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This work proposes an enhanced particle swarm optimization scheme that improves upon the performance of the standard
particle swarm optimization algorithm. The proposed algorithm is based on chaos search to solve the problems of stagnation,
which is the problem of being trapped in a local optimum and with the risk of premature convergence. Type 1" constriction is
incorporated to help strengthen the stability and quality of convergence, and adaptive learning coeflicients are utilized to intensify
the exploitation and exploration search characteristics of the algorithm. Several well known benchmark functions are operated to
verify the effectiveness of the proposed method. The test performance of the proposed method is compared with those of other
popular population-based algorithms in the literature. Simulation results clearly demonstrate that the proposed method exhibits
faster convergence, escapes local minima, and avoids premature convergence and stagnation in a high-dimensional problem space.
The validity of the proposed PSO algorithm is demonstrated using a fuzzy logic-based maximum power point tracking control

model for a standalone solar photovoltaic system.

1. Introduction

Swarm intelligence is becoming one of the hottest areas of
research in the field of computational intelligence especially
with regard to self-organizing and decentralized systems.
Swarm intelligence simulates the behavior of human and
animal populations. Several swarm intelligence optimization
algorithms can be found in the literature, such as ant
colony optimization, artificial bee colony optimization, the
firefly algorithm, differential evolution, and others. These
are biologically inspired optimization and computational
techniques that are based on the social behaviors of fish,
birds, and humans. Particle swarm optimization (PSO) is
a nature-inspired algorithm that draws on the behavior
of flocking birds, social interactions among humans, and
the schooling of fish. In fish schooling, bird flocking, and
human social interactions, the population is called a swarm

and candidate solutions, corresponding to the individuals or
members in the swarm, are called particles. Birds and fishes
generally travel in a group without collision. Accordingly,
using the group information for finding the shelter and
food, each particle adjusts its corresponding position and
velocity, representing a candidate solution. The position of
a particle is influenced by neighbors and the best found
solution by any particle. PSO is a population-based search
technique that involves stochastic evolutionary optimization.
It is originally developed in 1995 by Eberhart and Kennedy
[1, 2] to optimize constrained and unconstrained, continuous
nonlinear, and nondifferentiable multimodal functions [1, 3].
PSO is a metaheuristic algorithm that was inspired by the
collaborative or swarming behavior of biological popula-
tions [4]. Since then, it has been applied to solve a wide
range of optimization problems, such as constrained and
unconstrained problems, multiobjective problems, problems



with multiple solutions, and optimization in dynamic envi-
ronments [5-8]. Some of the advantages of particle swarm
optimization are the following: (a) computational efficiency
[6], (b) effective convergence and parameter selection [7], (c)
simplicity, flexibility, robustness, and ease of implementations
[9], (d) ability to hybridize with other algorithms [10], and
many others. PSO has few parameters to adjust and a small
memory requirement and uses few CPU resources, making it
computationally efficient. Unlike simulated annealing which
can work only with discrete variables, PSO can work for
both discrete and analog variables without ADC or DAC
conversion. Also, genetic algorithm optimization requires
crossover, selection, and mutation operators, whereas PSO
utilizes only the exchange of information among individuals
searching the problem space repeatedly [11]. In recent years,
the use of particle swarm optimization has been investigated
with focus on its use to solve a wide range of scientific and
engineering problems such as fault detection [12], parameter
identification [13, 14], power systems [15-17], transportation
[18], electronic circuit design [19], and plant control design
[20]. Most relevant research focuses on either constrained or
unconstrained optimization problems.

The particle swarm optimization was developed to opti-
mally search for the local best and the global best; these
searches are frequently known as the exploitation and explo-
ration of the problem space, respectively. Hong et al. [21]
stated that exploitation involves an intense search of particles
in a local region while exploration is a long term search,
whose main objective is to find the global optimum of
the fitness function. Although particle swarm optimization
rapidly searches the solution of many complex optimization
problems, it suffers from premature convergence, trapping
at a local minimum, the slowing down of convergence near
the global optimum, and stagnation in a particular region of
the problem space especially in a multimodal functions and
high-dimensional problem space. If a particle is located at
the position of the global best and the preceding velocity and
weight inertia are non-zero, then the particle is moving away
from that particular point [16, 22]. Premature convergence
happens if no particle moves and the previous velocities are
near to zero. Stagnation thus occurs if the majority of particles
are concentrated at the best position that is disclosed by
the neighbors or the swarm. This fact has in recent years
motivated various investigations by several researchers on
variants of the particle swarm optimization, in an attempt
to improve the performance of exploitation and exploration
and to eliminate the aforementioned problems. The various
methods of particle swarm optimization have been used for
several purposes, including scheduling, classification, feature
selection, and optimization.

