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Abstract
In this paper, we introduce the (G,ψ )-contraction and the (G,ψ )-graphic contraction
in a metric space by using a graph. We explain some conditions for a mapping which
is a (G,ψ )-contraction to have a unique fixed point and also we give conditions as
regards the existence of a fixed point for (G,ψ )-graphic contraction by applying the
connectivity of the graph in both cases. Moreover, we give examples to show that our
results are a substantial improvement of some known results in the literature.
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1 Introduction
The metric fixed-point theory has been researched extensively in the past two decades
such as in a metric space endowed with a partial ordering, and many results appeared
giving sufficient conditions for a mapping to be a Picard operator. For these concepts
have been given two main theorems, which are the Banach Contraction Principle and the
Knaster-Tarski Theorem [].
Recently Jachymski [] and Gwóźdź-Lukawska and Jachymski [] have given an inter-

esting concept in fixed-point theory with some general structures by using the context of
metric spaces endowedwith a graph. Jachymski [] has proved some generalizations of the
Banach Contraction Principle to mappings on a metric space endowed with a graph and
also has presented its applications to the Kelisky-Rivlin Theorem on iterates of the Bern-
stein operators on the space C[, ]. Afterwards different contractions have been studied
by various authors. In [] the contraction principle for set-valuedmappings, in [–] Kan-
nan type, Reich type contractions, and ϕ-contractions have been investigated, respectively.
Some new fixed-point results for graphic contractions on a complete metric space with a
graph have been presented in []; also they gave a particular case of almost contractions.
In this paper, motivated by the work of Jachymski [] and Petruşel [], we introduce

new contractions for the mappings on complete metric space and prove some fixed-point
theorems. Our results generalize and unify some results by the above-mentioned authors.

2 Basic facts and definitions
Let (X,d) be a metric space and � denote the diagonal of the Cartesian product X × X.
Let G be a directed graph such that the set V (G) of its vertices coincides with X, and the
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set E(G) of its edges contains all loops; that is, E(G) ⊇ �. Assume that G has no parallel
edges, so one can identify G with the pair (V (G),E(G)).
The conversion of a graph G is denoted by G– and this is a graph obtained from G by

reversing the direction of the edges. Hence

E
(
G–) = {

(x, y) ∈ X ×X : (y,x) ∈ E(G)
}
.

By G̃ we denote the undirected graph obtained from G by omitting the direction of the
edges. Indeed, it is more convenient to treat G̃ as a directed graph for which the set of its
edges is symmetric, and under this convention, we have

E(G̃) = E(G)∪ E
(
G–).

A subgraph of a graphG is a graphH such thatV (H) ⊆ V (G) and E(H)⊆ E(G). Let x and
y be vertices in a graphG. A path from x to y of lengthN (N ∈N∪{}) is a sequence (xi)Ni=
of N +  distinct vertices such that x = x, xN = y and (xi–,xi) ∈ E(G) for i = , . . . ,N . The
number edges inG forming the path is called the length of the path.A graphG is connected
if there is a path between any two vertices. If a graph G is not connected then it is called
disconnected and its different paths are called the components of G. Every component of
G is a subgraph of it. Furthermore, G is weakly connected if G̃ is connected. Let Gx be
the component of G which consists of all edges and vertices contained in some path in G
beginning at x. Suppose that G is such that E(G) is symmetric; then V (G) = [x]G where
[x]G denotes the equivalence class of relations � defined on V (G) by the rule

y�z if there is a path in G from y to z.

Some basic notations related to connectivity of graphs can be found in [].
If f : X → X is an operator, then we denote by

F(f ) = {x ∈ X : x = fx}

the set of all fixed points of f .

Definition  [] Amapping f : X → X is a BanachG-contraction or simplyG-contraction
if f preserves edges of G;

(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G), ()

for all x, y ∈ X, and f decreases weights of edges of G: for all x, y ∈ X there exists α ∈ (, )
such that

(x, y) ∈ E(G) ⇒ d(fx, fy) <≤ αd(x, y). ()

Definition  [] The mapping f : X → X is a G-graphic contraction
(i) if f preserves edges of G;

(x, y) ∈ E(G) ⇒ (fx, fy) ∈ E(G), ()

for all x, y ∈ X ;

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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(ii) there exists α ∈ (, ) such that

(x, y) ∈ E(G) ⇒ d
(
fx, f x

) ≤ αd(x, fx), ()

for all x, y ∈ Xf .

