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Abstract
Background: The ability to regulate metabolism is a fundamental process in living systems. We
present an analysis of one of the mechanisms by which metabolic regulation occurs: enzyme
inhibition and activation by small molecules. We look at the network properties of this regulatory
system and the relationship between the chemical properties of regulatory molecules.

Results: We find that many features of the regulatory network, such as the degree and clustering
coefficient, closely match those of the underlying metabolic network. While these global features
are conserved across several organisms, we do find local differences between regulation in E. coli
and H. sapiens which reflect their different lifestyles. Chemical structure appears to play an
important role in determining a compounds suitability for use in regulation. Chemical structure also
often determines how groups of similar compounds can regulate sets of enzymes. These groups of
compounds and the enzymes they regulate form modules that mirror the modules and pathways
of the underlying metabolic network. We also show how knowledge of chemical structure and
regulation could be used to predict regulatory interactions for drugs.

Conclusion: The metabolic regulatory network shares many of the global properties of the
metabolic network, but often varies at the level of individual compounds. Chemical structure is a
key determinant in deciding how a compound is used in regulation and for defining modules within
the regulatory system.

Background
Cellular metabolism comprises all the chemical reactions
that take place within a cell. Through these various reac-
tions, the cell generates biomass and energy, replicates
itself, and can transmit information to its neighbours.
Metabolic pathways and networks are formed from link-
ing individual reactions into ever more complex, higher
order structures. In recent years, our increasingly complete
knowledge of the individual component reactions has
revealed some of the emergent properties of these higher
order networks[1-3].

A fundamental property of all organisms is their ability to
adapt to changing environments. From a yeast cell in a fer-
mentation reactor, to a human engaging in exercise, an
organism must be able to regulate its metabolism in order
to adapt to changes in its environment. Cells use a
number of mechanisms to regulate their metabolism. Two
of the most common and well studied are genetic regula-
tion (repression or activation of enzyme gene transcrip-
tion)[4], and enzyme inhibition/activation by small
molecules (allosteric inhibition for example)[5], though
other methods of regulation, such as mRNA attenua-
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tion[6,7], riboswitches[8] and cellular compartmentalisa-
tion[9], also have important roles to play.

In many systems several of these regulatory processes are
used together to provide a range of metabolic
responses[10]. The Escherichia Coli trp regulon, for exam-
ple, demonstrates control by genetic regulation, mRNA
attenuation and enzyme inhibition. In a classic feedback
loop, tryptophan inhibits the enzymes, and the produc-
tion of those enzymes, that are required for its synthe-
sis[11].

Previously, Barrett et al[12] studied the genetic regulation
of metabolism in E. coli using a genome-scale model of
the known metabolic and genetic regulatory net-
works[13]. Similarly, Yeang and Vingron[4] examined the
way in which metabolites exert feedback control over
enzyme gene expression. In contrast, although the role of
enzyme inhibition and activation in individual pathways
has been studied and modelled in some detail, genome-
scale analyses of enzyme inhibition and activation net-
works have been lacking to date. In this paper we present
such an analysis.

The advantage of genome-scale studies is that they may
identify emergent properties of the system that are not
obvious at the reaction, or even pathway, level. One such
emergent property of many biological (and non-biologi-
cal) networks, including metabolic networks, is their scale
free topology[14]. It has been proposed that this property
is biologically useful and actively selected for by evolu-
tion[15], though other studies have questioned whether
this is a real feature of metabolic networks[16], and have
suggested that the topology simply derives from the way
in which new enzyme functions evolve. In this study of
metabolic regulatory networks, we expect to see networks
that closely follow the topology of the underlying meta-
bolic network and to see the global properties of the net-
works conserved across different organisms, though there
maybe local variations between organisms.

Enzyme inhibition/activation is also the basis for the effi-
cacy of many drugs. In particular, modern in silico drug
design has often focussed on designing compounds capa-
ble of inhibiting disease associated enzymes. HIV protease
inhibitors are some of the best known examples of this
type of drug[17]. However, being able to make in silico
predictions about which enzymes a compound will bind
to has proved to be a difficult problem[18,19]. It is an
important question, because knowing whether a com-
pound interacts with one, or a whole set of enzymes is
important for predicting potential side-effects. By looking
at how groups of chemically similar compounds regulate
similar enzymes we are able to see how Nature uses this
sort of regulatory 'cross-talk' to form functional modules

within the larger network, and even make simple predic-
tions of novel regulatory interactions. We can also exam-
ine which compounds are commonly used as regulatory
molecules and whether these compounds have chemical
properties which distinguish them from molecules used
less often.

In summary, this study aims to answer basic questions
about how the enzyme inhibition and activation regula-
tory system is organised. This includes examining the
topology of the overall regulatory network in several
organisms, investigating which compounds are used as
regulators and the relationship between chemical struc-
ture and enzyme inhibition. A full understanding of
metabolism and its regulation will require merging mod-
els of genetic regulation with enzyme inhibition/activa-
tion and other regulatory mechanisms. This full model is
still someway distant, not least because the data describ-
ing these processes is often incomplete. However, we
hope that this study goes someway towards the goal of a
full and complete understanding of cellular metabolism.

Results
Inhibitory and activatory interactions between small mol-
ecules and enzymes were extracted from the BRENDA
database[20] for Escherichia coli, Homo sapiens, Plasmodium
falciparum and Saccharomyces cerevisiae as described in the
methods section. The total number of extracted interac-
tions and other details were calculated [see Additional file
1]. In brief, the E. coli network comprises 1847 com-
pound/enzyme interactions, and the S. cerevisiae and H.
sapiens networks comprise 1462 and 1435 interactions
respectively. The dataset for P. falciparum is smaller, com-
prising 599 interactions.

Inhibitor/activator data was also downloaded from Eco-
Cyc[21] to provide a comparison dataset. After processing,
the EcoCyc data representing regulation in E. coli com-
prises 667 compound/enzyme interactions.

Network Properties
The regulatory interactions for each organism are initially
represented by a directed bipartite network. In a bipartite
network the set of nodes can be divided into two disjoint
sets, and each edge connects a node from one set with a
node from the other set. In our network the nodes are
either compounds or enzymes. An edge is drawn to con-
nect a compound node to an enzyme node when the com-
pound is known to regulate the enzyme. Edges are
labelled according to whether the regulation is inhibitory
or activatory.

