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In order to effectively predict the sieving efficiency of a vibrating screen, experiments to investigate the sieving efficiency were
carried out. Relation between sieving efficiency and other working parameters in a vibrating screen such as mesh aperture size,
screen length, inclination angle, vibration amplitude, and vibration frequency was analyzed. Based on the experiments, least
square support vector machine (LS-SVM) was established to predict the sieving efficiency, and adaptive genetic algorithm and
cross-validation algorithm were used to optimize the parameters in LS-SVM. By the examination of testing points, the prediction
performance of least square support vector machine is better than that of the existing formula and neural network, and its average
relative error is only 4.2%.

1. Introduction

Sieving is one of the oldest physical size separation meth-
ods and has been widely used both in industries and in
laboratories. Vibrating screens which include a number of
types are the main sieving tool for large-scale separation
and classification of solid particles by size, and they are
widely used in some practical engineering such as mining,
metallurgy, dry mortar, artificial sand, and agriculture pro-
duction. Probability screen is a special vibrating screen for
the separation and classification of fine particulate material,
which exhibits problems of plugging holes and low sieving
efficiency when the particle size is below 0.6mm. Sieving
efficiency is an essential evaluation indicator of sieving
performance, and it is hard to be predicted based on the
existing sieving design parameters in the design process of
vibrating screens due to the comprehensive effect of complex
particle sieving process under multiple factors, which will
influence the selection or determination of these parameters.
Therefore, an understanding of predicting sieving efficiency
has a great practical significance.

At present, the research on the sieving efficiency of
vibrating screens has also made some progress. There are
lots of researchers studying the sieving process by DEM
simulations like Li et al. [1], Dong et al. [2], Liu [3], Delaney

et al. [4], Jiao and Zhao [5], and Li et al. [6], and qualitative
relation between sieving efficiency and sieving parameters
in a vibrating screen such as amplitude, vibration frequency,
screen mesh size, particle size, and vibration direction angle
has been analyzed, which provides references for in-depth
study. But the results of DEM simulations need to be fur-
ther explored and improved since particulate materials and
boundary conditions of simulation are difficult to coincide
with the actual conditions. Some scholars have studied the
real-time monitoring of sieving efficiency in the working
course of a vibrating screen by gathering its vibration signals,
but their research achievements only play the role of real-
time monitoring and have little effect on the design of a
vibrating screen [7]. In terms of sieving efficiency fitting,
Grozubinsky et al. [8] and Chen and Tong [9] have, respec-
tively, established formulas between the sieving efficiency and
sieving parameters such as amplitude, vibration frequency,
vibration direction angle, particle size, and screen mesh size
based on a probabilistic model and a discrete element model,
but these formulas only reflect the relationship between the
single parameter and sieving efficiency. Jiao et al. [10] found
the mathematical formula between sieving efficiency and
parameters including screen deck angle and screen mesh
size based on statistical analysis of experimental data, which
provides a theoretical basis for the design of vibrating screens
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but ignores the impact of screen length. Although some
fitting function formulas of sieving efficiency have been
studied, there is still no widely accepted formula to predict
sieving efficiency on the basis of sieving parameters. The
introduction of artificial intelligencemay provide a good path
to the solution of this problem [11].

Support vector machine (SVM) and neural network both
can fit the nonlinear relations [12–14], whereas SVM is
more suitable when the sample size is relatively small and
can solve “curse of dimensionality” problems. The solution
of “curse of dimensionality” can make the complexity of
algorithm and the dimension of sample independent. At
present, SVM has been widely and effectively used in the
pattern recognition, intelligent fitting, and prediction [15–
18]. However, the application of SVM to predict the sieving
efficiency has not been reported in the literatures yet.

In this paper, the experimental system and results were
firstly introduced and analyzed, and then intelligent fitting
model of least square support vector machine (LS-SVM) and
adaptive genetic algorithmwere provided; finally, the contrast
between the performance of the LS-SVMmodel, the existing
formula, and the neural network was carried out.

