝑘6𝑒−(𝜏1+𝜏2)(𝑘2𝜆3 + 𝑘3𝜆2) 𝑒−𝜆𝜏1 + (𝑘4𝜆3 + 𝑘5𝜆2) 𝑒−𝜆𝜏2 + (𝑘6𝜆 + 𝑘7𝜆) 𝑒−𝜆(𝜏1+𝜏2) −

𝜏1𝜆 . (19)

Then we further have

[𝑑𝜆 (𝜏10)𝑑𝜏1 ]
−1

𝜆=𝑖𝜔10

= 𝑆1𝑆3 + 𝑆2𝑆4𝑆23 + 𝑆24 , (20)

where

𝑆1 = 3𝜔210 − 2𝑘2𝜔10 sin𝜔10𝜏10 + 𝑘3 cos𝜔10𝜏10
− 2𝑘4𝜔10 sin𝜔10𝜏2 − 𝑘5 cos𝜔10𝜏2
− 𝑘6 cos (𝜔10𝜏10 − 𝜔10𝜏2) ,

𝑆2 = 𝑘5 sin𝜔10𝜏2 − 2𝑘1𝜔10 − 2𝑘2𝜔10 cos𝜔10𝜏10
− 𝑘3 sin𝜔10𝜏10 − 2𝑘4𝜔10 cos𝜔10𝜏2
− 𝑘6 sin (𝜔10𝜏10 + 𝜔10𝜏2) ,

𝑆3 = −𝑘2𝜔310 sin𝜔10𝜏10 − 𝑘3𝜔210 cos𝜔10𝜏10
− 𝑘4𝜔310 sin𝜔10𝜏2 − 𝑘5𝜔210 cos𝜔10𝜏2
+ (𝑘6 + 𝑘7) 𝜔10 sin (𝜔10𝜏10 + 𝜔10𝜏2) ,

𝑆4 = −𝑘2𝜔310 cos𝜔10𝜏10 + 𝑘3𝜔210 sin𝜔10𝜏10
− 𝑘4𝜔310 cos𝜔10𝜏2 + 𝑘5𝜔210 sin𝜔10𝜏2
+ (𝑘6 + 𝑘7) 𝜔10 cos (𝜔10𝜏10 + 𝜔10𝜏2) .

(21)

Obviously, if (𝐻2): 𝑆1𝑆3 + 𝑆2𝑆4 ̸= 0, based on the above
discussions and by the general Hopf bifurcation theorem in
[15], we can obtain the results as follows.

If 𝐻(1)-𝐻(2) hold, when 𝜏2 ∈ [0, 𝜏20), then the Nash
equilibrium point 𝐸∗(𝑝∗1 , 𝑝∗2 , 𝑝∗3 ) of system (2) is asymptot-
ically stable for 𝜏1 ∈ [0, 𝜏10) and it is unstable as 𝜏1 > 𝜏10.
System (2) will be under Hopf bifurcation at 𝐸∗(𝑝∗1 , 𝑝∗2 , 𝑝∗3 )
when 𝜏1 = 𝜏10.
4. Numerical Simulations

The impacts of delay on the stability of system (2) are analyzed
by a series of tools in this section. It supports the theoretical
research in Section 3 by time series, bifurcation, Lyapunov
exponents, attractor, and initial value sensitivity.

The parameters of system (2) are taken to be 𝑎 = 5, 𝑏1 =3.2, 𝑏2 = 3.5, 𝑏3 = 3.8, 𝑑1 = 0.3, 𝑑2 = 0.4, 𝑑3 = 0.5, 𝑓1 = 0.35,𝑓2 = 0.45, and 𝑓3 = 0.55; the marginal costs of three dairy

product companies are 𝑐1 = 0.003, 𝑐2 = 0.006, and 𝑐3 = 0.009;
the initial prices of their products are𝑝1(0) = 0.4,𝑝2(0) = 0.5,
and 𝑝3(0) = 0.6; the speeds of price adjustment are V1 = V2 =
V3 = 0.5; the fixed cost of the enterprise is 𝑐10 = 1, 𝑐20 = 1.5,
and 𝑐30 = 2. Considering the following system, it is easy to
calculate the Nash equilibrium point of system (2) which is𝐸∗(0.8723, 0.8329, 0.8012).