First we plot the network's degree distribution. The degree
of a node (k) is a measure of how many edges are con-
nected to that node (in this network, for the compound
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nodes this corresponds to how many EC codes a com-
pound regulates). We count the degree of each compound
node and bin the data into bins of exponentially increas-
ing size. The probability of a compound being in each bin
(P(k)) is then calculated for each bin. P(k) is the number
of nodes in a given bin divided by the total number of
nodes.

A log-log plot of P(k) against k for the interactions taken
from E. coli is shown in Figure 1(a). For comparison, the
degree distribution for compounds in the underlying met-
abolic network is also shown. In this network a com-
pound node is connected to an enzyme node if the
compound is a substrate or product (rather than regula-
tor) of the enzyme. The metabolic network information is
extracted from KEGG[22] as detailed in the methods sec-
tion.

The data is fitted to a power law distribution, as shown in
Equation 1, using a maximum likelihood estimation
method.

P(k) = k-γ  (1)

The fitted exponent for the underlying metabolic network
is 2.19, very close to the value reported by Jeong et al who

used an essentially identical method[3]. The fitted expo-
nent for the regulatory data is 1.64 with 95% confidence
limits for the fit of 1.58–1.70. This value is significantly
smaller than that found for the metabolic network (and
many other biological networks), where the value is often
2–3. The same analysis on the EcoCyc regulatory data
gives a fitted exponent of 1.79 ± 0.10. This is larger than
the value found from BRENDA, but still appears signifi-
cantly smaller than the exponent of the metabolic net-
work.

The regulatory compounds in BRENDA are split into
those compounds that activate an enzyme and those that
inhibit it. The number of inhibitory interactions (1497) is
greater than the number of activatory interactions (350),
but we can still compare the networks formed by each.
The degree distribution for inhibitors and activators from
E. coli is shown in Figure 1(b). The degree exponent for the
inhibitors is 1.68 ± 0.07, whilst for the activators it is 1.94
± 0.13, indicating a small, but significant, difference in the
degree distribution between inhibitors and activators.

There is also evidence for a high degree of modularisation
in metabolic networks. This is most obviously represented
by the abstraction made by scientists when they divide
portions of the network into separate pathways as found

(a) Log-log plot of the degree distribution for compound nodes in the regulatory and metabolic networks of E. coliFigure 1
(a) Log-log plot of the degree distribution for compound nodes in the regulatory and metabolic networks of E. coli. Colors: 
(orange) Regulatory network, (blue) metabolic network. (b) Log-log plot of the degree distribution for compound nodes in the 
regulatory network divided into activating compounds and inhibiting compounds. Colors: (orange) Inhibitors, (blue) activators.
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in KEGG and EcoCyc[22,21]. In addition, there is evi-
dence for considering the metabolic network as funda-
mentally modular[23]. Whilst a modular and scale-free
topology seems contradictory (since the presence of mod-
ules implies a fundamental scale) a hierarchical network
model has been proposed that can have both proper-
ties[24].

The characteristic feature of a hierarchical network is that
the clustering coefficient is smaller for highly connected
nodes than for loosely connected nodes. The clustering
coefficient for a node is defined as the proportion of links
between its adjacent nodes divided by the number of links
that could possibly exist. In practical terms the spoke
nodes tend to form tightly connected modules (corre-
sponding to pathways in the metabolic network or regula-
tory modules in the regulation network) while the hub
nodes connect these modules to each other. A log-log plot
of C(k) (defined as the average clustering coefficient for
nodes of degree k) against k should be linear with a slope
approaching -1 for a hierarchical network.

The original bipartite networks (comprising separate
enzyme and compound nodes) used above are trans-
formed into monopartite networks comprising just com-
pounds. In the metabolic network, compounds that are
substrates of a given enzyme are connected to the product
compounds of that enzyme. In the regulatory network,
compounds that are regulators of a given enzyme are con-
nected to the product and substrate compounds of that
enzyme. An example of a reaction and its transformation
into the monopartite networks used below is shown in
Figure 2.

Figure 3 shows the log-log plots of C(k) against k for both
of these networks. The metabolic network shows the same
behaviour as observed previously[24], with higher degree
nodes showing the predicted linear relationship between
k and C(k). This relationship breaks down at k < 10 below
which the clustering coefficient levels off. The regulatory
network shows similar behaviour, but with several differ-
ences: Firstly, the average clustering coefficient in the reg-
ulatory network is around double the coefficient in the
underlying metabolic network. Secondly, though again
there is a portion of the network that appears to follow the
C(k) ~ k-1 law this regime only begins at k ≈ 60. Below this
value the slope becomes less steep.

These results would suggest that the regulatory network is
more clustered than the metabolic network (due to the
high clustering coefficient) and also that the characteristic
size of the modules may differ (due to the difference in the
point at which the linear C(k) ~ k-1 relationship breaks
down).

Comparing Regulation Between Organisms
To compare the network between different organisms, we
plot the same log-log plot as in Figure 1(a), using the data
from each of the organisms studied. This is shown in Fig-
ure 4. The fitted degree exponent for each organism is
given in Table 1. Note that no allowance is made for the
multi-cellular nature of H. sapiens. Different tissues and
cells within H. sapiens will often be controlled under dif-
ferent regulatory systems since different isoforms of the
same enzyme may be expressed.

Although there is some variation between the organisms,
the overall distribution of regulatory interactions remains
similar. The slightly higher degree exponent for H. sapiens
implies that highly connected hub compounds form a
lower proportion of the total in H. sapiens than in E. coli
or S. cerevisiae. It also appears that P. falciparum has
evolved to have a regulatory network more similar to its
host, H. sapiens than the other single celled organisms. To
investigate these differences further, we looked for more
local changes in the compounds involved in regulation in
each organism. For E. coli, S. cerevisiae, H. sapiens and P.
falciparum the top ten most commonly observed regula-
tory compounds are shown in Table 2.

We can clearly see the importance of ATP and related
metabolites in metabolic regulation from this data. A sim-
ilar trend was seen in the data from EcoCyc, with ATP,
ADP and AMP forming the top three regulator com-
pounds [see Additional file 1]. This reflects the impor-
tance of ATP and related compounds in the underlying
metabolic network. However, some of the other com-
monly seen regulators, such as glutathione and mercap-
toethanol, are less important metabolically. These
compounds often contain reducing elements such as thiol
groups which can activate or inhibit many enzymes in a
non-specific manner by reducing or oxidising active site
cysteine residues.