2. Sieving Experimental System

Sieving is a process in which a certain size range of materials
is separated into several products with different size through
one-deck or multideck screens that have sieving mesh with
uniform apertures. Theoretically, the particles whose size is
larger than the mesh aperture remain on the screen surface
and leave the screen surface when they pass the end of
the screen, and these particles are called overflow particles;
however, other smaller particles penetrate the sieving mesh
through the mesh aperture and are called undersize particles.
Sieving efficiency is the ratio between actual mass of under-
size particles and the mass of the particles in raw materials
whose size is smaller than the mesh aperture. Compared
with the mesh aperture size, the smaller the particles are,
the easier the penetration is, but the particles whose size is
close to the mesh aperture size penetrate the screen mesh
with difficulty. Probability screens have some advantages in
all vibrating screens such as large sieving capacity and easy
penetration because of their unique characteristics of the
large mesh aperture and large inclination angle.

The repeated sieving tests are finished in an experimental
system, which is illustrated in Figure 1. Sieving parameters
such as inclination angle, screen length, mesh aperture size,
amplitude, and vibration frequency are adjustable in this
vibration sieving test bench, which is a circular experimental
system and includes themultideck probability screen, storage
bin of raw materials, vibrating feeder, and automatic feeding
system. Samples used for measuring the sieving efficiency
by Hancock’s total efficiency formula are gotten when the
screen is in steady working condition. The “steady work-
ing condition” means that the screen works steadily after
starting the screen on the sieving test bench; meanwhile,
raw materials cover the whole screen mesh surface and the
feed rate of raw materials from vibrating feeder reaches

Raw materials 

Storage bin of raw
materials 

Vibrating feeder

Belt conveyer

Bucket elevator Probability screen

Figure 1: Schematic diagram of the vibration sieving test bench.
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Figure 2: Schematic diagram of total efficiency calculation.

a stable state. Total efficiency is the difference between
the penetration probability of the particles whose size is
smaller than separation size and the penetration probability
of the particles whose size is larger than separation size. The
schematic diagram of total efficiency calculation is shown in
Figure 2.

In Figure 2, 𝑄 is the total mass of raw materials into the
screen, 𝐶 is the mass of overflow particles, 𝐷 is the mass
of undersize particles, 𝜇 is the percentage of the particles
whose size is smaller than separation size in raw materials,
𝛿 is the percentage of the particles whose size is smaller than
separation size in overflow particles, 𝜆 is the percentage of
the particles whose size is smaller than separation size in
undersize particles,𝑎 ismesh aperture size of the screenmesh,
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Table 1: Sand properties and operating conditions.

Parameters Actual values
Sand size/mm 0–4.75
Moisture ratio 0.3%
Fineness modulus 2.68
Sieving capacity/(t/h) 50
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Figure 3: Grading curves of sands.

𝐿 is screen length, and 𝜃 is inclination angle of the screen
surface. Total efficiency is calculated as follows [10]:

𝜂total =
(𝜇 − 𝛿) (𝜆 − 𝜇)

𝜇 (𝜆 − 𝛿) (100 − 𝜇)
× 100%. (1)

In test process, the screen mesh with rectangular aper-
tures which is woven by steel wire is selected, and the com-
mon II area sands in construction industry whose particle
diameter is between thick sands and fine sands are selected
as raw materials. Sand properties and operating conditions
are shown in Table 1, and grading curves of sands are shown
in Figure 3.

As is shown in Figure 3, the particle diameter correspond-
ing to the 6 data points is 0.15mm, 0.3mm, 0.6mm, 1.18mm,
2.36mm, and 4.75mm; the grading curve of the sand sample
is almost in the middle position between the upper and lower
limits of the common sand. Since the raw sands are shifted
with this multideck probability screen whose separation size
is 2.36mm, 1.18mm, and 0.6mm, respectively, from top to
bottom, and, generally, the 0.6mm layer of this probability
screen has a smallest sieving efficiency, which sieves finest
materials with the particle diameter below 0.6mm, the siev-
ing efficiency of the 0.6mm layer is viewed as the probability
screen’s one.

