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The purpose of this paper is to determine a critical load for a nonuniform circular steel tube under eccentrically axial load. The
circular tube has variable cross section at flattened ends with existing holes used for connection between members. Three different
cases of eccentricities are studied with the drilled holes either on the same side or on the opposite side of column axis. The critical
load is calculated from the differential equation of deflection curve which is solved by the power series and Runge-Kutta method.
In addition, the loading tests were performed on a total of 180 specimens with different diameters, slenderness, and connection.
The calculated results are compared and shown in a good agreement with those obtained from the experimental results.The results
also show that the critical load decreases rapidly even at a small value of eccentricity and thus may have a significant effect on the
load-carrying capacity.

1. Introduction

Space trusses have beenwidely used in engineering structures
as construction industry imposing increasingly demanding
requirements on safety design of light weight structures at
low cost. The truss system is mainly composed of long steel
members connected to each other at nodes to form the
framework structures. The determination of critical load is
essential to assess the reliability and safety of space truss
structures.

The steel members used in truss systems are generally in
circular hollow section for their adequate behaviour under
both tension and compression [1]. However, the insufficient
flat surface of circular profile for rivets or bolts placement
creates challenging issues in the connection between steel
members. Various patented designs of connection mecha-
nisms have been proposed for the space truss systems such
as Triodetic, Nodus,Mero, Okta, “V”, processing of tube ends
by milling and mutual welding, or simply connection and
welding by a sheet insertion into the undercut tube ends [2, 3].

Compared to the complex modifications of tube ends, the
staking end-flattened tubes fastened by large bolts appear to
be relatively simple and have been widely used due to easy
installation and cost saving [1]. The flattened ends, however,
also present some disadvantages such as nodal eccentricities
and loss of stiffness due to reduced cross section at flattened
ends. The nodal eccentricities could substantially increase
the bending moment, and the misalignment between drilled
holes and column axis could result in eccentrically axial load
that has vital effects on the critical load.

The behaviour of a column with different cross section
subjected to eccentric load has been studied such as circular
tubular column [4], elliptical hollow column [5], square and
rectangular hollow columns [6], and the battened column
composed of L-profiles under uniaxial and biaxial loads [7].
The tube column using the outer encasing thin-walled steel
tube containing the other tubular columns is researched in
[8], where the average confining stress in the mentioned
columns with small eccentricity is approximately equal to
that in columns under axial load. Often used T-profiles and
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Table 1: Tested variants of steel tubes.

Connection 𝑑ext (mm) 𝑙 (mm) Number of specimens
A

12 452, 498, 548,
594, 640, 688

5 specimens for each
variantB

C
A

14 534, 588, 646,
704, 756, 812

5 specimens for each
variantB

C

square profiles in concurrent with I-profile which occur in
the buildings are studied in [9, 10]. The papers discuss how
the eccentricity can affect the behaviour of specific columns.
Due to a minimum mass requiring in the practice, crush-
ing failures in thin-walled columns appear there, especially
under the eccentric compression. As it was studied in [11],
the eccentricity can increase the number of failure points
where the plastic flow of material occurs, which is also
dangerous.

The incentive to writing this paper was the lifting plat-
form constructional design created at the Department of
Mechanics, Mechanical Engineering and Design which was
registered as a utility model in The Industrial Property
Office of the Slovak Republic [12]. This platform consists
of the circular tubes with flattened ends. Some theory
and simplifications of the critical load calculation were
published in [13–15]. In all cases, only centrically loaded
column was considered. Owing to this, the requirement to
calculate the critical load under the eccentric axial load was
created.

To study the effect of eccentricity on the column
behaviour, three different cases of eccentricity are considered
in this paper: one connecting hole off the column axis, both
connecting holes off and on the same side of column axis,
and two connecting holes on the opposite side of column
axis. The governing equation for loading of nonuniform
circular column under eccentrically axial load is reduced to
a differential equation of the fourth order which is solved
by the power series and Runge-Kutta methods to calculate
the critical load. The loading tests were also conducted to
compare with theoretical results.

2. Experimental Investigation

The steel tubes with circular cross section are flattened at both
ends where the length of the flattened portion is 1.5 ⋅ 𝑑ext;
𝑑ext is external diameter of the circular cross section as shown
in Figure 1. A connecting hole with a diameter of 7mm was
drilled at flattened portion; the centre of the hole is located at
0.75 ⋅ 𝑑ext from each end.