Although the same compounds are consistently observed
as the most important across all the organisms studied,
there are some compounds whose importance varies con-
siderably. To compare the relative importance of a com-
pound in different organisms, we rank each compound by
the number of ECs it regulates in each organism. In Table
3 we show those compounds undergoing the largest
change in rank between E. coli and H. sapiens. Note that we
only consider compounds present as metabolites in both
organisms, so there are some small changes to the ranks
shown in Table 2.

The compounds found more commonly acting as regula-
tors in E. coli are components of glycolysis, amino acid
metabolism and in particular the citric acid cycle. In con-
trast, the compounds found more commonly acting as
Page 4 of 17
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regulators in H. sapiens tend to be phospholipids and
other signalling molecules such as nitric oxide and cyclic
AMP. Phosphatidylethanolamine, phosphatidate, phos-
phocholine, phosphatidylcholine and phosphatidylserine
are all involved in glycerol/glycerophospholipid metabo-
lism and the phosphatidylinositol signaling system.

The compound with the largest change between E. coli and
H. sapiens is pyruvate which only regulates four different
enzymes in H. sapiens compared to 25 in E. coli. This
results in a drop in importance of pyruvate from the 10th
most important regulator of metabolism in E. coli to the
26th most important in H. sapiens. We also observe that
only one of the four H. sapiens enzymes regulated by pyru-
vate is also regulated by pyruvate in E. coli.

We performed the same analysis comparing S. cerevisiae
and P. falciparum with H. sapiens. However, similar pat-
terns of differences were found in each case: more regula-
tion by glycolysis and citric acid cycle compounds in the
unicellular species and more regulation by phospholipids
and cell signalling compounds in H. sapiens.

Types of Compounds Used As Metabolic Regulators
Since we have shown that the regulatory network has a
similar overall structure and topology to the underlying
metabolic network, and that common regulatory com-

pounds like ATP are also often the most common metab-
olites, it is interesting to ask whether the regulatory
network simply shadows the metabolic network. Is the
frequency with which we see a compound acting as a reg-
ulator straight-forwardly related to the frequency with
which we see it in metabolism?

The relationship between the number of reactions each
compound is involved in and the number of reactions reg-
ulated by each compound is shown for E. coli and H. sapi-
ens in Figure 5. The Pearson correlation coefficient
between the two values shows that the correlation is weak:
0.53 for E. coli and S. cerevisiae (not shown) and 0.42 for
H. sapiens (Spearman's rho values are 0.44 and 0.46 for E.
coli and H. sapiens; P-values are 1.5 × 10-58 and 3.9 × 10-84

respectively). Removing ATP/ADP from the data set
emphasises the weakness of the correlation. doing so
immediately lowers the Pearson coefficients to 0.40 and
0.31 in E. coli and H. sapiens respectively. This implies
that, although the metabolic importance of a compound
does have an effect on its use as a regulator, there are other
important considerations. The fact that the relationship is
slightly stronger in E. coli and S. cerevisiae may be signifi-
cant. We have already seen above that E. coli is more heav-
ily regulated by core metabolites than H. sapiens. Since the
core metabolites are involved in more reactions than
other compounds, the weaker correlation between meta-
bolic importance and regulatory importance observed in
H. sapiens also reflects this observation.

An example of two compounds with differing regulatory
proclivities is ATP and NAD+. Both compounds are
involved in many different reactions. In E. coli, ATP is
involved in 179 different EC reactions compared to 116
for NAD+ (a 54% difference), yet the number of reactions
regulated by ATP is 70 compared to 19 by NAD+ (a 268%
difference). Possible reasons for this difference are pro-
posed in the discussion.

Some other trends in the use of different compounds are
obvious: many small molecules, for instance, are rarely
used as regulators even though they are common metab-
olites. Nitric oxide is an example of a small compound
that is used as a regulator. It regulates 6 enzymes in H.
sapiens and 3 in E. coli though it is only involved metabol-
ically in 1 reaction in either organism. In contrast, almost
all the other small molecules that are highly involved in
metabolism rarely act as regulators: Oxygen (2 ECs regu-
lated/23 EC reactions), carbon dioxide (1 EC regulated/60
EC reactions) and ammonia (3 ECs regulated/91 EC reac-
tions). Having said this, no correlation could be found
between regulatory proclivity and mass for the regulator
compounds in our dataset.

An example of a reaction represented first by a bipartite net-work and second by two monopartite networksFigure 2
An example of a reaction represented first by a bipartite net-
work and second by two monopartite networks. The com-
pounds A and B are substrates of reaction catalysed by EC: 
1.2.3.4, C and D are products and E is an inhibitor of EC: 
1.2.3.4. In network 2. only the metabolic network is used and 
substrates are connected to products. In network 3. only the 
regulatory network is used and the regulator (E) is con-
nected to each of the substrates and products, representing 
the fact that E regulates the levels of these compounds in 
some way. Note that E could be one of the products or sub-
strates of the reaction, in which case it is connected to itself.
Page 5 of 17
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To find other compounds with a particularly low or high
regulatory proclivity we measured the ratio between the
number of ECs regulated and the number of ECs featuring
the compound as a substrate or product for each com-
pound. Table 4 shows all the compounds that are
involved in or regulate >20 EC reactions. Molecules with
<4 non-hydrogen atoms are filtered out. The data shown

is from E. coli, but similar patterns are observed in S. cere-
visiae, H. sapiens and P. falciparum [see Additional file 1].

The compounds with low regulatory proclivity include
NAD(P)+/H which has already been mentioned. Gluta-
mate is another molecule which while apparently impor-
tant in metabolism is not so common in the regulatory

(a) Log-log plot of C(k) against k from metabolic and regulatory networks in E. coliFigure 3
(a) Log-log plot of C(k) against k from metabolic and regulatory networks in E. coli. k is the outgoing degree of each node. C(k) 
is defined as the average clustering coefficient (C) of all the nodes of a given k. The dashed lines correspond to C(k) ~ k-1. 
Colors: (orange) metabolic network, (blue) regulatory network. (b-d): C(k) against k from the regulatory networks in S. cerevi-
siae, H. sapiens and P. falciparum.
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network. ATP has a higher ratio than NAD(P)+/H. How-
ever, when compared to other compounds, ATP does not
have a ratio that is remarkably high. The high proclivity
compounds are dominated by non-specific regulators
such as mercaptoethanol, urea, glutathione and spermi-
dine. D-fructose 1,6-bisphosphate is a common regulator
presumably due to its position in a key, but early part of
glycolysis. This means it is involved in few reactions but is
important for regulating many. Adenosine is also a com-
mon regulator, though possibly this is a side-effect of
many enzymes being regulated by ATP/ADP which allows
them to be regulated by adenosine as well.