Mendes et al. [23] presented fully informed particle
swarm optimization, in which, during the optimization
search, particles are influenced by the best particles in
their neighborhood and information is evenly distributed
during the generations of the algorithm. Liang et al. [24]
proposed a comprehensive learning PSO in which each
particle learns from the other neighborhood personal best
at different dimensions. Accordingly, particles update their
velocity based on the history of the their own personal bests.
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Wang et al. [25, 26] developed the opposition-based PSO
with Cauchy mutation. Their technique uses an opposition
learning scheme in which the Cauchy mutation operator
helps the particles move to the best positions. Pant et
al. [27] modified the inertia weight to exhibit a Gaussian
distribution. Xiang et al. [28] applied the time delay concept
PSO to enable the processing of information by particles
to find the global best. Cui et al. [29] presented the fitness
uniform selection strategy (FUSS) and the random walk
strategy (RWS) to enhance the exploitation and exploration
capabilities of PSO. Montes de Oca et al. [30] developed
Frankenstein’s PSO, which incorporates several variants of
PSO in the literature such as constriction [31], the time-
varying inertia weight optimizer [32, 33], the fully informed
particle swarm optimizer [23], and the adaptive hierarchical
PSO [34]. The adaptive PSO that was proposed by Zhan et
al. [35] utilized the information that was obtained from the
population distribution and fitness of particles to determine
the status of the swarm and an elitist learning strategy to
search for the global optimum. Juang et al. [36] presented the
use of fuzzy set theory to tune automatically the acceleration
coeflicients in the standard PSO. A quadratic interpolation
and crossover operator is also incorporated to improve the
global search ability. The literature includes hybridization
of particle swarm optimization with other stochastic or
evolutionary techniques [10, 37-39] to realize all of their
strengths.

Every modification of the particle swarm optimization
uses a different method to solve optimization problems. The
investigations cited above therefore elucidate some improve-
ments of the standard particle swarm optimization. However,
variants of particle swarm optimization generally exhibit the
following limitations. (a) The particles may be positioned
in a region that has a lower quality index than previously,
leading to a risk of premature convergence, trapping in local
optima, and the impossibility of further improvement of the
best positions of the particles because the inertia weight,
cognitive factors, and social learning factors in the algorithm
are not adaptive or self-organizing. (b) The inclusion of the
mutation operator may improve the speed of convergence.
Nevertheless, global convergence is not guaranteed because
the method is likely to become trapped in the local optimum
during local searches of several functions. (c) The probability
in the algorithm may improve the updated positions of
particles. However, the changes in the new positions of
particles, consistent with the probabilistic calculations, can
move the particles into the worst positions. (d) Improv-
ing information sharing and the particle learning process
capability of the algorithm can provide several benefits, but
doing so often increases CPU times for computing the global
optimum. (e) Integrating particle swarm optimization with
other evolutionary or stochastic algorithms may increase
the number of required generations, the complexity of the
algorithm, and the number of required calculations.

This paper proposes a novel particle swarm optimization
framework. The primary merits of the proposed variant of
particle swarm optimization are as follows. (a) A modified
sine chaos inertia weight operator is introduced, overcoming
the drawback of trapping in a local minimum which is
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commonly associated with an inertia weight operator. Chaos
search improves the best positions of the particles, favors
rapid finding of solutions in the problem space, and avoids
the risk of premature convergence. (b) Type 1" constriction
coeficient [40] is incorporated to increase the convergence
rate and stability of the particle swarm optimization. (c)
Self-organizing, adaptive cognitive, and social learning coef-
ficients [41] are integrated to improve the exploitation and
exploration search of the particle swarm optimization algo-
rithm. (d) The proposed optimization algorithm has simple
structure reducing the required memory demands and the
computational burden on the CPU. It can therefore easily be
realized using a few, low-cost test modules.

The remainder of this paper is organized as follows.
Section 2 presents the standard particle swarm optimiza-
tion algorithm. Section 3 describes the proposed variant of
particle swarm optimization algorithm. Section 4 discusses
the performance of the proposed variant of the particle
swarm optimization and compares results obtained when
well known optimization methods are applied to benchmark
functions. The proposed variant of particle swarm optimiza-
tion is further utilized in maximum power point tracking
control using fuzzy logic for a standalone photovoltaic sys-
tem. Finally, a brief conclusion is drawn.

2. Standard Particle Swarm Optimization

The particle swarm optimization is a simulating algorithm,
evolutionary, and a population-based stochastic optimization
method that originates in animal behaviors such as the
schooling of fish and the flocking of bird, as well as human
behaviors. It has best position memory of all optimization
methods and a few adjustable parameters and is easy to
implement. The standard PSO does not use the gradient of an
objective function and mutation [11]. Each particle randomly
moves throughout the problem space, updating its position
and velocity with the best values. Each particle represents
a candidate solution to the problem and searches for the
local or global optimum. Every particle retains a memory of
the best position achieved so far, and it travels through the
problem space adaptively. The personal best (py,,) is the best
solution so far achieved by an individual in the swarm within
the problem Space pﬁest = (pltaest,l’ P{)est,Z’ pkt)est,S’ e Pltaest,pop)
while the global best (gy.) refers to globally obtained
best solution by any particle within the swarm g .

(i1> 9ir> Giz> - - - » Giq) in the problem space dimension d. The
position and velocity of particle i in the problem space
dimension d are thus given by x,(t) = (x;1, Xip, Xi3, - - > X;)
and v, () = (vj1, Vi, Vi3 - -»Vjq)> respectively. The velocity
and position of a particle p are adjusted as follows [1, 2]:

t+1 t t t
vy =w><vp+clxrlx(pbest—xp)+cz><r2
t
X (gbest _xp) (1)
t+1 _ ¢t t+1
xp —xp+vp 5

where the superscript ¢ is the generation index, whereas ¢; and
¢, are cognitive and social parameters, which are frequently

known as acceleration constants and which are mainly
responsible for attracting the particles toward pi ., and gy
The terms ry, r,, and w denote uniform random numbers
[r,7,] € [0,1] and inertia weight w € [0, 1], respectively.
These factors are mainly responsible for balancing the local
and global optima search capabilities of the particles in
problem space. Every generation, the velocity of individuals
in the swarm is computed and which adjusted velocity is used
to compute the next position of the particle. To determine
whether the best solution is achieved and to evaluate the
performance of each particle, the fitness function is included.
The best position of each particle is relayed to all particles
in the neighborhood. The velocity and the position of each
particle are repeatedly adjusted until the halting criteria are
satisfied or convergence is obtained.