3. Experimental Results

According to experimental results, the sieving
efficiency 𝜂 first increases with the increase of vibration
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Figure 4: Effect of mesh aperture size on the sieving efficiency.

amplitude 𝐴
𝑚
and screen length 𝐿 and then decreases with

the increase of vibration frequency 𝜔, mesh aperture size
𝑎, and inclination angle 𝜃. This paper focuses on detailed
analysis of 𝑎, 𝐿, and 𝜃, and the effect of 𝐴

𝑚
and 𝜔 on the

sieving efficiency is detailed in literature [7].

3.1. Effect of Mesh Aperture Size on the Sieving Efficiency. The
mesh aperture size can also be characterized by the ratio
between mesh aperture size 𝑎 and separation size 𝑑. 𝑎/𝑑
is greater than 1 in probability screens. Figure 4 shows the
effect of mesh aperture size 𝑎 on the sieving efficiency when
𝐴
𝑚

is equal to 3.5mm, 𝜔 is equal to 960 r/min, and 𝐿 is
equal to 2.4m. 𝜂 first increases and then decreases with the
increase of 𝑎. When the mesh aperture size is small, the
sieving efficiency is low due to the approximate size between
𝑎 and 𝑑 and the lower penetration probability of the fine
particles and a greater proportion of fine particles remained
in overflow particles. When the mesh aperture size is larger,
the sieving efficiency is higher due to the larger penetration
probability of the fine particles. When the mesh aperture
size is too large, the sieving efficiency becomes lower due to
the higher penetration probability of the particles whose size
is larger than separation size and undersize particles mixed
with a greater proportion of larger particles. The optimum
mesh aperture size is between 0.8mm and 1.1mm, and the
maximum efficiency can reach above 80% when 𝜃 is 25∘.

3.2. Effect of Screen Length on the Sieving Efficiency. Figure 5
shows the effect of screen length 𝐿 on the sieving efficiency
when 𝐴

𝑚
is equal to 3mm, 𝜔 is equal to 960 r/min, and 𝜃 is

equal to 25∘. 𝜂 increases significantly with the increase of 𝐿,
and the increase of 𝜂 becomes slow after 𝐿 reaches a certain
value. However, 𝜂 decreases with the further increase of 𝐿
under the condition of larger value of 𝑎/𝑑 due to the high
penetration probability of the particles whose size is larger
than separation size and undersize particles mixed with an
increasing number of impurities. If 𝑎/𝑑 is larger, the optimum
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Figure 5: Effect of screen length on the sieving efficiency.
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Figure 6: Effect of inclination angle on the sieving efficiency.

𝐿 is shorter due to the high penetration probability of the
particles whose size is smaller than separation size during
the beginning time of sieving. The optimum range of screen
length is between 2.0m and 2.6m.

3.3. Effect of Inclination Angle on the Sieving Efficiency.
Inclination angle 𝜃 mainly affects the horizontal projection
size ofmesh aperture and themoving speed of particles on the
screen surface. Figure 6 shows the effect of inclination angle
𝜃 on the sieving efficiency when 𝐴

𝑚
is equal to 3.5mm, 𝜔 is

equal to 960 r/min, and 𝑎 is equal to 0.9mm. 𝜂 first increases
and then decreases with the increase of 𝜃, and 𝜂 reaches
the maximum value with a certain inclination angle. When
the inclination angle increases, the horizontal projection size
of mesh aperture decreases and penetration probability of
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Figure 7: Effect of vibration amplitude on the sieving efficiency.

particles in the vertical direction decreases, which results
in a lower penetration amount of the particles whose size
is larger than separation size. Meanwhile, penetration and
stratification capacity of the particles whose size is smaller
than separation size is enhanced with increasing moving
speed of particles on the screen surface.When the inclination
angle increases further, the sieving efficiency becomes low
due to sharp decrease of the horizontal projection size
of mesh aperture, sharp increase of the moving speed of
particles on the screen surface, and shorter stay time of
particles on the screen surface. The optimum inclination
angle is about 25∘ and the maximum efficiency can reach
above 82% when 𝐿 is equal to 2.4m.