Definition  [] A mapping f : X → X is called orbitally continuous if for all x, y ∈ X and
any sequence (kn)n∈N of positive integers,

f knx→ y implies f
(
f knx

) → fy as n→ ∞.

Definition  [] A mapping f : X → X is called orbitally G-continuous if for all x, y ∈ X
and any sequence (kn)n∈N of positive integers,

f knx→ y,
(
f knx, f kn+x

) ∈ E(G) imply f
(
f knx

) → fy as n→ ∞.

Now, we give a definition of the class � which is used in several well-known papers to
obtain some fixed-point results [–].

Definition  Let us define the class � = {ψ : R+ → R+ | ψ is nondecreasing} which satis-
fies the following conditions:

(i) ψ(ω) =  if and only if ω = ;
(ii) for every (ωn) ∈ R+, ψ(ωn) →  if and only if ωn → ;
(iii) for every ω,ω ∈ R+, ψ(ω +ω)≤ ψ(ω) +ψ(ω).

3 (G,ψ )-Contraction and related fixed-point theorems
We establish some fixed-point theorems in metric space with a graph by defining the
(G,ψ)-contraction.

Definition  We say that a mapping f : X → X is a (G,ψ)-contraction if the following
hold;

(i) f preserves edges of G, i.e. ((x, y) ∈ E(G)⇒ (fx, fy) ∈ E(G)), ∀x, y ∈ X ;
(ii) f decreases the weight of edges of G, that is, there exists c ∈ (, ) such that

(x, y) ∈ E(G) ⇒ ψ
(
d(fx, fy)

) ≤ cψ
(
d(x, y)

)
,

for all x, y ∈ X .

Lemma  If f : X → X is a (G,ψ)-contraction, then f is both a (G–,ψ)-contraction and a
(G̃,ψ)-contraction.

Proof The proof can be obtained by the symmetry of d and the definition of the (G̃,ψ)-
contraction. �

Lemma  Let f : X → X be a (G,ψ)-contraction with constant c ∈ (, ); for a given x ∈ X
and y ∈ [x]G̃, there exists r(x, y) ≥  such that

ψ
(
d
(
f nx, f ny

)) ≤ cnr(x, y). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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Proof Let x ∈ X and y ∈ [x]G̃. Then there is a path (xi)Ni= in G̃ from x to y, which means
x = x, xN = y, and (xi–,xi) ∈ E(G̃) for i = , , . . . ,N . By Lemma , f is a (G̃,ψ)-contraction.
With an easy induction, we have (f nxi–, f nxi) ∈ E(G̃) and

ψ
(
d
(
f nxi–, f nxi

)) ≤ cψ
(
d
(
f n–xi–, f n–xi

))
≤ c

(
cψ

(
d
(
f n–xi–, f n–xi

))) ≤ · · · ≤ cnψ
(
d(xi–,xi)

)
for all n ∈N and i = , , . . . ,N .
Hence using the triangle inequality, we get

ψ
(
d
(
f nx, f ny

)) ≤
N∑
i=

ψ
(
d
(
f nxi–, f nxi

)) ≤ cn
N∑
i=

ψ
(
d(xi–,xi)

)
.

So it qualifies to set r(x, y) :=
∑N

i= ψ(d(xi–,xi)). �

Lemma  Let (X,d) be a complete metric space endowed with a graph G and f : X → X be
a (G,ψ)-contraction for which there exists x ∈ X such that fx ∈ [x]G̃. Let G̃x be the com-
ponent of G̃ containing x. Then [x]G̃ is f -invariant and f |[x]G̃ is a (G̃x ,ψ)-contraction.
Furthermore, x, y ∈ [x]G̃, and the sequences (f nx)n∈N and (f ny)n∈N are Cauchy equivalent.