Chemical vs Regulatory Similarity
It is clear from the above analysis that groups of related
compounds often regulate the same enzyme. Enzymes
regulated by ATP, for instance, are often also regulated by
ADP and AMP. The apparently anomalously high regula-
tory proclivity for adenosine could be a by-product of this.
The obvious explanation for this effect is that the determi-
nant of regulator binding is some chemical group com-
mon to all these compounds (perhaps the adenosine ring
in this case). If this is generally the case then we would
expect to see a relationship between the chemical struc-
ture similarity of two compounds, and their 'regulatory
similarity'. There are many approaches to measuring
chemical similarity and in this study we use SIM-
COMP[25]. SIMCOMP provides a global similarity score

between two compounds based on the size of the com-
mon substructures between the two compounds. To
measure the regulatory similarity between two com-
pounds we use a binary string comparison measure. Each
compound is represented by a string of 1 and 0s, where
each position in the string represents an enzyme. If the
compound regulates a given enzyme then the enzyme's
position in the string is set to 1, otherwise it is set to 0. The
strings representing the set of enzymes that two com-
pounds regulate can then be compared using the Jaccard
coefficient, as described in the methods section.

Figure 6(a) shows the chemical similarity scores of every
possible pair of E. coli metabolites against their regulatory
similarity. A weak correlation can be seen. Below a chem-
ical similarity score of about 40, there is little regulatory
similarity between compounds. However, above a score
of 40 several pairs of compounds do show similar regula-
tory profiles. The correlation between the two values is
weak: the Pearson's correlation coefficient is 0.51 (Spear-
man's rho is 0.16; P-value is 3.3 × 10-33).

The most regulatory similar compounds in this dataset are
L-valine and L-isoleucine which have a regulatory similar-
ity score of 64. L-valine and L-isoleucine are structurally,
functionally and pathway related. Both are derived from
2-(alpha-Hydroxyethyl)thiamine diphosphate in the
'valine, leucine and isoleucine biosynthesis' KEGG path-
way (map00290). The other major compound of this
pathway, L-leucine, also has high regulatory similarity
scores with the other two compounds. Another pair of
amino acids that have highly similar regulatory profiles
are L-serine and L-glycine. Again these compounds are
part of the same pathway ('glycine, serine and threonine
metabolism' (map00260)), and indeed are interconverted
in a single step catalysed by glycine hydroxymethyltrans-
ferase (EC 2.1.2.1).

Other than amino acids, other compounds with similar
regulatory profiles are the various nucleotide phosphate
compounds. Cytosine phosphate compounds and their
uridine counterparts are particularly close as are the vari-
ous adenosine derived compounds such as ATP and ADP.
In contrast, GTP, while chemically similar to ITP has a rel-
atively weak regulatory similarity. The deoxy form of GTP
(dGTP) is another example of a compound very close in
structure to GTP, but relatively dissimilar in terms of reg-
ulation.

It is clear from the pairwise analysis, that there are groups
of compounds that regulate similar enzymes due to their
similar chemical structures and functional roles. If the
modular, pathway-centric view of metabolism is correct
we would expect to see compounds within a pathway (or
group of pathways) concentrate on regulating enzymes

Log-log plot of the degree distribution for compound nodes in the regulatory network from several different organismsFigure 4
Log-log plot of the degree distribution for compound nodes 
in the regulatory network from several different organisms. 
Colors: (orange) E. coli, (blue) S. cerevisiae, (green) H. sapiens, 
(yellow) P. falciparum.
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within those pathways and so forming a distinct regula-
tory unit (as we observe with leucine, valine and isoleu-
cine).

Figure 6(b) shows a graph representation of those com-
pounds in E. coli with similar regulatory profiles. Each
node represents a compound and edges are drawn
between two compounds if their regulatory similarity is
above 20. Nodes are then colored to divide them into
functionally and structurally similar compounds. The
divisions are somewhat arbitrary but they split the com-
pounds into the following chemical and functional
groups: amino acids, TCA compounds (any one of the
compounds in the main citric acid cycle), glycolysis com-
pounds (any compound involved in glycolysis), NTPs (all
nucleoside triphosphate compounds except for ATP),
dNTPs (all deoxy-nucleoside triphosphate compounds),
the ATP group (ATP, ADP, AMP and PO3), other NPs (all
other nucleoside di and monophosphate compounds),
the NAD group (NADH, NAD+, NADPH, NADP+) and
other compounds.

The graph representation reveals a strong grouping of
compounds into functional and structural modules that,
while hinted at in the pairwise analysis, were not immedi-
ately apparent. It is interesting to note that in some cases
functional ties are stronger than structural ones. For
instance, the various deoxynucleotide triphosphate com-
pounds (dATP, dCTP, dGTP and dTTP) form a tighter
group with each other than they do with their respective
nucleotide triphosphate compounds (ATP, CTP, GTP and

TTP), even though they are chemically closer to them. It is
also interesting that the arrangement of the groups of reg-
ulators relative to each other mirrors their arrangement in
metabolism. Glycolysis compounds, for instance, connect
with citric acid cycle compounds in regulation, in the
same way as the two metabolic pathways connect. Again,
this reflects the importance of chemical structure in defin-
ing regulation (and hence these groups), since at the meet-
ing of two metabolic pathways the compounds involved
are chemically closely related, it follows that they regulate
similar enzymes.

Discussion
Remarks on the dataset used
Our knowledge of the metabolic regulatory network is
still incomplete. Unlike other networks such as genetic
regulation or protein interaction networks there is, to our
knowledge, no current technology for performing high-
throughput, genome scale measurements of enzyme inhi-
bition/activation. The results we present and the conclu-
sions we draw have to be considered in this light.

An important consequence of the incompleteness in the
data is that there is likely to be a bias in the results. Exper-
imental enzymologists are more likely to test a given
enzyme for regulation by common molecules such ATP
rather than any randomly chosen compound. This will
lead to a tendency to over-emphasise the importance of
the hub molecules we find in our network. The EcoCyc
dataset provides a useful comparison dataset and shows
similar patterns, though we cannot rule out the same bias

Table 2: The ten compounds observed most commonly acting as regulators in E. coli, S. cerevisiae, H. sapiens and P. falciparum.