The loading tests were conducted on the steel tubes
with various diameters and lengths. Totally 180 specimens
were tested in the variants given in Table 1. The values of
eccentricity were 1.8mm for a diameter of 12mm and 2.8mm
for a diameter of 14mm.

Table 2: The mechanical characteristics of the steel S355.

Yield strength min. 355MPa
Tensile strength 470–630MPa
Young’s modulus 2.1 ⋅ 10

5MPa
Shear modulus 8 ⋅ 10

4MPa
Poisson’s ratio 0.3
Density 7850 kg⋅m−3

Elongation min. 22%
Hardness max. 190HB
Impact strength (longitudinal) 27 J at +20∘C
Coefficient of linear thermal expansion 11.7 ⋅ 10

−6 K−1
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Figure 1: The steel tubes with flattened ends.

The tested specimens were made of S355 constructional
steel with the tangent Young’s modulus 𝐸 = 210GPa accord-
ing to the standard EN 10020.The mechanical characteristics
of the steel S355 are given in Table 2.

The loading test of steel tubes was performed on the
universal machine Testometric M500-100 CT, as shown in
Figure 2 where an axial force was gradually loaded on the
specimen mounted on the fixture. The displacement sensors
were supplied with stabilized power and the data were
recorded by NI USB 6008 and processed by LabView and
winTest software.

The courses of the axial load in dependence of lateral
displacement for a diameter 𝑑ext = 14mm and 𝑙 = 812mm
are shown in Figure 3.
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Figure 2: Experimental measurement. 1: TestometricM500-100 CT;
2: fixtures; 3: bolts; 4: specimen; 5: displacement sensors; 6: stabilized
power supply; 7: NI USB 6008; 8: PC.
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Figure 3: Output from the machine with determination of maxi-
mum axial force.

3. Mathematical Formulation

The governing differential equation for the axial loaded
column with an eccentricity of connection and variable cross
section can be derived from the equilibrium of moment as
follows:

𝑑
2

𝑑𝑥2
[𝐸𝐼 (𝑥)

𝑑
2

𝑑𝑥2
(𝑤 (𝑥) + 𝑒 (𝑥))]

+ 𝑁
𝑑
2

𝑑𝑥2
(𝑤 (𝑥) + 𝑒 (𝑥)) = 0,

(1)
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Figure 4:Themeasured and approximatedmoment of inertial along
the steel tube for 𝑑ext = 12 and 𝑙 = 812mm.

where 𝐸𝐼(𝑥) is the flexural rigidity, 𝑒(𝑥) is the eccentricity,
and𝑁 is the axial force.The value of eccentricity is a constant
in the case B and a linear function of a variable 𝑥 in cases A
and C. We do not need to know its accurate form, because
it takes a zero value applying two derivatives. Owing to
the tube length, the value of eccentricity is relatively small;
therefore the angle of axial force rotation against the tube axis
is negligible. The differential equation (1) can be rewritten as
follows:

𝐼 (𝑥)
𝑑
4

𝑑𝑥4
𝑤 (𝑥) + 2𝐼

󸀠
(𝑥)

𝑑
3

𝑑𝑥3
𝑤 (𝑥) + 𝐼

󸀠󸀠
(𝑥)

𝑑
2

𝑑𝑥2
𝑤 (𝑥)

+ 𝜆
𝑑
2

𝑑𝑥2
𝑤 (𝑥) = 0,

(2)

where 𝜆 = 𝑁/𝐸 is the eigenvalue to be determined.
Both analytical and numerical solutions for the differential
equation are derived next. Analytical solution is derived
based on the power series method while numerical solution
is obtained by using the Runge-Kutta method.

The moment of inertial of the steel tube is sharply
decreased from the flattened portion to the circular cross
section as shown in Figure 4. To derive analytical solution for
(2), the moment of inertial is approximated by a polynomial
as follows:

𝐼 (𝑥) = 𝑎
1
𝑥
𝑛
+ 𝑎
0
, (3)

where 𝑛 is an even number due to symmetry of moment
of inertia. For the numerical solution, the exact values of
moment of inertial measured every 1mm along the steel tube
were used in the solutions of (2).