3. Chaos-Enhanced Particle Swarm
Optimization with Adaptive Parameters

This section demonstrates that the proposed variant of par-
ticle swarm optimization improves upon the performance of
the standard particle swarm optimization consistent with (1).
The novel scheme improves upon the performance of other
population-based algorithms in solving high-dimensional or
multimodal problems. Chaos operates in a nonlinear fashion
and is associated with complex behavior, unpredictability,
determinism, and high sensitivity to initial conditions. In
chaos, a small perturbation in the initial conditions can
produce dramatically different results [42, 43]. In 1963,
Lorenz [44] presented an autonomous nonlinear differential
equation that generated the first chaotic system. In recent
years, the scientific community has paid increasing attention
to the chaotic systems and their applications in various
areas of science and engineering. Such systems have been
investigated in such fields as parameter identifications [14],
optimizations [45], electronic circuits [46], electric motor
drives [47, 48], power electronics [49], communications [50],
robotics [51], and many others.

Feng et al. [52] introduced two means of modifying the
inertia weight of a PSO using chaos. The first type is the
chaotic decreasing inertia weight and the second type is the
chaotic random inertia weight. In this paper, the latter is
considered intensifying the inertia weight parameter of the
PSO. The dynamic chaos random inertia weight is used to
ensure a balance between exploitation and exploration. A
low inertia weight favors exploitation while a high inertia
weight favors exploration. A static inertia weight influences
the convergence rate of the algorithm and often leads to
premature convergence. Chaotic search optimization in all
instances was used herein because of its highly dynamic
property, which ensures the diversity of the particles and
escape from local optimum in the process of searching for the
global optimum.

The logistic map z,,; = pz,(1 - z,) [53, 54], where y = 4
is a very common chaotic map, which is found in much of
the literature on chaotic inertia weight; it does not guarantee
chaos on initial values of z;, ¢ {0,0.25,0.5,0.75, 1} that may
arise during the initial generation process. In this paper,
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FIGURE 1: Bifurcations of sine map (z,,,) at interval [0, 1].

the sine chaotic map [54] given by (2) was utilized to
avoid this shortcoming. Its simplicity eliminates complex
calculations, reducing the CPU time:

Zi = Bsin(7z,), 2)

where 8 > 0, z,,2,,; € [0, 1] and ¢ is the generation number.
Figure 1 presents the bifurcation diagram of the sine chaotic
map. In some instances of generations, z,,; has relatively very
small values. Hence, to improve the effectiveness of the chaos
random inertia weight of particle swarm optimization, the
original sine chaotic map is lightly modified as follows:

) nz,
sin ( m >’ , (3)

where § = 1 and z,,z,,; € [0, 1]; the absolute sign ensures
that the next-generation process in chaos space has z,,; €
[0, 1]. Therefore, the chaotic random inertia weight w;, . is
given by

2y =

w,h =05xrand () +05xz,,. (4)

chaos

Figure 2 plots the dynamics of the modified sine chaotic
map while Figure 3 displays the bifurcation diagram.

Type 1" constriction coefficient is integrated to the
proposed variant of PSO to prevent the divergence of the
particles during the search for solutions in problem space.
The coefficient is used to fine-tune the convergence of particle
swarm optimization. Consider

2
o) ®

where the parameter ¢ = ¢, + ¢, depends on the cognitive
and social parameters and the criterion ¢ > 4 guarantees
the effectiveness of the constriction coefficient. Incorporating
the above coeflicient ensures the quality of convergence and
the stability of the generation process for particle swarm
optimization.
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FIGURE 2: Chaotic value (z,,,) with z, = 0.7 obtained using modified
sine map (3) after 500 generations.
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FIGURE 3: Bifurcations of modified sine map (z,,,) at interval [0, 1].

Time-varying cognitive and social parameters are incor-
porated into PSO to improve its local and the global search
by making the cognitive component large and the social
component small at the initialization or in the early part of the
evolutionary process. A linearly decreasing cognitive compo-
nent and a linearly increasing social component in the evo-
lutionary process enhance the exploitation and exploration
of the PSO, helping the particle swarm to converge at the
global optimum. The mathematical equation is represented
as follows:

t
%=~ yaxrrw (O )
t
viaxrR (2~ @)