E. coli S. cerevisiae H. sapiens P. falciparum
Rank Compound Interactions Compound Interactions Compound Interactions Compound Interactions

1 ATP 70 ATP 65 ATP 51 ATP 56
2 ADP 70 ADP 52 Dithiothreitol 51 ADP 54
3 AMP 55 Orthophosphate 51 ADP 40 AMP 41
4 Orthophosphate 53 AMP 50 Orthophosphate 39 Orthophosphate 30
5 Mercaptoethanol 40 GTP 31 Mercaptoethanol 39 Pyrophosphate 29
6 Pyrophosphate 38 Pyrophosphate 31 AMP 31 GTP 28
7 GTP 35 Fe2+ 26 Glutathione 30 CTP 23
8 Fe2+ 35 NADH 25 Pyrophosphate 24 UTP 23
9 Glutathione 29 UTP 25 UTP 23 Adenosine 20
10 NADH 28 Glutathione 24 GTP 22 GDP 20

Table 1: Degree exponents for the compound nodes in the regulatory networks of E. coli, S. cerevisiae, H. sapiens and P. falciparum.

Organism Degree Exponent

E. coli -1.64 ± 0.06
S. cerevisiae -1.68 ± 0.07
H. sapiens -1.81 ± 0.07
P. falciparum -1.82 ± 0.11
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appearing in EcoCyc as well. There does not appear to be
any technical way to correct for this bias other than
acknowledge it as a caveat in any conclusions we draw.

Another issue with the underlying dataset is that BRENDA
(from which the dataset is derived) does not contain eas-
ily machine readable information on the type of regula-
tion that a compound performs. This leads to us
considering a range of different physical phenomena as
one single process, particularly when we consider inhibi-
tors. Enzyme inhibition can be performed by product
inhibition, whereby the product simply rebinds to the
active site preventing further reactions by competitive
inhibition, allosteric or non-competitive inhibition,
whereby a molecule binds to a separate regulatory site,
and non-specific inhibition whereby a molecule has
chemical properties which allow it to disable an enzyme
without binding specifically to any site. Ideally we would
separate these processes, but this is currently difficult to
do in an automatic way. It should be noted that the Eco-

Cyc dataset does contain information on regulation type.
However the quantity of data available through EcoCyc
was found to be smaller.

Finally, it should be recognised that metabolism is a
dynamic system. Even in E. coli, different enzymes are
expressed at different times and so the static networks we
analyse here are only an approximation of the true regula-
tory system. This problem is increased when we consider
the network of H. sapiens, which, as a multi-cellular organ-
ism, has networks which vary not only in time, but from
tissue to tissue and from cell to cell.

Clearly a full analysis and modelling of the metabolic reg-
ulatory system will require us to know not only the type
of regulation that is performed, but also the parameters
for each regulation (such as ki). Although BRENDA does
include parameters for some interactions, again it is not
easily machine readable and so we do not use this infor-
mation in this study.

Table 3: Comparison of those compounds that have different importance in regulation between E. coli and H. sapiens. 

Rank Interactions
No. Compound E. coli H. sapiens E. coli H. sapiens

More common in E. coli

1 Pyruvate 10 26 25 4
2 Phosphoenolpyruvate 15 28 19 2
3 2-oxoglutarate 16 27 18 3
4 Pyridoxal phosphate 15 26 19 4
5 D-fructose 1,6-

bisphosphate
14 25 20 5

6 ITP 18 28 15 2
7 Succinate 15 25 19 5
8 Oxaloacetate 20 28 13 2
9 L-alanine 21 28 12 2
10 L-serine 20 27 13 3

More common in H. 
sapiens

10 Nitric oxide 30 24 3 6
9 3'-5'-cyclic AMP 29 23 4 7
8 Phosphatidylethanola

mine
28 22 5 8

7 UTP 12 7 22 23
6 Phosphatidate 30 23 3 7
5 Ethanol 25 18 8 12
4 1-acyl-glycero-3-

phosphocholine
32 22 1 8

3 CDP 28 17 5 13
2 Phosphatidylserine 30 17 3 13
1 Phosphatidylcholine 28 13 5 17

The number of interactions (EC numbers regulated) for each compound in the two organisms is shown in the right most columns. The compounds 
are then ranked in each organism by the number of interactions. The ranks for each compound in the two organism are shown in the middle 
columns. The ten compounds showing the largest decrease in rank (i.e. those that are more important in H. sapiens and the ten compounds showing 
the largest increase in rank (more important in E. coli are shown.
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The global architecture of the metabolic and regulatory 
networks
The analysis of the degree and clustering coefficient distri-
butions shows that the regulatory network has many of
the same characteristics as the underlying metabolic net-
work: a power law distribution of node degree leading to
a few highly connected hub regulators and a higher clus-
tering coefficient amongst spoke compounds. Networks
with these features are thought to be robust and resistant
to random node failure since random failures are unlikely
to effect the few hub nodes.

In our network, a node failure can be interpreted as a fluc-
tuation in the concentration of a compound above nor-
mal operating levels. This could occur by a random
mutation leading to the loss of an enzyme required for
synthesis of a given compound, a random mutation
resulting in constitutive activation of an enzyme (which
could lead to an excess of a given compound), the loss of
a compound from the environment, or a random environ-
mental event (or hostile organism) could even introduce
an excess of a given compound. Organisms with this type
of regulatory network architecture are protected against
random events (such as mutation) because the loss of any
single compound is unlikely to shut down much of the

network. Targeted attacks on a hub compound are likely
to be highly damaging however.

The lower degree exponent observed in the regulatory net-
work implies that the network is even more skewed
towards hub molecules than the underlying metabolic
network. However, as we have seen there may well be an
inherent bias in the dataset towards these hub molecules.
In this light, we cannot ascribe significance to the differ-
ence in degree exponent between metabolic and regula-
tory networks.