The boundary conditions for the individual cases are built
on the basis of mechanical schemes in Figures 5–7.
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Figure 5: The bending moments scheme, case A.
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Figure 6: The bending moment scheme, case B.

According to the previous schemes, the boundary condi-
tions are determined:

(i) case A: 𝑤(±
𝑙

2
) = 0;

𝑤
󸀠󸀠
(−

𝑙

2
) =

𝜆𝑒

𝐼
;

𝑤
󸀠󸀠
(

𝑙

2
) = 0,

(4)

(ii) case B: 𝑤(±
𝑙

2
) = 0;

𝑤
󸀠󸀠
(±

𝑙

2
) =

𝜆𝑒

𝐼
,

(5)

(iii) case C: 𝑤(±
𝑙

2
) = 0;

𝑤
󸀠󸀠
(−

𝑙

2
) =

𝜆𝑒

𝐼
;

𝑤
󸀠󸀠
(

𝑙

2
) = −

𝜆𝑒

𝐼
.

(6)

The solution of differential equation (2) can be expressed
in power series form:

𝑤 (𝑥) =

∞

∑

𝑖=0

𝑐
𝑖
𝑥
𝑖
. (7)
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Figure 7: The bending moments scheme, case C.

By substituting (7) into (2), a series equation in terms of
𝑥 can be obtained as follows:
∞

∑

𝑖=−2

{𝑐
𝑖+2

[𝑎
1
(𝑖 + 1) (𝑖 + 2) + 𝜆] + 𝑐

𝑖+4
𝑎
0
(𝑖 + 3) (𝑖 + 4)}

= 0.

(8)

By regrouping the power of x, a recurrence formula for
the coefficients 𝑐

𝑖
, 𝑖 = 4, 5, 6, . . ., can be derived as follows:

𝑐
𝑖+4

= −
𝑐
𝑖+2

[𝜆 + 𝑎
1
(𝑖 + 1) (𝑖 + 2)]

𝑎
0
(𝑖 + 3) (𝑖 + 4)

, (9)

where the coefficients 𝑐
𝑖
, 𝑖 = 0∼3, and the eigenvalue 𝜆

remain to be determined. By substituting the recurrence
formula into power series, the lateral displacement 𝑤(𝑥) and
its first and second derivatives can be obtained as follows:

𝑤 (𝑥)

= 𝑐
0
+ 𝑐
1
𝑥 + 𝑐
2

{

{

{

𝑥
2
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∞
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∏
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]
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{
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(10)
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where

𝑠
𝑗
(𝜆) = −

𝜆 + 𝑎
1
(2𝑗 + 1) (2𝑗 + 2)

𝑎
0
(2𝑗 + 3) (2𝑗 + 4)

,

𝑡
𝑗
(𝜆) = −

𝜆 + 𝑎
1
(2𝑗 + 2) (2𝑗 + 3)

𝑎
0
(2𝑗 + 4) (2𝑗 + 5)

.

(13)

Even one additional condition is needed to certain 5
unknown variables 𝑐

0
, 𝑐
1
, 𝑐
2
, 𝑐
3
, and𝜆. It is obtained by allowed

stress definition in a certain place (in our case 𝜎 = 360MPa).
The question is in which place this condition will be chosen.
Let us assume the highest deformation in a place around
the middle of the rod. One side of a tube will be loaded
by a tension; the second one will be loaded by a pressure.
Overloading the allowed stress on a tension side will be the
most dangerous state. This condition is written as

(i) case A: 𝜎 =
𝜆𝐸 (𝑤max + 𝑒/2 − 𝑒𝑥max/𝑙)

𝑆
−

𝜆𝐸

𝐴
, (14)

(ii) case B: 𝜎 =
𝜆𝐸 (𝑤max + 𝑒)

𝑆
−

𝜆𝐸

𝐴
, (15)

(iii) case C: 𝜎 =
𝜆𝐸𝑤max

𝑆
−

𝜆𝐸

𝐴
, (16)

where 𝑥max is a distance of 𝑤max measured from the middle
of the rod.