(6)
Cé =Gt

wherec;,¢,;, ¢, 5, and ¢, ¢ are the initial and final values of the
cognitive parameters and the social parameters, respectively;
t is the current generation, and the MAXITR is the value in
the final generation.
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TABLE 1: Performance of different methods in minimizing sphere function based on ten simulation results (number of generations = 500).
Proposed PSO FA ACO DE
Best Fitness 7.4310E — 14 1.1579E - 11 3.1532E - 08 1.1929E - 07 1.2010E - 08
Time 1.2669 1.4928 7.9243 7.3712 1.2056
Mean Fitness 4.60054E - 13 3.3756E — 07 4.30642E - 08 3.46940E - 07 2.78219E - 08
Time 1.2845 1.4131 8.0510 7.3559 1.2117
Worst Fitness 1.2253E - 12 2.3454E - 06 5.7355E - 08 8.8534E - 07 5.4930E - 08
Time 1.2849 1.4669 8.0826 7.4529 1.1936
TABLE 2: Shortest CPU times of different methods in minimizing sphere function based on ten simulation results (number of generations =
500).
Proposed PSO FA ACO DE
Best Fitness 7.4310E - 14 9.0425E - 07 3.1532E - 08 3.7020E - 07 4.0916E - 08
Time 1.2669 1.3332 7.9243 7.2014 1.1381
Worst Fitness 2.4087E - 13 1.1579E - 11 4.8078E — 08 1.8604E — 07 2.8446E - 08
Time 1.3084 1.4928 8.2801 74778 1.2438

The above components improve the performance of
the standard PSO. Therefore, the proposed mathematical
equation for the velocity and position of the particle swarm
optimization are as follows:

t+l_ t t t t t t
Vp =X X Wehaos X Yo X (Pbest - xp) TG

x (géest - X;) (7)

The uniform random numbers [r,7,] € [0, 1] from the
velocity equation of the standard PSO are not included in
the proposed PSO. Figure 4 displays the flowchart of the
proposed chaos-enhanced PSO.

The mathematical representations and algorithmic steps
represent a significant improvement on the performance of
the standard PSO. A numerical benchmark test was carried
out using the unimodal and multimodal functions. The
following section presents and discusses the results.

4. Simulation Results

In this section, four benchmark test functions are used to
test the performance of the proposed algorithm. Subsections
elucidate the names of the benchmark test functions, their
search spaces, their mathematical representations, and vari-
able domains.

Five programming codes were developed in Matlab 7.12
to minimize the above benchmark functions. These codes
correspond to the proposed PSO, the standard PSO, the firefly
algorithm (FA) [55, 56], ant colony optimization (ACO)
[57, 58], and differential evolution (DE) [59, 60], which are
evaluated using the benchmark test functions for comparative
purposes.

The parameter settings for the above algorithms are as
follows. For the PSO, the inertia weight w, cognitive learning
¢, and social learning ¢, factors are given as 0.99, 1.5,
and 2.0, respectively. For the FA, the light absorption 7y,

attraction [3, and mutation « coefficients are 1.0, 2.0, and
0.2, respectively. For ACO, the selection pressure g and
deviation-to-distance ratio ¢ are 0.5 and 1.0, respectively.
The roulette wheel selection method is used for ACO. The
mutation coeflicient 8 and the crossover rate for DE are 0.8
and 0.2, respectively. The population size and the number of
unknowns (dimensions) for all population-based algorithms
that were used in the benchmark test are 20. Ten simulations
tests are performed using each of the algorithms in order to
evaluate their performance in minimization.

To verify the optimality and robustness of the algorithms,
two convergence criteria are adopted: the convergence tol-
erance and the fixed maximum number of generations. The
desktop computer that was used in the benchmark test
function experiments ran the Microsoft Windows 7 64-Bit
Operating System and had an Intel (R) Core i5 (3.30 GHz)
processor with 8.0 GB RAM installed.

4.1. Benchmark Testing: Sphere Function. The sphere function
is given by fi(x) = Z;-il x7, =100 < x; < 100 where
d =20 and x = (x,x,,...,%,,). The sphere function f,(x)
is a unimodal test function whose global optimum value is
fi(x) =0and x; = x, = x5 = -+ = x5 = 0. Table 1 presents
the best, mean, and worst values obtained by running all
the algorithms through 500 generations. Figure 5 shows
the performance for the maximum number of generations
of each population-based algorithms in minimizing f; (x).
Table 2 presents the shortest CPU times that were required
to minimize f;(x) under 500 generations and Figure 6 plots
this information for all algorithms.

In the next experimental test, the convergence tolerance
was set to 0.001. Table 3 presents the best, mean, and
worst values that were used to minimize f;(x) using all
techniques, based on ten simulation results. Almost all
techniques provide similar solutions. As presented in Table 3,
the proposed method gives smaller values of f,(x) in the
fewest generations and in the shortest CPU times. Figure 7
shows the convergence performance in minimizing f,(x).
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TABLE 3: Performance of methods in minimizing sphere function based on ten simulation results (convergence tolerance = 0.001).
Proposed PSO FA ACO DE
Fitness 6.8672E — 04 4.3526E — 04 7.0053E - 04 5.6728E — 04 6.5308E — 04
Best Generations 162 191 252 354 306
Time 0.4266 0.4942 4.1338 5.1278 0.7515
Fitness 8.6914E - 04 7.0088E — 04 8.49667E — 04 7.79853E - 04 9.06594E — 04
Mean Generations 166.7 192.9 249.6 338.4 310.6
Time 0.4418 0.5247 4.0568 4.9292 0.7725
Fitness 9.95120E - 04 9.2794E - 04 9.4996E - 04 9.9648E — 04 9.9164E - 04
Worst Generations 168 199 253 338 301
Time 0.4395 0.5376 4.1049 4.8423 0.7351
TABLE 4: Shortest CPU times for minimizing sphere function based on ten simulation results (convergence tolerance = 0.001).
Proposed PSO FA ACO DE
Fitness 9.3883E - 04 4.3526E - 04 7.5282E - 04 7.6357E — 04 9.3375E - 04
Best Generations 162 191 237 314 294
Time 0.4188 0.4942 3.8547 4.6462 0.7171
Fitness 8.0293E - 04 9.2794E — 04 8.4899E - 04 9.7435E — 04 8.8470F — 04
Worst Generations 164 199 260 353 331
Time 0.4600 0.5376 4.1888 5.2340 0.9117
x10* x10*
4 6
3.5 51,

Fitness value

77777777777

Generations
--- ACO --- PSO
--- DE —— Proposed
FA

FIGURE 5: Maximum number of generations in which different
algorithms minimize sphere function.