̇𝑝1 (𝑡) = 0.20 (5.0960 − 6.4614𝑝1 (𝑡 − 𝜏1)
+ 0.3058𝑝2 (𝑡 − 𝜏2) + 0.3567𝑝3 (𝑡)) ,

̇𝑝2 (𝑡) = 0.25 (5.2100 − 7.1470𝑝2 (𝑡 − 𝜏2)
+ 0.4168𝑝3 (𝑡) + 0.4689𝑝1 (𝑡 − 𝜏1)) ,

̇𝑝3 (𝑡) = 0.30 (5.3420 − 7.8599𝑝3 (𝑡)
+ 0.5342𝑝1 (𝑡 − 𝜏1) + 0.5876𝑝2 (𝑡 − 𝜏2)) .

(22)

From (10) and (11), we can get 𝜔20 = 3.612, 𝜏20 = 0.508. In
order to facilitate the calculation, let 𝜏2 = 0.45 ∈ [0, 𝜏20). On
the basis of (18), we have 𝜏10 = 0.547, 𝑆1𝑆3+𝑆2𝑆4 = 512.74 ̸= 0,
so (𝐻1)-(𝐻2) hold. From the conclusion of the third section,
we know that theNash equilibriumpoint𝐸∗ is asymptotically
stable when 𝜏1 ∈ [0, 𝜏10) and unstable when 𝜏1 > 𝜏10. As 𝜏1 =𝜏10, Hopf bifurcation will occur.

4.1. The Influence of 𝜏1 on the Stability of System (22). Figures
1(a) and 2(a) show that system (22) is stable when 𝜏1 =0.530 < 𝜏10 = 0.547. When 𝜏1 = 0.560 > 𝜏10 = 0.547, the
system is unstable.This phenomenon can be found in Figures
1(b) and 2(b).The numerical simulation is consistent with the
theoretical analysis.

Figure 3 describes the process of system (22) from stable
into chaos. From Figure 3(a), we can find that the system has
bifurcation, and 𝜏1 has the greatest impact on 𝑝1 and has less
influence on 𝑝2. The change trend of the Lyapunov exponent
in Figure 3(b) verifies the conclusion of Figure 3(a) 𝑝3. We
clearly find the bifurcation of system (22) when 𝜏1 = 0.547 in
Figure 3(b).Therefore, for enterprises in the price decision, it
is necessary to ensure that 𝜏1 < 0.547 when 𝜏2 = 0.45.
4.2. The Influence of 𝜏1 on Initial Value Sensitivity. If we take
the initial value of 𝑝1 is 0.4 and 0.401, respectively, the value
of 𝑝1 will change after iterations. When 𝜏1 = 0.530 < 𝜏10 =0.547, after 61 iterations, the difference of 𝑝1 is 6.144 times of
the initial difference 0.001. It can be described by Figure 4(a).
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Figure 1: The time series of system (22) when 𝜏2 = 0.45.
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In Figure 4(b), when 𝜏1 = 0.560 > 𝜏10 = 0.547, after 61
iterations, the difference of 𝑝1 is 56.16 times of the initial
difference 0.001. At this point, the value of 𝑝1 has strong
dependence on the initial value. Therefore, we know that
system (22) is already in chaos. So we can infer that price
decisions-making will have many unpredictable, tiny price
adjustments which will have a greater price deviation.

4.3. The Influence of 𝜏1 and 𝜏2 on Stability of Price. We take𝜏1 and 𝜏2 as parameters to study the effects of 𝜏1 and 𝜏2 on
the price stability. With the increase of 𝜏1 and 𝜏2, the price
changed from stable to unstable in Figure 5. When 𝜏1 is
greater than 0.52, the price will experience fluctuations; when𝜏2 is more than 0.5, the price will lose stability. When price is
stable, the price will be stable at 0.8723.When price is chaotic,
the highest price is 2.967 for 𝜏1 = 0.8, 𝜏2 = 0.15; the lowest
price is 0.01871 for 𝜏1 = 0.75, 𝜏2 = 0.75.Therefore, enterprises
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Figure 6: The influence of 𝜏1 and 𝜏2 on profit.

should ensure that 𝜏1 and 𝜏2 are in a reasonable range when
the price is set.