On the basis of previous equations, in case A the variables
𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑥max, and 𝑤max are being looked for meeting

conditions (4) and

𝑤
󸀠
(𝑥max) = 0;

𝑤 (𝑥max) = 𝑤max.
(17)

In case B, the constants 𝑐
1
and 𝑐
3
will be zero and 𝑐

0
=

𝑤max. Only (10) and (12) are being solved, where the variables
𝑐
0
and 𝑐
2
are being looked for. The axial force can be directly

computed by (15).
In case C, there is a problem with determination of

a maximum deflection placement. Logically, the maximum
deflection will be in the middle of the rod. The angle of a rod
rotation will be taken into account by computation. Owing
to this, the placement of maximum deflection will be moved
down, which is not important because it does not have any
effect on the axial force computation. Four variables 𝑐

0
, 𝑐
1
, 𝑐
2
,

and 𝑐
3
are being looked for meeting the boundary conditions

(6).
All three tasks lead to the solution of a systemof nonlinear

equations. It is important to determine upper limit of the
sum, because to compute the sum to infinity is impossible
and it is not needed. If the solution exists then the individual
members of the sum decrease with the increasing step and at
the certain value of step they will be negligible. We have the
experience that after 10–14 steps the error will not be over 1%.
Newtonmethod was used to solve these systems of nonlinear
equations.

The computations were verified by the Runge-Kutta
numerical method meeting the boundary conditions, which

leads to the system of nonlinear equations as well. New
function values 𝑤

1
(𝑥), 𝑤

2
(𝑥), 𝑤

3
(𝑥), and 𝑤

4
(𝑥) with a step

ℎ are computed as

𝑤
𝑗,𝑖+1

= 𝑤
𝑗,𝑖

+ 𝑘
𝑗,𝑖

for 𝑗 = 1, 2, 3, 4, 𝑖 = 0, . . . , (𝑙 − 1) ,

(18)

where

𝑘
𝑗,𝑖

=
1

6
(𝑘
𝑗,𝑖,1

+ 2𝑘
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+ 2𝑘
𝑗,𝑖,3

+ 𝑘
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𝑘
𝑗,𝑖,1

= ℎ ⋅ 𝑓
𝑗
(𝑥
𝑖
, 𝑤
1,𝑖

, 𝑤
2,𝑖

, 𝑤
3,𝑖

, 𝑤
4,𝑖

) ,

𝑘
𝑗,𝑖,2

= ℎ ⋅ 𝑓
𝑗
(𝑥
𝑖
+

1

2
ℎ, 𝑤
1,𝑖

+
1

2
𝑘
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2,𝑖

+
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2
𝑘
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3,𝑖
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2
𝑘
3,𝑖,1

, 𝑤
4,𝑖
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1

2
𝑘
4,𝑖,1
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𝑘
𝑗,𝑖,3
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𝑗
(𝑥
𝑖
+

1

2
ℎ, 𝑤
1,𝑖

+
1

2
𝑘
1,𝑖,2

, 𝑤
2,𝑖

+
1
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𝑘
2,𝑖,2

, 𝑤
3,𝑖

+
1

2
𝑘
3,𝑖,2

, 𝑤
4,𝑖

+
1

2
𝑘
4,𝑖,2

) ,

𝑘
𝑗,𝑖,4

= ℎ ⋅ 𝑓
𝑗
(𝑥
𝑖
+ ℎ, 𝑤

1,𝑖
+ 𝑘
1,𝑖,3

, 𝑤
2,𝑖

+ 𝑘
2,𝑖,3

, 𝑤
3,𝑖

+ 𝑘
3,𝑖,3

, 𝑤
4,𝑖

+ 𝑘
4,𝑖,3

) .

(19)

The computation of the axial forces was also performed
by CREO Simulate software.

4. Results and Discussion

Figures 8, 9, and 10 show the measured and computed values
of the axial forces. Meaning of the labels are as follows:
12, 14: column diameter; EXP: experimental data; DR-E:
analytically solved values; DR-N: numerically solved values;
CREO: software solution. Figures 11, 12, 13, and 14 show how
the axial force decreases with an increasing of the connecting
holes eccentricity.

In Figures 15 and 16, the stress distribution in a place
around the flattening is shown as a result of nonoverloaded
stress in these places.

The maximum, average, and minimum discrepancies
between the computation and experiment are shown in
Tables 3–5. These discrepancies were calculated as relative
errors between the average experimental values and calcu-
lated values with respect to the average experimental value.
Moreover, the percentiles of 95%, 50%, and 5% are given in
Tables 3–5.