Table 4 illustrates the shortest and the longest CPU
times based on ten simulation tests. Table 4 reveals that
the proposed method yields a small fitness of f,(x)
in the shortest CPU times and in the fewest genera-
tions. Figure 8 displays the number of generations of
the different algorithmic methods and their shortest CPU
times.

4.2. Benchmark Testing: Powell Function. The Powell f,(x) =
Z?:/f[(x@—z. +10x4;5)° + 5(x4g — X4)° + (X4 — 2x45-1)"

Fitness value

iiiiiiiii

40 50 60 70 80

Generations

-- ACO --- PSO
--- DE —— Proposed
FA

FIGURE 6: Shortest CPU times in terms of maximum number
of generations for minimizing sphere function using different
algorithms.

+ 10(xy 5 — x4)*], 4 < x; <5 whered = 20 and
x = (X1, %,,...,Xy) is @ multimodal function whose global
optimum value is f,(x) = 0O and x;, = x, = x; =

= 0. Table 5 presents the best, mean, and
worst values of minimizing Powell function obtained in 500
generations using all population-based algorithms. Figure 9
plots the performance of the algorithms in minimizing f,(x).
Table 6 and Figure 10 display the shortest CPU times of the
algorithm.

= x20 =
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TABLE 5: Performance of methods used to minimize Powell function based on ten simulation results (number of generations = 500).

Proposed PSO FA ACO DE
Best Fitness 2.3302E - 04 6.8694E — 04 1.0520E — 04 1.0321E - 02 3.6326E — 02
Time 1.7946 1.7312 11.7101 8.3304 1.6328
Mean Fitness 3.32096E - 04 8.8461E - 04 1.20681E - 04 4.07067E — 02 7.00505E — 02
Time 1.7969 1.8037 11.6532 8.2524 1.6128
Worst Fitness 4.5921E - 04 9.9689E — 04 1.3828E — 04 7.1160E — 02 9.0721E - 02
Time 1.8766 1.8609 11.7172 8.1815 1.5889

TABLE 6: Shortest CPU times for minimizing Powell function using various methods based on ten simulation results (number of generations =

500).
Proposed PSO FA ACO DE
Best Fitness 4.0796E — 04 9.0462F — 04 1.1151E - 04 2.6980E — 02 5.3651E — 02
Time 1.7684 1.7275 11.5836 8.1192 1.5722
Worst Fitness 4.5921E - 04 9.9689E — 04 1.3828E — 04 3.6365E - 02 5.0665E — 02
Time 1.8766 1.8609 11.7172 8.3445 1.6441
x10* x10*
5 5 T T T T T T T
4 i 4 -~

Fitness value

Generations
--- ACO --- PSO
--- DE —— Proposed
FA

FIGURE 7: Convergence performance of different algorithms to
minimize sphere function.

Table 7 represents the best, mean, and worst values of the
minimum f,(x) that is obtained using all techniques with
the convergence tolerance set to 0.001. The proposed method
yields the best value f,(x) in fewest generations based on ten
simulation results. Figure 11 displays the minimum f,(x) at
convergence. Table 8 provides the shortest and longest CPU
times of the algorithms based on the ten simulation results.
Table 8 indicates that the proposed method has shortest
CPU times. Figure 12 displays the generation of the different
population-based algorithms.

4.3. Benchmark Testing: Griewank Function. The Griewank
function is given by f;(x) = Zil(xiz/4000) - ]_[?:lcos(x,-/
Vi) + 1, =600 < x; < 600 where d = 20 and x = (x,,

Fitness value

Generations
--- ACO --- PSO
--- DE —— Proposed
FA

FIGURE 8: Shortest CPU times for convergence in minimizing sphere
function using various algorithms.

Xy, ... Xy). The Griewank function f;(x) is a highly multi-
modal function, whose global optimum value is f5(x) = 0
and x; = x, = x5 = -+ = x,; = 0. Table 9 presents
the best, mean, and worst values obtained using all of the
tested algorithms in 500 generations. Figure 13 presents the
performance of the different algorithms in minimizing f;(x).
Table 10 and Figure 14 provide the shortest CPU times
required by the various algorithms.