4.4. The Influence of 𝜏1 and 𝜏2 on Stability of Profit. We can
see from Figure 6, when 𝜏1 > 0.52, the profit will be unstable;
when 𝜏2 > 0.5, the profit will fluctuate. As profit is in stable
condition, the profit is stable at 1.367. When the profit is in an
unstable state, the maximum profit is 1.367; the lowest profit
is −13.6 for 𝜏1 = 0.8, 𝜏2 = 0.2. Through the analysis we can
know that with the increase of 𝜏1 and 𝜏2, profit will decline but
not higher than the stable value. Therefore, enterprises must
maintain a reasonable value of 𝜏1 and 𝜏2; otherwise there will
be a loss.

5. Chaos Control

From the above analysis, we realize that the price and profit
are in a state of chaos, which can lead to the fluctuation of
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the price and the profit. Therefore, we should take measures
to prevent the system from entering a chaotic state or make
it recover to a stable state. Below we take the method of the
state variables feedback and parameter variation to control
the system. Let 𝜏1 = 0.58 and 𝜏2 = 0.45; we can find that the
system is chaotic from Figure 5. The time series and attractor
of system (2) when 𝜏1 = 0.58, 𝜏2 = 0.45 are shown in Figure 7.

Adding control variable𝜇 in system (22), then system (22)
becomes

̇𝑝1 (𝑡) = (1 − 𝜇) 0.20 (5.0960 − 6.4614𝑝1 (𝑡 − 𝜏1)
+ 0.3058𝑝2 (𝑡 − 𝜏2) + 0.3567𝑝3 (𝑡)) + 𝜇𝑝1 (𝑡) ,

̇𝑝2 (𝑡) = (1 − 𝜇) 0.25 (5.2100 − 7.1470𝑝2 (𝑡 − 𝜏2)
+ 0.4168𝑝3 (𝑡) + 0.4689𝑝1 (𝑡 − 𝜏1)) + 𝜇𝑝2 (𝑡) ,

̇𝑝3 (𝑡) = (1 − 𝜇) 0.30 (5.3420 − 7.8599𝑝3 (𝑡)
+ 0.5342𝑝1 (𝑡 − 𝜏1) + 0.5876𝑝2 (𝑡 − 𝜏2)) + 𝜇𝑝3 (𝑡) .

(23)

The effect of 𝜇 on system (23) is shown in Figure 8. We
can get that when 𝜇 = 0.1055, system (23) has bifurcation
phenomenon. That is to say, when 𝜇 < 0.1055, system (23) is
chaotic, and when 𝜇 > 0.1055, system (23) is stable. With the
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Figure 9: The time series and attractor when 𝜇 = 0.05 < 0.1055.
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increase of 𝜇, the system changes from chaotic state to stable
state.

Let 𝜇 = 0.05 < 0.1055; we can find that system (23) is
chaotic from Figure 8.The time series and attractor of system
(23) are shown in Figure 9.

Let𝜇 = 0.15 > 0.1055; we can see that system (23) is stable
from Figure 8.The time series and attractor of system (23) are
shown in Figure 10. Compared with Figures 9 and 10, chaos is
controlled. The bigger the value of 𝜇 is, the more obvious the
control effect is.

6. Conclusions

Themodel of [19] was improved considering three enterprises
are bounded rationality and using the cost function under
the resource constraints. At the same time, delay strategy was
used by the first and second enterprises. Firstly, when 𝜏2 is
fixed, the influence of 𝜏1 on the stability of the system is
considered. Secondly, the effects of 𝜏1, 𝜏2 on the stability of
price and profit were studied. The research shows that the
value of 𝜏1 and 𝜏2 must be ensured in a reasonable range,
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and the price and profit are stable; otherwise there will be
violent fluctuations. Finally, measures are taken to control
chaos of system (2) successfully. The results of the paper play
an important guiding value for the enterprise to carry on the
price decision.
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