In the previous text, analytical solutions and numerical
results for themaximumaxial force of the steel tubeswith flat-
tened ends and connecting holes eccentricity are presented
and compared with those obtained from experimental tests.
Analytical solutions were derived with the moment of inertia
approximated by a polynomial of 2nd degree. Increasing of
polynomial degree does not have to make better solution.
Due to a small coefficient at the highest power (in order of
10−40), some mistakes can appear easily there. Due to the
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Figure 8: The measured and computed axial forces, A.
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Figure 9: The measured and computed axial forces, B.

small differences, 2nd degree polynomial is sufficient in all
investigated cases and solutions are presented only for the
quadratic approximation.

Numerical solutions were also obtained by the Runge-
Kutta method with the moment of inertia measured at the
specific points. For purposes of comparison, simulations in
CREO Simulate software are also presented. Figures 8–10
show the variation of the axial force with the length of
steel tubes for the diameter 𝑑ext = 12 and 14mm. For
cases A and B, it can be seen in Figures 8 and 9 that the
computed axial forces are underestimated by either analytical
or numerical methods in comparison with the experimental
results in both diameters. On the basis of results, it cannot be
strictly said which method of computation is more accurate.
In case A and diameter 𝑑ext = 12mm and in case C, the
analytical method is closer to the experiment. In the other
cases, it is numerical method. Discrepancies between the
individual methods are not significantly high and they can be
considered as equivalent. Nevertheless, numerical method is
more suitable than analyticalmethod from the accuracy point
of view. Considering the speed of calculation, we recommend
analytical method for use.
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Figure 10: The measured and computed axial forces, C.
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Generally, discrepancies in case A are higher than in case
B owing to the more complicated distribution of a bending
moment, which was simplified in our mathematical model.
Discrepancies at the diameter of 𝑑ext = 12mm are generally
higher than at the diameter of 𝑑ext = 14mm. It relates to the
other loading parts which affect the smaller component parts
rather. The results obtained by CREO Simulate software are
closer to the numerical results and also can be considered as
meaningful. Considering the column with the uniform cross
section, differences between the numerical values and the
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Figure 13: Dependence of the axial force and eccentricity (12/688).
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Figure 14: Dependence of the axial force and eccentricity (12/452).

values for uniform column are negligible and these values are
not shown in figures.

Figure 10 shows that computed axial forces in the case
C are more different from the experimental results than in
cases A and B. These differences are caused by a differ-
ent character of deformation during the experiment. The
columns behaved like clamped columns and were being
deformed in a plane perpendicularly to a plane of natural
rotation.

In Figures 11–14, the courses of the axial force in depen-
dence on the connecting holes eccentricity are shown. There
are the courses for both diameters and for the longest and
the shortest specimen. The results show that, in all cases,
the highest increase of the force is in the beginning of
the eccentricity interval with subsequent equalization. The
figures show that even small eccentricity of the hole is
dangerous. For a comparison, the computations of a uniform
column were also performed.

In case A, there is lower decline of the axial force than
in case B, where the higher decline is in the case of flattened
tubes unlike the uniform tubes. At the diameter 𝑑ext =

14mm, the decline of the axial force is higher than at the
diameter 𝑑ext = 12mm. At longer columns, the decline is
lower than at shorter columns. It follows that the lowest part
of the axial force is lost in case A with the diameter 𝑑ext =

12mm and 𝑙 = 688mm, approximately 2.5% of the carrying
capacity per 1mm of eccentricity.The biggest part of the axial
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Figure 15: The stress distribution around the flattening, case A.
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Figure 16: The stress distribution around the flattening, case B.

force is lost in case B with the diameter 𝑑ext = 12mm and
𝑙 = 452mm, approximately 15% of the carrying capacity per
first 1mm of eccentricity, where this decline is continuously
decreasing.

Amistake in a formof eccentricity up to 3mm is common
in the practice. In our cases, it means the following. In case
A, the decline of the axial force is around 7–15% of the origin
value, and in case B it is around 18–35% in dependence on
the tube parameters. In case C, there was not any loss of
the carrying capacity, because the value of eccentricity was
the same at both tube ends but in opposite side. Owing to
the different behaviour of a tube deformation during the
experiment, it is useless to develop our theory.When we have
knowledge of one connecting hole eccentricity, it is suitable to
drill the second one in opposite side about the same value of
eccentricity, where there is no losing of the carrying capacity.
In most cases, the value of axial force increased against the
computed value.
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Table 3: The average and minimum discrepancies, case A.