Table 11 presents the best, mean, and worst values that
are used to minimize f;(x) using all techniques, based on
ten simulation results. The convergence tolerance was set
to 0.001. As presented, the proposed method provides the
best mean value of f;(x) in the fewest generations and
the shortest CPU time. Figure 15 shows the convergence
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TABLE 7: Performance of methods used to minimize Powell function based on ten simulation results (convergence tolerance = 0.001).
Proposed PSO FA ACO DE
Fitness 9.1273E — 04 7.1296E — 04 9.4488E — 04 9.0360E — 04 9.1736E — 04
Best Generations 290 381 228 951 1941
Time 0.9818 1.3197 5.3420 15.5685 6.1795
Fitness 9.7111E - 04 9.4425E — 04 9.77216E — 04 9.65246E — 04 9.44765E — 04
Mean Generations 285.2 407.4 250.4 988.7 2084.1
Time 1.0205 1.4655 5.8493 16.7481 6.6544
Fitness 9.99680E — 04 9.9668E — 04 9.9727E - 04 9.8909E — 04 9.7555E — 04
Worst Generations 277 489 259 941 2040
Time 1.0027 1.7057 5.9981 15.6953 6.3674

TABLE 8: Shortest CPU times of methods used to minimize Powell function based on ten simulation results (convergence tolerance = 0.001).

Proposed PSO FA ACO DE
Fitness 9.9657E — 04 8.8168E — 04 9.9182E - 04 9.8909E - 04 9.7298E - 04
Best Generations 265 348 228 767 1572
Time 0.9722 1.2894 5.2914 13.1973 4.8964
Fitness 9.8921E - 04 9.9936F — 04 9.8634E — 04 9.5813E - 04 9.3379E - 04
Worst Generations 308 489 281 1091 2385
Time 1.1175 1.8205 6.5992 20.7070 7.6814

TABLE 9: Performance of various methods used to minimize Griewank function based on ten simulation results (number of generations =

500).
Proposed PSO FA ACO DE
Best Fitness 1.7037E - 12 1.6977E - 09 8.1102E - 08 5.4901E - 06 2.3019E - 07
Time 1.5032 1.5415 8.7746 7.6647 1.3218
Mean Fitness 2.12356E - 11 1.4780E - 08 1.10972E - 07 2.37129E - 05 2.77944E - 06
Time 1.4964 1.5460 8.9015 7.6075 1.3114
Worst Fitness 5.9058E - 11 7.0892E - 08 1.4187E - 07 8.1614E - 05 1.4428E - 05
Time 1.5037 1.5000 8.9016 7.5366 1.3135

TaBLE 10: Shortest CPU times in which various methods minimize Griewank function based on ten simulation results (number of generations

= 500).
Proposed PSO FA ACO DE
Best Fitness 1.4997E - 11 7.0892E - 08 1.0660E — 07 9.2675E - 06 2.3775E - 07
Time 1.4636 1.5000 8.7636 7.3618 1.2926
Worst Fitness 4.4415E - 11 4.8823E - 09 1.3706E — 07 5.6119E - 06 4.7007E - 07
Time 1.5142 1.5975 9.0928 7.8357 1.3246

TaBLE 11: Performance of different methods used to minimize Griewank function based on ten simulation results (convergence tolerance =

0.001).
Proposed PSO FA ACO DE
Fitness 7.1941E - 04 8.6557E — 04 7.1756E — 04 8.0627E — 04 6.9771E — 04
Best Generations 203 182 280 458 356
Time 0.5851 0.5725 5.0284 6.9718 0.9431
Fitness 9.0097E — 04 9.5185E — 04 8.98598E — 04 9.09750E — 04 9.00905E — 04
Mean Generations 193.9 195.6 278.4 415.6 378.8
Time 0.5788 0.6029 4.9622 6.3172 0.9962
Fitness 9.91600E — 04 9.9607E — 04 9.8911E - 04 9.9483E - 04 9.9493E - 04
Worst Generations 192 186 283 418 413
Time 0.5737 0.5704 5.0228 6.4388 1.0912
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TABLE 12: Shortest CPU times of different methods used to minimize Griewank function based on ten simulation results (convergence

tolerance = 0.001).

Proposed PSO FA ACO DE
Fitness 9.0505E - 04 9.9607E — 04 9.4839E - 04 9.0539E - 04 9.3450E - 04
Best Generations 189 186 272 399 354
Time 0.5494 0.5704 4.8042 5.8471 0.9111
Fitness 8.5759E - 04 9.9382E - 04 9.1605E - 04 8.0627E — 04 9.9493E - 04
Worst Generations 204 232 283 458 413
Time 0.6176 0.7174 5.2167 6.9718 1.0912
10000 performance of each method in minimizing f;(x). Table 12
] presents the shortest and the longest CPU times based on the
5000 J‘l ten simulation tests of the different algorithms. Table 12 shows
| that the proposed method yields the smallest value of f;(x)
| in the shortest CPU times. Figure 16 plots the generation of
% 6000 4: the different algorithms.
o \ i
£ 4000F 75 b } 4.4. Benchmark Testing: Ackley Function. The Ackley func-
] - : tion f,(x) = _206—0,2><\/(1/d) T %} _ p(1/d) T, cos@mxx) 504 el
2000 f W Yy -32 < x; < 32whered = 20 and x = (x,%5,...,%,) is a
3\ T, e multimodal function whose global optimum value is f,(x) =
o Pt e b O0and x; = x, = x5 = - -+ = X, = 0. Table 13 presents the best,
0 0 40 0 80 100 120 140 mean, and worst values obtained using all of the algorithms
Generations in 500 generations. Figure 17 presents the performance of
the algorithms in minimizing f,(x). Table 14 and Figure 18
- - ACO - SO highlight the shortest CPU times of the different population-
T FDAE —— Proposed based algorithms.

FIGURE 9: Maximum number of generations in which algorithms
minimize Powell function.
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FIGURE 10: Shortest CPU times in terms of maximum number of
generations in which algorithms minimize Powell function.