The significance of the difference in degree distribution
when comparing inhibitors and activators may derive
from the usually more specific nature of activatory inter-
actions. If we assume ligand binding causes structural
changes in an enzyme which either increase or decrease
activity, and given the sensitivity of enzyme active sites to
their precise 3D arrangement[26,27], it would seem that
there would be many more changes in an active site that
would reduce efficiency than there would be that increase
it. Inhibition would therefore seem to be an 'easier' task
for a compound to perform and to evolve. There are likely
to be fewer non-specific activatory compounds with high
degree (regulating many enzymes) therefore. It may well

Correlation of metabolic importance with regulatory importanceFigure 5
Correlation of metabolic importance with regulatory importance. In each graph each point represents a compound with the 
number of ECs for which it is a reactant shown on the y-axis and the number of ECs for which it is a regulator shown on the 
x-axis. The correlation coefficients are 0.53 and 0.42 for E. coli and H. sapiens respectively (P-values: 1.5-58 and 3.9-84).
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also be the case that the non-specific interactions (both
inhibitory and activatory) reported in BRENDA are less
important in vivo than the specific interactions. If that is
so, then the topology of the activatory network may better
represent the true topology of the whole network.

We have seen how the clustering coefficient in the meta-
bolic network is related to the degree exponent. This leads
to a hierarchical architecture whereby the spoke nodes
tend to form highly clustered modules that are built up
into larger, but more loosely connected modules. Ravasz
et al observe a very similar pattern including the lowering
of the clustering coefficient below a certain degree cut-
off[24]. They do not appear to comment on this feature,
but presumably it can be interpreted as a fundamental
node degree below which there is no apparent hierarchy.
For the metabolic network this occurs at a degree of
around 10.

We see a similar relationship between C(k) and k in the
regulatory network, but with two differences: Firstly the
average clustering coefficient is considerably higher
(around twice as high). An explanation for the high clus-
tering is that a given compound may have only a small
part of its chemical structure recognised at a regulatory site
on an enzyme. This means that other chemicals which

share the same structural motif can also regulate at the
same site and so a cluster of regulators is formed. This may
be a useful design feature allowing related molecules
within a pathway to feedback and inhibit a common syn-
thesising enzyme (the point of entry into the pathway for
instance). This is observed in the synthesis of valine, leu-
cine and isoleucine which share a common structural core
that is recognised by the first enzyme in their synthesis
pathway: acetolactate synthase. We also observe the proc-
ess whereby one molecule, such as ATP, inhibits, while a
second, related molecule, such as ADP, activates a single
enzyme.

The hierarchical clustering appears to breakdown in the
regulatory network at a higher degree value than the met-
abolic network (around 60 compared to 10). The bias
commented on above (that hub connections are over rep-
resented) means that some connections amongst low k
molecules may be missing. This will lower the clustering
coefficient for low degree compounds and so we cannot
rule out this explanation for the discrepancy. Another part
of the reason for the higher degree value at which the C(k)
~ k-1 relationship breaks down is the way in which the
graph is constructed. To construct the metabolic graph,
substrates are connected to products whereas in the regu-
latory graph, regulators are connected to substrates and

Table 4: The regulatory proclivity of common metabolites and regulators in E. coli. .

Rank Compound Reaction ECs Regulated ECs Ratio

1 NAD+ 116 19 0.16
2 NADPH 82 20 0.24
3 NADH 110 28 0.25
4 NADP+ 83 22 0.27
5 L-Glutamate 44 12 0.27
6 Acetyl-CoA 33 11 0.33
7 CoA 48 19 0.40
8 ATP 176 70 0.40
9 Pyrophosphate 94 38 0.40
10 Orthophosphate 119 53 0.45
11 ADP 119 70 0.59
12 Pyruvate 42 25 0.60
13 2-Oxoglutarate 22 18 0.82
14 AMP 53 55 1.04
15 UTP 13 22 1.69
16 GTP 20 35 1.75
17 CTP 11 24 2.18
18 L-Cysteine 10 26 2.60
19 Glutathione 9 29 3.22
20 Spermidine 4 22 5.50
21 D-Fructose 1,6-

bisphosphate
3 20 6.67

22 Adenosine 3 21 7.00
23 Urea 1 20 20.00
24 Mercaptoethanol 1 40 40.00

Compounds that are either regulated or are involved in more than 20 reactions in E. coli are shown. Small molecules (<4 non-hydrogen atoms) are 
excluded)
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products. However, even if we divide 60 by two it is still
larger than 10 and so this may suggest that the fundamen-
tal size of modules controlled by the regulatory network is
different to the size of modules in the underlying meta-
bolic network. This would suggest that groups of meta-
bolic pathways or modules tend to be regulated by
common compounds.

Variations in regulatory systems between organisms
Comparison of the degree exponent of the log-log plot for
different organism shows that while the two unicellular
organisms are relatively similar, the H. sapiens network
has a slightly higher degree exponent. The effect of this is
to make the hub molecules slightly less important in H.
sapiens than they are in the unicellular organisms. There is
no reason to think that there would be changes in the bias
between organisms, so we suggest that these results reflect
a real difference due to the differing lifestyles of these
organisms.

As shown in Table 3, a comparison of those compounds
that change in importance between E. coli and H. sapiens
shows some of the local reasons for why this global
change takes place. E. coli metabolism is regulated more
by essential metabolites such as pyruvate, which often act
as hub molecules in the regulatory and underlying meta-
bolic networks. In contrast, H. sapiens is regulated by mol-
ecules whose role in metabolism is relatively small,
because they're primarily used as signalling molecules.
Transferring information is the role of these molecules
rather than metabolic mass or energy.

This reflects the difference between the two organisms
lifestyles. An E. coli cell must be acutely aware of its envi-
ronment's energy capacity and ready to quickly respond to
changes in that environment (which are often outside its
control). The same is true of S. cerevisiae cells which
showed a similar pattern to E. coli. H. sapiens cells on the
other hand, exist in a strictly controlled medium in which

The relationship between the regulatory similarity of a pair of compounds and their chemical similarityFigure 6
The relationship between the regulatory similarity of a pair of compounds and their chemical similarity. (a) A scatter plot of 
chemical similarity scores for every pair of compounds in the E. coli dataset against regulatory similarity. (b) Graph plot of the 
E. coli regulatory compounds. Each node represents a compound and edges are drawn between nodes when they have a regu-
latory similarity above 20. Compounds are colored according to the chemical groups or pathways they belong to. Edges are 
colored such that compounds with the most similar regulatory profiles are connected with red lines and those with less similar 
ones are connected with blue lines.
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(a) Chemical vs regulatory similarity in E.coli. (b) Regulatory ‘modules’ in E.coli.
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changes are suppressed by regulatory systems acting on a
whole body level (the release of glucose by the liver for
instance). The H. sapiens cells must be ready to alter their
metabolism, not in response to changes in energy levels,
but to external signals which may tell the cell that the
body is preparing for exercise for instance.