3.4. Effect of Vibration Amplitude on the Sieving Efficiency.
Figure 7 shows the effect of vibration amplitude 𝐴

𝑚
on the

sieving efficiency when 𝑎 is equal to 0.9mm, 𝐿 is equal to
2.4m, and 𝜃 is equal to 25∘. 𝜂 increases with the increase of
𝐴
𝑚
, and 𝜂 first increases and then decreases with the increase

of𝜔. When𝐴
𝑚
and𝜔 increase, the penetration probability of

particles whose size is smaller than separation size becomes
larger, so the sieving efficiency increases. However, when 𝜔

increases to 1000 r/min, 𝜂 decreases because larger vibration
frequency can lead to larger penetration probability of par-
ticles whose size is larger than separation size. Optimum
vibration amplitude and vibration frequency are 3.5mm and
960 r/min, respectively.

4. Establishment of the Intelligent
Model Based on LS-SVM

It is supposed that there are lots of training points 𝐻 =

{𝑥
𝑖
, 𝑦
𝑖
} (𝑖 = 1, 2, . . . , 𝑛) (𝑥

𝑖
is the input value, 𝑦

𝑖
is the output

value, and 𝑛 is the total number of training points) to be fitted;
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according to the basic theory of SVM, these problems can be
converted to the solution of the following equations:
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𝑗
} {𝑎
∗

𝑗
}

= −
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

(𝑎
𝑖
− 𝑎
∗

𝑖
) (𝑎
𝑗
− 𝑎
∗

𝑗
) 𝑘 (𝑥

𝑖
, 𝑥
𝑗
)

− 𝜀

𝑛

∑

𝑖=1

(𝑎
𝑖
+ 𝑎
∗

𝑖
) +

𝑛

∑

𝑖=1

𝑦
𝑖
(𝑎
𝑖
− 𝑎
∗

𝑖
) ,

s.t.
𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎
∗

𝑖
) = 0,

𝑎
𝑖
, 𝑎
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∈ [0, 𝑐] ,

(2)

𝑓 (𝑥) =

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝑎
∗

𝑖
) 𝑘 (𝑥, 𝑥

𝑖
) + 𝑏, (3)

where 𝑘(⋅) is kernel function, 𝑎
𝑖
, 𝑎∗
𝑖
, and 𝑏 are the parameters

which could be obtained by the solution of the optimization
problem (such problem is described in the form of (2)), and
𝑐 is the penalty factor.

SVM algorithm is sensitive to noise, and its calculation
speed does not depend on the dimensions of input vectors
but on the sample size. The large sample size will result in
complex quadratic programming problem based on SVM,
slow operational speed, and the long time that the calculation
will spend. Therefore, LS-SVM is introduced on the basis of
the traditional theory of SVM.

According to the theory of LS-SVM, (2) can be converted
to the following linear equation:

[
0 A

ℎ

I Ω + C−1ℎ
][

b
a
] = [

0

y
] , (4)

where y = [𝑦
1
, 𝑦
2
, . . . , 𝑦

ℎ
]
T, A
ℎ

= [1, 1, . . . , 1], a =

[𝑎
1
, 𝑎
2
, . . . , 𝑎

ℎ
]
T, I is the unit matrix, and Ω

𝑖𝑗
= 𝜑(𝑥

𝑖
)𝜑(𝑥
𝑗
) =

𝑘(𝑥
𝑖
, 𝑥
𝑗
). Here, Gauss function is selected as Kernel function

𝑘(⋅) and it meets the following equation:

K (𝑥
𝑘
, 𝑥
ℎ
) = Φ (𝑥

𝑘
)
T
Φ (𝑥
ℎ
) . (5)

Accordingly, (3) can be converted into the following
equation:

𝑓 (𝑥) =

𝑛

∑

𝑖=1

𝑎
𝑖
𝑘 (𝑥, 𝑥

𝑖
) + 𝑏. (6)

When LS-SVM is applied into the intelligent fitting of
sieving efficiency 𝜂, the five-dimensional input vector is
{a, L, 𝜃,A

𝑚
,𝜔} and the one-dimensional output vector is {𝜂}.