Table 15 presents the best, mean, and worst values of the
minimum f,(x) that are obtained using all techniques when
the convergence tolerance was set to 0.001. Based on the
ten simulation results, the proposed method provides best
optimal value of f,(x) in the fewest generations. Figure 19
plots the convergence value in the minimizing of f,(x).
Table 16 presents the shortest and longest CPU times required
by the different algorithms based on the ten simulation
results. Table 16 reveals that the proposed method yields a
smallest fitness value of f,(x). Figure 20 plots the generation
of the different population-based algorithms.

4.5. FLC Optimized by Chaos-Enhanced PSO with Adaptive
Parameters for Maximum Power Point Tracking in Stan-
dalone Photovoltaic System. Developing fuzzy logic control
for the MPPT [61-67] involves determining the scaling factor
parameters and the shape of the fuzzy membership functions.
The two inputs and one output for this purpose are E(n),
which is tracking error, AE(n), which is change of tracking
error, and AD(n), which is the change of the duty cycle.
They are selected to tune optimally the fuzzy logic controller.
The mathematical description are given as E(n) = (p(n) —
pn —1))/(v(n) — v(n — 1)) and AE(n) = E(n) — E(n - 1).
In this case, p(n) and v(n) are the instantaneous power and
voltage of the PV, respectively. E(n) represents the operating
power point of the load, whether it is currently located on
the left hand side or right hand side, while AE(n) denotes
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and proposed.

TaBLE 13: Performance of different methods used in minimizing Ackley function based on ten simulation results (number of generations =

500).
Proposed PSO FA ACO DE
Best Fitness 1.7320E - 07 1.6304E - 05 5.0558E - 05 4.9309E - 05 2.8386E - 05
Time 1.4763 1.6495 9.5650 7.6734 1.4923
Mean Fitness 4.44804E - 07 3.1875E - 05 5.92199E - 05 7.77767E - 05 5.79878E - 05
Time 1.4848 1.6477 9.5221 7.6975 1.4897
Worst Fitness 7.1067E - 07 9.3937E - 05 6.5692E - 05 9.6797E - 05 8.8300E - 05
Time 1.5081 1.6460 9.5146 7.7872 1.4923
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TABLE 14: Shortest CPU times of different methods in minimizing Ackley function based on ten simulation results (number of generations =

500).
Proposed PSO FA ACO DE
Best Fitness 2.1591E - 07 2.3595E - 05 5.5490F - 05 7.6737E — 05 5.1565E — 05
Time 1.4625 1.5487 9.4085 7.5984 1.4536
Worst Fitness 3.6531E - 07 4.2848E - 05 6.2945E — 05 8.5803E - 05 7.7403E - 05
Time 1.4996 1.7014 9.7459 7.9017 1.6048

TaBLE 15: Performance of different methods used to minimize Ackley function based on ten simulation results (convergence tolerance =

0.001).
Proposed PSO FA ACO DE
Fitness 8.9400E - 04 2.5891E — 04 8.6650E — 04 8.5899E - 04 8.5410E — 04
Best Generations 230 278 358 449 407
Time 0.6973 0.9269 6.6928 7.0274 1.2136
Fitness 9.41E - 04 8.2176E - 01 9.41769E — 04 7.79853E — 04 9.37661E — 04
Mean Generations 245.8 264.3 362.3 4331 3977
Time 0.7433 0.8218 6.8563 4.9292 1.1824
Fitness 9.93800E — 04 9.9982F — 04 9.9644E — 04 9.9878E — 04 9.9868E — 04
Worst Generations 248 237 362 353 417
Time 0.7412 0.7587 6.7990 6.7089 1.2317
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T - L
A 300F 1
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FIGURE 13: Maximum number of generations in which algorithms
minimize Griewank function.

the direction of motion of the operating point. The fuzzy
inference system (FIS) approach used herein for maximum
power point tracking was the Mamdani system with the min-
max fuzzy combination operation for maximum power point
tracking. The defuzzification method that was used to obtain
the actual value of the duty cycle signal as a crisp output
was the center of gravity-based method. The equation is D =
Yo (uD;) - Dy)/ ¥iL, u(D;). The variable output is the pulse
width modulation signal, which is transmitted to the DC/DC
boost converter to drive the necessary load (Table 18). The
chaos-enhanced particle swarm optimization with adaptive

FIGURE 14: Shortest CPU times in terms of maximum number
of generations in which various algorithms minimize Griewank
function.

parameters was utilized to determine the parameter of the
scaling factors and to optimize the width of each inputs
and output membership function. Each of these inputs and
outputs includes five membership functions of the fuzzy
logic.

The operation of the chaos-enhanced PSO with adap-
tive parameters begins by generating a solution from the
randomly generated population with the best positions. The
velocity equation yields particles in better positions through
the application of chaos search and the self-organizing
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TABLE 16: Shortest CPU times of different methods used to minimize Ackley function based on ten simulation results (convergence tolerance

=0.001).
Proposed PSO FA ACO DE
Fitness 8.9400E - 04 9.7640E — 04 8.6650E — 04 9.3713E — 04 9.9383E — 04
Best Generations 230 233 358 385 369
Time 0.6973 0.7319 6.6928 6.0902 1.0919
Fitness 9.7772E — 04 2.5891E — 04 8.8023E - 04 9.7779E — 04 9.9868E — 04
Worst Generations 256 278 368 465 417
Time 0.7770 0.9269 7.0483 7.3161 1.2317
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FIGURE 15: Convergence performance of different algorithms used

to minimize Griewank function.
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FIGURE 16: Shortest CPU times for convergence of different algo-
rithms to minimize Griewank function.