We also note that the malarial parasite P. falciparum has,
in terms of its overall topology, as measured by the power
law degree exponent, a network more similar to its host
than the other two single celled organisms. Although the
data is limited, we would suggest that the parasite has
evolved its metabolic regulatory system to match that of
H. sapiens in order to better survive within the cells and
blood stream of its host.

Variations in regulatory ability between compounds
The observation that some compounds are powerful reg-
ulators of metabolism because of their importance in
metabolism leads to the obvious question: Is the regula-
tory network simply a copy of the underlying metabolic
network?

If so we would expect a linear relationship to be shown in
Figure 5. Instead, we find a relatively weak correlation
between the importance of a compound in metabolism
and its importance in regulation. We suggest that this is
often due to the importance of chemical structure. Several
small molecules for instance, often seen in metabolism,
seem to make poor regulators, perhaps because they dif-
fuse quickly (and hence make good signalers of a cells
environment), they make an enzyme using them as regu-
lators over-sensitive to small fluctuations in its environ-
ment.

There is also a striking difference between the number of
reactions regulated by NAD+ and by ATP, two compounds
often referred to as the 'energy currency' of the cell.
Although these two compounds are involved in similar
numbers of reactions, NAD+ regulates far fewer. To
explain this we must look at the common reaction prod-
ucts of these compounds. In metabolism, NAD+ is usually
converted into NADH, a change of one proton, while ATP
is usually converted into ADP or AMP, a change of one or
two phosphate groups. We hypothesise that, due to the
small chemical difference between NAD+ and NADH, it is
easier for an enzyme to evolve to distinguish ATP from
ADP than NAD+ from NADH. To be regulated correctly,
an enzyme will need to distinguish the two forms, so we
suggest that the chemical structure of NADH/NAD+ is the
reason why it is relatively rarely observed as a regulatory
molecule.

We also see a slightly weaker relationship between regula-
tory importance and metabolic importance in H. sapiens.

This fits in with the conclusion we come to above, that
core metabolites are less important in H. sapiens meta-
bolic regulation than in E. coli. We conclude that while
metabolic importance is an important factor in determin-
ing whether a compound is an important regulator, the
regulatory network is not simply a copy of the metabolic
network.

Compound structure/regulatory similarity
We have seen the importance of chemical structure in
understanding metabolic regulation. This links us back to
the idea of clustering and modules in the regulatory net-
work. For instance, ATP and ADP regulate many of the
same enzymes, because this is both structurally easy to
evolve (once an enzyme evolves to bind ATP it is easy to
evolve to bind ADP as well) and functionally useful. ATP
and ADP are functionally closely related compounds and
so being able to respond to changes in the concentration
of either compound is useful. Amino acids are another
example of a group of compounds that share a structural
core and are functionally related, and so we might expect
it to be both easy and useful to evolve enzymes that are
regulated by sets of them.

Because enzymes need to bind regulator compounds with
high specificity, we believe that the whole (or majority) of
the regulator's chemical structure is of importance in
binding. We have therefore used a global chemical struc-
ture similarity method (SIMCOMP) rather than a local
similarity method such as the Tanimoto coefficient. The
effect of using a different chemical similarity measure will
probably be small.

The initial investigation of structural similarity relation-
ship with regulatory similarity in fact shows that the effect
is quite weak, as shown in Figure 6(a). Many very similar
compounds have quite dissimilar regulatory portfolios.
This may be partly explained by incompleteness in the
data set. If some regulatory interactions are missing then
compounds that should show as similar given complete
data, in fact come out as being quite dissimilar.

However, the graph view of the connection data shown in
Figure 6(b) shows that functional modules do exist within
the regulatory network, and that these often correspond
well with chemical structure. Amino acids, for example,
form a largely separate group within the graph as do citric
acid cycle compounds, glycolysis compounds and nucle-
otide phosphatides.

Interestingly the connections between these groups in the
regulatory network again mirror the underlying metabolic
network. Certain amino acids and glycolysis compounds
regulate very similar enzymes to citric acid cycle com-
pounds in the same way in which compounds from glyc-
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olysis feed into the citric acid cycle and leave to feed into
amino acid biosynthesis. This 'flow' of regulation reflects
the importance of product negative feedback. Since the
product of enzyme reactions feedback to inhibit the
enzymes that produced them, structurally similar com-
pounds (that are close in the metabolic network) can also
feedback to perform the same regulation.

We can use the relationship between chemical structure
similarity and regulatory similarity to predict new regula-
tory interactions. In the future this would be especially
useful for drug compounds where interactions could lead
to unwanted side-effects. An extremely simplistic analysis
on the KEGG DRUG database[28] shows one way in
which this data could be used. We took each compound
from DRUG and found all H. sapiens metabolites with
SIMCOMPP similarity scores above 0.5 to the drug being
examined. We then assume that any enzyme regulated in
H. sapiens by more than 50% of these compounds will
also be regulated by the drug compound.

Using this naive method we find 451 potential drug/
enzyme interactions. While most are probably not biolog-
ically meaningful, we do find some cases which demon-
strate the feasibility of the concept. For instance, many
testosterone or estrogen derived drugs are linked to EC:
2.3.1.26 (cholesterol acyltransferase). The link between
these type of drugs and cholesterol levels is well known,
and a few compounds such as hydrocortisone and pregne-
nolone, are explicitly mentioned in conjunction with cho-
lesterol acyltransferase though not necessarily in the
context of enzyme inhibition[29,30]. Another previously
known link that we find is cytarabine hydrochloride
which is predicted by our analysis, and confirmed in the
literature[31], to interact with EC: 3.5.4.5 (cytidine deam-
inase).

Another more interesting prediction is that valproate, an
anti-convulsion drug, inhibits EC: 3.5.3.1 (arginase). The
exact molecular mechanism of valproate treatment is cur-
rently unknown though it is known to inhibit other
enzymes besides arginase[32]. It is also associated with
gamma-aminobutyric acid (GABA) and its receptors[33].
GABA is synthesised in 3 steps from ornithine, the prod-
uct of the arginase catalysed reaction. Furthermore, while
the interaction between arginase and valproate has never
been directly observed, or to our knowledge predicted, we
note that there are two reported cases where patients with
arginase disorders were found to be particularly sensitive
to valproate medication[34,35].