The 82 training samples come from the experimental results
discussed above, and the prediction value of the LS-SVM
model can be acquired finally by solving the value of 𝛼

𝑖
and

𝑏.
In the theory of LS-SVM, the parameters needed to be

optimized are the penalty factor 𝑐 and the kernel parameter

𝑟, and the fitting performance of LS-SVM depends on the
selection of 𝑐 and 𝑟.

Nowadays, there are many kinds of intelligent algorithm
that can be used to optimize 𝑐 and 𝑟, such as particle swarm
optimization algorithm, genetic algorithm, grid search, and
chaos optimization algorithm [19, 20]. In these methods,
genetic algorithm has been considered with increasing inter-
est in a wide variety of applications, and it is widely used
to solve linear and nonlinear problems by exploring all
regions of state space and exploiting potential areas through
mutation, crossover, and selection operations applied to
individuals in the population. In this paper, adaptive genetic
algorithm is applied to determine the value of 𝑐 and 𝑟.

5. Intelligent Prediction of
Sieving Efficiency Based on LS-SVM

5.1. Optimization of Parameters by Adaptive Genetic Algo-
rithm. The key of adaptive genetic algorithm [21] is to
determine the fitness function.Here, it is described as follows:

𝐹 (𝑐, 𝑟) =
1

∑
𝑛

𝑖=1
[𝑦
𝑖
− 𝑓 (𝑥

𝑖
)]
2

+ 𝑒
, (7)

where 𝑦
𝑖
is the expected output, 𝑓(𝑥

𝑖
) is the actual output,

and 𝑒 is a small real number, which is to prevent the situation
of zero denominator; here 𝑒 = 10

−3.
The initial crossover probability and the initial mutation

probability are determined by

𝑃
l
𝑐
=

{{{

{{{

{

0.9 − 0.3
𝑓


− 𝑓avg

𝑓max − 𝑓avg
, 𝑓 ≥ 𝑓avg

0.9 𝑓 < 𝑓avg,

𝑃
l
𝑚
=

{{{

{{{

{

0.1 − 0.099
𝑓max − 𝑓

𝑓max − 𝑓avg
, 𝑓 ≥ 𝑓avg

0.1 𝑓 < 𝑓avg,

(8)

where 𝑓 is the larger fitness function value of the cross two
bodies,𝑓 is the fitness function value of individual,𝑓avg is the
average fitness function value in the samples, and 𝑓max is the
maximum fitness function value of individual in the samples.

Crossover probability and mutation probability change
with the evolutional generation, and their changing rules are
as follows:

𝑃
𝑡

𝑐
=

{{{{

{{{{

{

0.9√1 − (
𝑡

𝑡max
)

2

, 𝑃
𝑡

𝑐
< 0.6

0.6 𝑃
𝑡

𝑐
≥ 0.6,

𝑃
𝑡

𝑚
=

{{

{{

{

0.1𝑒
(−𝜆𝑡/𝑡max), 𝑃

𝑡

𝑚
< 0.001

0.001 𝑃
𝑡

𝑚
≥ 0.001,

(9)

where 𝑡 is the genetic algebra, 𝑡max is the terminated genetic
algebra, and 𝜆 is a constant; here 𝜆 = 10.
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The basic steps of “adaptive genetic algorithm” are listed
as follows.

Step 1. Generate initial population 𝑃(0); algebra is set to 0,
and the number of individuals is𝑀.