FIGURE 17: Maximum number of generations in which different
algorithms minimize Ackley function.
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FIGURE 18: Shortest CPU times in terms of maximum number
of generations in which different algorithms minimize Ackley
function.
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parameters. In this paper, the cost function that is used
as the performance index is based on the minimization of
the integral absolute error (IAE): ObjFunc = j:o [p()er —
Pp()ouldt. The fitness value is calculated using Fitness =
2000 — ObjFunc. The measured cost function yields the
dynamic maximum output power of the boost converter.
The maximum power point tracking control was carried out
using the fuzzy logic and scaling factor controllers. Figure 21
presents the model that was used to tune the parameters of
the fuzzy logic controller during the process of optimization.
The benchmark test is conducted with a variable irradiance
and temperature of PV module as operating conditions,
which is shown in Figure 22 and the DC/DC boost converter

Mathematical Problems in Engineering

TABLE 17: SunPower SPR-305-WHT PV array electrical characteris-
tics.

Parameters Variable Value
Total number of cells N 96
Number of serie.s connected N 1
modules per string s

Number of parallel strings Npar 4
Open circuit voltage V. 64.2V
Short circuit current I, 596 A
Voltage at maximum power Vo 547V
Current at maximum power L, 558 A
Maximum power (+5%) P, 305 W
Maximum system voltage IEC,UL 1000V, 600V
Reference cell temperature Tt 25°C
Reference irradiation Sref 1000 W/m?

TaBLE 18: DC/DC boost converter specifications.

Parameters Variable Value
Input filter capacitance Cy 2mF
Boost inductance L 0.01H
Output filter capacitance Cot 2mF
Load resistance R, 500 Q)
TABLE 19: Fuzzy logic control rule base.
Change in error AE(n)
NB NS ZE PS PB
NB ZE ZE PB PB PB
Error NS ZE ZE PS PS PS
E(n) ZE PS ZE ZE ZE NS
PS NS NS NS ZE ZE
PB NB NB NB ZE ZE

is utilized to validate the optimized fuzzy logic maximum
power point tracking controller. All updates and transfer of
data are executed as set in the model. During the generation
process, the parameters of the fuzzy logic controllers and the
scaling factors are updated. These parameters are retained
until a new global fitness is obtained during the optimization
process. At the end of each generation, the parameters in
the fuzzy logic and the scaling factors are updated based on
the obtained global fitness until a convergence is made for
the best solution found so far by the swarm. The Appendix
presents the solar PV array specifications (also see Table 17),
the parameters used for DC/DC boost converter [68-72],
and the rule base of the fuzzy logic controller (Table 19).
Figure 23 displays the optimal best inputs and output width
of membership functions obtained by the swarm. The optimal
fuzzy logic solution yields symmetric triangular membership
functions for E(n), AE(n), and AD(n). The chaos-enhanced
PSO with adaptive parameters causes the maximum power
point tracking of a PV system to converge toward the best
fitness that has been obtained by the swarm. Figure 24 shows
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FIGURE 21: Block diagram of maximum power point tracking for standalone PV system.
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FIGURE 22: Staircase change of solar irradiation (300 to 900 W/ m?) and temperature (25°C to 40°C).

the output power. The obtained optimal fuzzy logic controller
is more robust than, and outperforms, other maximum power
point tracking algorithms.

5. Conclusion

This paper presents a novel technique with promising new
features to enhance the performance and robustness of
the standard PSO for solving optimization problems. The
improved technique incorporates chaos searching to avoid
the risk of stagnation, premature convergence, and trapping
in a local optimum; it incorporates type 1" constriction to
improve the quality of convergence and adaptive cognitive
and social learning coefficients to improve the exploitation
and exploration search characteristics of the algorithm. The
proposed chaos-enhanced PSO with adaptive parameters was
experimentally tested in high-dimensional problem space

using a four benchmark functions to verify its effectiveness.
The advantages of the chaos-enhanced PSO with adap-
tive parameters over the population-based algorithms are
verified and the numerical results demonstrate that the
proposed technique offers a faster convergence with near
precise results, better reliability, and lower computational
burden; avoids stagnation and premature convergence; and
can escape from local minimum and low CPU time and
speed requirements. A complete stand-alone PV model was
developed in which maximum power point tracking control
with fuzzy logic is utilized to evaluate the performance of the
proposed algorithm in real-world engineering optimization
applications.

It is envisaged that the proposed chaos-enhanced PSO
with adaptive parameters can be applied to a wider class
of complex scientific and engineering problems such as
electric power system optimization (e.g., minimization of
nonconvex fuel cost and power losses), robust design
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of nonlinear plant control system under the presence of
parametric uncertainties, and forecasting of wind farm out-
put power using the artificial neural network where the
connection weights and thresholds are needed to be adjusted
optimally.

Appendix

This appendix presents the solar PV array specifications [73],
DC/DCboost converter parameters, and fuzzy logic rule base
of the five membership functions that are used in the DC/DC
boost converter.
The maximum power for a single PV array (watts) is given
as follows:
Pyrray = Py X Nygy X Ny

array

(AD)
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