Proof The proof of this lemma can obtained by using similar arguments as given in [].
So we omit the proof. �

The following result shows that there is a close relation between convergence of an it-
eration sequence which can be obtained by using a (G,ψ)-contraction mapping and con-
nectivity of the graph.

Theorem  Let (X,d) be a metric space endowed with a graph G and f : X → X be a
(G,ψ)-contraction, then the following statements are equivalent:

(i) G is weakly connected;
(ii) for given x, y ∈ X , the sequences (f nx)n∈N and (f ny)n∈N are Cauchy equivalent;
(iii) cardF(f ) ≤ .

Proof (i) ⇒ (ii) Let f be a (G,ψ)-contraction and x, y ∈ X. By hypothesis, [x]G̃ = X, so
fx ∈ [x]G̃. By Lemma , we get

ψ
(
d
(
f nx, f n+x

)) ≤ cnr(x, fx)

for all n ∈N. Hence

∞∑
n=

ψ
(
d
(
f nx, f n+x

))
<∞

and if we use a standard argument, then (f nx)n∈N is obtained as a Cauchy sequence. Since
also y ∈ [x]G̃, Lemma  leads toψ(d(f nx, f ny)) ≤ cnr(x, y). Therefore, (f nx)n∈N and (f ny)n∈N
are equivalent. Clearly, because (f nx)n∈N is a Cauchy sequence, so is (f ny)n∈N.

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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(ii) ⇒ (iii) Let f be a (G,ψ)-contraction and x, y ∈ F(f ). By (ii), (f nx)n∈N and (f ny)n∈N are
equivalent, which yields x = y.
(iii)⇒ (ii) Suppose, to the contrary,G is notweakly connected, that is, G̃ is disconnected.

Let x ∈ X. Then the sets [x]G̃ and X – [x]G̃ both are nonempty. Let y ∈ X – [x]G̃ and
define

fx =

{
x, if x ∈ [x]G̃,
y, if x ∈ X – [x]G̃.

Obviously, F(f ) = {x, y}. We show f is a (G,ψ)-contraction. Let (x, y) ∈ E(G). Then [x]G̃ =
[y]G̃, so either x, y ∈ [x]G̃ or x, y ∈ X–[x]G̃. Hence in both cases fx = fy, so (fx, fy) ∈ E(G) as
E(G) ⊇ �, and ψ(d(fx, fy)) = . Thereby, f is a (G,ψ)-contraction having two fixed points
which violates the assumption. �

The following result is an easy consequence of Theorem .

Corollary  Let (X,d) be a complete metric space endowed with a graph G and f : X → X
be a (G,ψ)-contraction, then the following statements are equivalent:

(i) G is weakly connected;
(ii) there is x∗ ∈ X such that limn→∞ f nx = x∗, for all x ∈ X .

Now, we give an example of f being a (G,ψ)-contraction and this example shows that
we could not add that x∗ is a fixed point of f in Corollary .

Example  Let X = [, ] be endowed with the usual metric. Take

E(G) =
{
(, )

} ∪ {
(, )

} ∪ {
(x, y) ∈ (, ]× (, ] : x ≥ y

}
,

and f : X → X as follows:

fx =

{
x
 , if x ∈ (, ],

 , if x = .

Then f is a (G,ψ)-contraction where ψ(ω) = ω
ω+ .

Proof It can be easily seen thatG is a weakly connected graph and f is a (G,ψ)-contraction
where ψ(ω) = ω

ω+ . It is a fact that (f
nx)→ , for all x ∈ X but f has no fixed point. �

For any mapping which satisfies the condition of Corollary  to have a fixed point we
need to add condition (), which is given in the following theorem.

Theorem Let (X,d) be a complete metric space and the triple (X,d,G) have the following
condition:

for any (xn)n∈N in X, if xn → x and (xn,xn+) ∈ E(G) for n ∈N,

then there is a subsequence (xkn )n∈N with (xkn ,x) ∈ E(G) for n ∈N. ()

Let f : X → X be a (G,ψ)-contraction, and Xf = {x ∈ X : (x, fx) ∈ E(G)}. Then the following
statements hold.