𝑑ext (mm) Analytic
experiment

Numeric
experiment

CREO
experiment

12

Minimum 0.370% 0.989% 2.003%
Average 10.860% 11.659% 12.540%

Maximum 19.139% 19.650% 20.537%
5% perc. 0.370% 0.989% 2.003%
50% perc. 10.867% 11.778% 12.613%
95% perc. 19.139% 19.650% 20.537%

14

Minimum 4.638% 2.114% 2.311%
Average 7.944% 4,590% 4.760%

Maximum 10.516% 7.142% 7.618%
5% perc. 4.638% 2.114% 2.311%
50% perc. 8.080% 5.121% 5.201%
95% perc. 10.516% 7.142% 7.618%

Table 4: The average and minimum discrepancies, case B.

𝑑ext (mm) Analytic
experiment

Numeric
experiment

CREO
experiment

12

Minimum 5.093% 0.147% 1.061%
Average 8.316% 4.845% 5.678%

Maximum 12.886% 9.519% 10.342%
5% perc. 5.093% 0.147% 1.061%
50% perc. 8.272% 5.328% 6.149%
95% perc. 12.886% 9.519% 10.342%

14

Minimum 0.008% 0.298% 0.133%
Average 4.468% 1.619% 1.627%

Maximum 7.619% 3.470% 3.488%
5% perc. 0.008% 0.298% 0.133%
50% perc. 5.167% 1.277% 1.270%
95% perc. 7.619% 3.470% 3.488%

5. Conclusion

The maximum axial forces of a steel tube with flattened
ends and eccentric connection were studied analytically and
experimentally for different lengths and diameters. In the
past, the experiment with connecting holes located in a
rod axis was performed. Creating the holes, manufacturing
mistakes can appear there and these holes can be drilled out
of a rod axis. In this paper, the mathematical model was built
which is the same in all cases of eccentricity. The differences
are only in the boundary conditions.

In case A, only an eccentricity of one connecting hole
was considered. In case B, an eccentricity of both holes into
the same side was considered. Logically, the measured values
of force were lower than in case A. When manufacturing
the holes and one is drilled with an eccentricity, we were
interested in if it is more suitable to drill the second hole in
the axis or to drill it out of the axis in opposite side (case C).

Table 5: The average and minimum discrepancies, case C.

𝑑ext (mm) Analytic
experiment

Numeric
experiment

CREO
experiment

12

Minimum 4.343% 5.836% 25.020%
Average 13.331% 14.512% 29.635%

Maximum 19.808% 20.802% 33.718%
5% perc. 4.343% 5.836% 25.020%
50% perc. 14.709% 15.855% 31.033%
95% perc. 19.808% 20.802% 33.718%

14

Minimum 5.081% 6.868% 16.849%
Average 9.632% 11.109% 17.883%

Maximum 12.724% 14.024% 20.338%
5% perc. 5.081% 6.868% 16.849%
50% perc. 10.379% 11.826% 17.364%
95% perc. 12.724% 14.024% 20.338%

The experiment verified that the value of force is higher than
in case A, which means that it is more suitable to drill the
second hole in opposite side. Computing the forces, we can
say the fact that even a small change of eccentricity causes a
high change of the value of force.

Glossary

𝑎
0
, 𝑎
1
: Polynomial coefficients for 𝐼

𝐴: Area of the cross section (m2)
𝑐: Polynomial coefficients for 𝑤

𝑑ext: External column diameter (m)
𝑑int: Internal column diameter (m)
𝑒: Connection eccentricity (m)
𝐸: Young’s modulus (Pa)
ℎ: Step size (m)
𝐼: Moment of inertia (m4)
𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
: Substitution functions

𝑙: Column length (m)
𝑛: Polynomial exponent for 𝐼

𝑁: Axial force (N)
𝑠
𝑗
, 𝑡
𝑗
: Substitution functions

𝑆: Section modulus (m3)
𝑤: Column deflection in 𝑧-axis (m)
𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
: Substitution functions

𝑤max: Maximum column deflection (m)
𝑥, 𝑦, 𝑧: Coordinates
𝑥max : Position of 𝑤max (m)
𝜆: Eigenvalue (m−2)
𝜎: Yield strength (Pa).
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