Conclusion
The existence of negative feedback loops in the control of
metabolic networks is well known[36]. However, a study
using this dataset to identify these and other potentially

novel control motifs in the regulatory network would help
to improve our understanding of the way in which control
of the overall network is (or is not) broken up into man-
ageable subunits. Our results suggest that there is a degree
of modularity in the regulatory network, but the degree of
intra and inter-pathway regulation is an open question
that such motif finding methods could help answer. Such
studies have been performed on transcription factor and
other networks[37].

The linking of this regulatory network with genetic regula-
tion is another area of future work. Clearly both systems
often work together to provide correct responses to envi-
ronmental stimuli. However, there may be cases where
one or the other system is preferred, or particular control
structures are used which can only be discovered by a
combined analysis.

Clearly more data is needed to complete our understand-
ing of the metabolic regulatory network. However, our
analysis shows that it shares many of the same properties
shown by the metabolic network (and other biological
networks), suggesting that common evolutionary mecha-
nisms are responsible for the evolution of the binding of
substrates and regulators by enzymes. We also see how
both the local and global features of the network differ
between E. coli and H. sapiens reflecting the differences in
biology in these two organisms. The role chemical struc-
ture plays in determining the suitability of a compound
for use as a regulator, and the ability for a single enzyme
to be regulated in a common way by whole sets of chem-
ical compounds is also demonstrated.

Methods
Data Representation
The metabolic network of an organism can be represented
by a bipartite graph in which compounds form one type
of node while enzymes form another. The underlying
metabolic network is built up by connecting compounds
to enzymes by directed edges. Edges from compound
nodes to enzyme nodes are used to represent that those
compounds are substrates of the enzyme. Edges from
enzyme nodes to compounds are used to represent that
those compounds are products of the enzyme. Regulatory
interactions are represented in our graphs by two further
types of labelled edges: representing the inhibition of an
enzyme by a compound in the first case, and activation of
an enzyme in the second. This graph can be converted to
a monopartite network by removing enzyme nodes. In
that case, each of the substrate and regulator compounds
of an enzyme is connected to each of the enzyme's prod-
uct compounds (and substrate compounds in the case of
regulators).
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Data Sources
The initial metabolic network is built using the KEGG
ENZYME and REACTION databases (part of the LIGAND
database[28]). ENZYME is used to define those enzymes
(EC codes) that are present in a given organism. REAC-
TION is then used to define all the reactions catalysed by
each enzyme. All the compounds listed as products or
substrates of the extracted reactions are considered metab-
olites of the given organism, and the metabolic network is
built by connecting metabolites to enzymes and enzymes
to metabolites according to the substrate/product rela-
tionships as described above.

The regulatory information is extracted from the BRENDA
database[20]. BRENDA lists compounds known to either
inhibit or activate a given EC code and the organism in
which the regulation was observed. The textual com-
pound identifiers used in BRENDA are converted to KEGG
COMPOUND identifiers in a semi-automatic method. If
a KEGG compound is found whose name exactly matches
the BRENDA text then that compound is used. If multiple
matches are found then a choice is made manually. If no
match is found then the compound is discarded. The
same method is used for the organisms given in BRENDA
which are converted to KEGG organism identifiers.
BRENDA entries with the 'More' tag were skipped.

The same procedure was used with the comparison data-
set downloaded from Eco-Cyc. We use the 'enzrxns.dat'
file from the EcoCyc flatfile distribution. All compounds
listed as 'INHIBITORS*' or 'ACTIVATORS*' (where * is
blank, -ALLOSTERIC, -COMPETITIVE, -MECHNOT-
STATED or -NEITHER) were extracted and converted to
KEGG compounds using the same semi-automated
method as above.

Note that to remove the many non-natural inhibitors/
activators we only examine those regulator compounds
that take part in an enzyme reaction as defined by REAC-
TION for the organism in question. Some true, natural
metabolites, such as metal ions, may not partake in any
enzymatic reactions as substrates/products and the data
for these potential regulators is lost.

Annotation Transfer
For each organism we wish to study, each of the regulatory
interactions extracted from BRENDA is considered in
turn. Each interaction specifies a KEGG COMPOUND
identifier, EC code and the species in which it was
observed. If the interaction was observed in the organism
we wish to study, then the interaction is used. If the inter-
action was observed in a different organism from the one
under study then all the sequences annotated with the
given EC from both organisms are extracted. Each of the
sequences from each organism is aligned against each of

the sequences from the other organism using
BLAST2P[38]. If the organism in which the interaction
was observed has multiple sequences annotated with the
given EC then the interaction is discarded (there being no
way of determining which sequence encodes the form of
the enzyme that is regulated). Otherwise the best (lowest
E value) hit from the organism under study to the organ-
ism in which the interaction was observed is recorded.

We can then filter the results to only include definite reg-
ulatory interactions (those observed in the organism
under study), high confidence interactions (those
observed in organisms with close homologs of the
enzyme in the organism under study) and low confidence
predictions (those observed in organisms with remoter
homologs of the enzyme). An E value cutoff of 10-40 is
used in this study. At this cutoff value we can be confident
that the annotation transfer occurs between close
homologs.

Data Analysis
All data is stored in a relational database with a Ruby on
Rails web front end. Subsequent analyses on the database
are largely self-explanatory.

Power law fitting and confidence limit evaluation is per-
formed using the igraph package[39] for the R statistical
computing platform. Other analysis is performed using
Ruby and the BioRuby[40], RSRuby[41] and Tioga[42]
packages. Figure 6(b) was prepared using the Biolayout
application[43].

The regulatory similarity between two compounds is
defined using the Jaccard similarity of two binary strings.
For each compound a binary string is built with each char-
acter position in the string representing an enzyme
present in the organism under consideration. If the com-
pound is a regulator of an enzyme then the character in
the string at that position is 1, otherwise it is 0. The Jaccard
similarity, shown in Equation 2 (scaled between 0 and
100 for convenience), between the two strings (the regu-
latory profiles) then represents how similar the set of
enzymes the compounds regulate are. In Equation 2, M11
is the number of enzymes both compounds are known to
regulate, M10 is the number of enzymes the first com-
pound is known to regulate whilst the second is known
not to regulate and M01 is the number of enzymes the first
compound is known not to regulate whilst the second is
known to regulate.

J
M

M M M
=

+ +
× ( )11

01 10 11
100 2
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