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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(i) cardF(f ) = card{[x]G̃ : x ∈ Xf }.
(ii) F(f ) �= ∅ iff Xf �= ∅.
(iii) f has a unique fixed point iff there exists x ∈ Xf such that Xf ⊆ [x]G̃.
(iv) For any x ∈ Xf , f |[x]G̃ is a Picard operator.
(v) If Xf �= ∅ and G is weakly connected, then f is a Picard operator.
(vi) If X ′ :=

⋃{[x]G̃ : x ∈ Xf } , then f |X′ is a weakly Picard operator.
(vii) If f ⊆ E(G), then f is a weakly Picard operator.

Proof Initially, we prove the items (iv) and (v). Take x ∈ Xf and then fx ∈ [x]G̃, so by
Lemma , if y ∈ [x]G̃, then (f nx)n∈N and (f ny)n∈N are Cauchy equivalent. Since X is com-
plete, (f nx)n∈N converges to some x∗ ∈ X. It is obvious that limn→∞ f ny = x∗. Then by using
induction we get

(
f nx, f n+x

) ∈ E(G) ()

for all n ∈ N, since (x, fx) ∈ E(G). By (), there is a subsequence (f knx)n∈N such that
(f knx,x∗) ∈ E(G) for all n ∈ N. If we use (), we conclude that (x, fx, f x, . . . , f k ,x∗) is a
path in G and also in G̃ from x to x∗, and this means that x∗ ∈ [x]G̃. Since f is a (G,ψ)-
contraction we have

ψ
(
d
(
f kn+x, fx∗)) ≤ cψ

(
d
(
f knx,x∗)),

for all n ∈ N. By taking the limit as n → ∞, we deduce fx∗ = x∗. Thereby, f |[x]G̃ is a Picard
operator. Also, we conclude that f is a Picard operator, when [x]G̃ = X, since there is weakly
connectedness of G.
(vi) is obvious from (iv). For proof of (vii), if f ⊆ E(G) then Xf = X and so X ′ = X holds.

Thus f is a weakly Picard operator because of (vi).
Let us define amapping to prove (i): ρ(x) = [x]G̃ for all x ∈ F(f ). It is sufficient to show that

ρ : F(f ) → C = {[x]G̃ : x ∈ Xf } is a bijection. Because E(G) ⊇ �, we deduce F(f ) ⊆ Xf and
then ρ(F(f )) ⊆ C. Beside, if x ∈ Xf , then by (iv), limn→∞ f nx ∈ [x]G̃ ∩ F(f ), which implies
ρ(limn→∞ f nx) = [x]G̃ and so ρ is a surjective mapping. We show that f is injective. Take
x,x ∈ F(f ) which are such that ρ(x) = ρ(x) ⇒ [x]G̃ = [x]G̃, then x ∈ [x]G̃ and so,
by (i),

lim
n→∞ f nx ∈ [x]G̃ ∩ F(f ) = {x},

which gives x = x. Thus, f is injective and this is the desired result. Finally, one can see
that (ii) and (iii) are easy consequences of (i). �

Corollary  Let (X,d) be complete metric space and (X,d,G) obey condition (). The fol-
lowing are equivalent:

(i) G is weakly connected;
(ii) every (G,ψ)-contraction f : X → X such that (x, fx) ∈ E(G), for some x ∈ X , is a

Picard operator;
(iii) for any (G,ψ)-contraction, cardF(f ) ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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Proof (i) ⇒ (ii): This can be obtained directly from Theorem (v).
(ii) ⇒ (iii): Let f : X → X be a (G,ψ)-contraction. If Xf is empty, so is F(f ), because

F(f ) is a subset of Xf . If Xf is nonempty, then by (ii), F(f ) is singleton. In these two cases,
cardF(f ) ≤ .
(iii) ⇒ (i): This implication follows from Theorem . �

Remark  In the above results by takingψ(ω) = ω, we obtain Corollary ., which is given
in [].

4 (G,ψ )-Graphic contraction and fixed-point theorems
Now, we define (G,ψ)-graphic contraction and give some results and examples.