Step 2. Run selection operator, crossover operator, andmuta-
tion operator in proper order and calculate the fitness of
individuals.

Step 3. Sort individuals by fitness value and run the intelligent
fitting model of LS-SVM once for the individual which has
highest fitness value.

Step 4. Get a new generation of population 𝑃(𝑡 + 1), and
algebra increases by 1.

Step 5. Judge whether it meets the optimization criterion. If
it meets the criteria, the optimization process is over; else,
return to Step 2.

There are two factors that may lead to the failure of LS-
SVM: (1) “overfitting” issue (the objective function can reduce
to a very low value during the training phase, but the testing
error is relatively large); (2) “underfitting” issue (the objective
function cannot reduce to a low value during the training
phase). For solving these issues, “cross-validation” method is
introduced [22, 23].

The basic steps of “cross-validation” are listed as follows.

Step 1. Divide the training samples into 𝑛 subsamples and set
𝑖 = 1.

Step 2. Regard the 𝑖th subsamples as the testing samples and
the others as the training samples.

Step 3. Optimize the parameters (𝑐
𝑖
, 𝑟
𝑖
) in LS-SVM based on

the new training samples by adaptive genetic algorithm.

Step 4. 𝑖 = 𝑖 + 1, and repeat Steps 1–3 till 𝑖 = 𝑛 and 𝑐 = ∑ 𝑐
𝑖
/𝑛,

𝑟 = ∑ 𝑟
𝑖
/𝑛.

In this paper, the population size is 40, the dimension of
parameters to be optimized is 2, themaximumgenetic algebra
is 400, and the binary digit of each variable is 20. And after
the optimization process, 𝑐 ≈ 55 and 𝑟 ≈ 1.2. Error function
is defined as follows:

𝑓
𝐸
=

1

𝑛

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
) − 𝑦
𝑖



𝑦
𝑖

, (10)

where𝑓(𝑥
𝑖
) is the actual output and 𝑦

𝑖
is the expected output.

5.2. Comparison of the LS-SVM Model, the Existing Formula,
and Neural Network. An existing fitting formula of sieving
efficiency from literature [10] is shown as follows:

𝜂 = 80.76 + 2.51𝑎 − 3.32𝛽, (11)

where 𝑎 is screen mesh size, 𝛽 is screen deck angle, and 𝜂 is
sieving efficiency.
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Figure 8: Fitting error comparison of the LS-SVMmodel, literature
[10], and neural network.

Neural network is also a usual intelligent model to fit
the numerical relation besides LS-SVM; the training points
in LS-SVM are still selected as training samples to optimize
the parameters in neural network. The training methods of
neural network have detailed descriptions in literature [24].
The prediction error between LS-SVM, BP neural network,
RBF neural network, and the existing fitting formula in
literature [10] is shown in Figure 8.

Figure 8 shows that the prediction error of selected 16
testing samples is analyzed; the average relative error of BP
neural network is 7.3%, the average relative error of RBF
neural network is 6.4%, the average relative error of literature
[10] is 16.2%, and the average relative error of LS-SVMmodel
is 4.2%. So the prediction performance of LS-SVM model
is better than that of neural network and the existing fitting
formula in literature [10].

6. Conclusions

The effects of different factors on sieving efficiency were
investigated based on the vibration sieving test bench.
According to experimental results, the sieving efficiency 𝜂

increases with the increase of vibration amplitude 𝐴
𝑚
and

screen length 𝐿, and it first increases and then decreases with
the increase of vibration frequency 𝜔, mesh aperture size 𝑎,
and inclination angle 𝜃.

The intelligent model to predict the sieving efficiency
was established based on the experimental results, LS-SVM
theory, and the adaptive genetic algorithm. The average
prediction error of the LS-SVM model examined by testing
points can be reduced to 4.2%, which is much less than that
of neural network and the existing fitting formula. So, the LS-
SVM model has a better prediction performance on sieving
efficiency, which provides a theoretical basis for the optimal
design and parameters selection of sieving screens.
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