Definition  Let (X,d) be a metric space and G be a graph. The mapping f : X → X is
called a (G,ψ)-graphic contraction if the following conditions hold:

(i) (x, y) ∈ E(G) implies (fx, fy) ∈ E(G) (f is edge preserving);
(ii) there exists a ψ ∈ � with constants c ∈ [, ) such that

ψ
(
d
(
fx, f x

)) ≤ cψ
(
d(x, fx)

)
for all x ∈ Xf , where Xf := {x ∈ X : (x, fx) ∈ E(G) or (fx,x) ∈ E(G)}.

Firstly, we give the following lemmas which can be proved as in the above section.

Lemma  If f : X → X is a (G,ψ)-graphic contraction, then f is both a (G–,ψ)-graphic
contraction and a (G̃,ψ)-graphic contraction.

Lemma  Let f : X → X be a (G,ψ)-graphic contraction with constant c ∈ [, ). Then,
given x ∈ Xf , there exists r(x)≥  such that

ψ
(
d
(
f nx, f n+x

)) ≤ cnr(x), ()

for all n ∈N, where r(x) := ψ(d(x, fx)).

Lemma  Suppose that f : X → X is a (G,ψ)-graphic contraction. Then for each x ∈ Xf ,
there exists x∗ ∈ X such that the sequence (f nx)n∈N converges to x∗ as n → ∞.

Proof Take an arbitrary element x in Xf . By Lemma , we obtain

ψ
(
d
(
f nx, f n+x

)) ≤ cnr(x),

for all n ∈ N. Therefore,
∑∞

n= ψ(d(f nx, f n+x)) < ∞ and so ψ(d(f nx, f n+x)) → ; conse-
quently using the property of ψ we have d(f nx, f n+x) → . Then we say that (f nx)n∈N is a
Cauchy sequence. By the completeness of X, there exists x∗ ∈ X such that (f nx)n∈N con-
verges as n→ ∞. �

Lemma  The self-mapping f is a (G,ψ)-graphic contraction for which there exists x ∈ X
such that f x ∈ [x]G̃.Then the set [x]G̃ invariant with respect to f and f |[x]G̃ is a (G̃x ,ψ)-
graphic contraction, where G̃x is the component of G̃ containing x.

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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Proof Let x be an element in [x]G̃. Then there exist (xi)Ni= in G̃ from x to x, i.e., xN = x and
(xi–,xi) ∈ E(G̃) for i = , , . . . ,N . Since f is a (G,ψ)-graphic contraction we get (fxi–, fxi) ∈
E(G̃) for i = , , . . . ,N . So we have a path from fx to fx. Therefore fx ∈ [f x]G̃ = [x]G̃ since
f x ∈ [x]G̃. Consequently [x]G̃ is invariant with respect to f .
Take (x, y) ∈ E(G̃x ); then there is a path (xi)Ni= in G̃ from x to y such that xN– = x. Also

let (yi)Mi= be a path in G̃ from x to fx. Then we realize

(y, y, . . . , yM, fx, fx, . . . , fxN– = fx, fxN = fy)

is a path in G̃ from x to fy such that (fx, fy) ∈ E(G̃x ). Furthermore, f is a (G̃x ,ψ)-graphic
contraction because E(G̃x ) ⊆ E(G̃) and f is a (G̃,ψ)-graphic contraction. �

Theorem  Let (X,d) be a complete metric space and let the triple (X,d,G) have the fol-
lowing condition:

for any (xn)n∈N in X, if xn → x and (xn,xn+) ∈ E(G)(
or, respectively, (xn+,xn) ∈ E(G)

)
for all n ∈N, then there is a subsequence (xkn )n∈N with (xkn ,x) ∈ E(G)(
or, respectively, (x,xkn ) ∈ E(G)

)
for all n ∈N. ()

Let f : X → X be a (G,ψ)-graphic contraction and f is orbitally G-continuous. Then the
following statements hold:

(i) F(f ) �= ∅ if and only if Xf �= ∅.
(ii) If Xf �= ∅ and G is weakly connected, then f is a weakly Picard operator.
(iii) For any x ∈ Xf , we see that f |[x]G̃ is a weakly Picard operator.

Proof We begin with the statement (iii). Let x ∈ Xf ; by Lemma , there exists x∗ ∈ X
such that limn→∞ f nx = x∗. Since x ∈ Xf , then f nx ∈ Xf for every n ∈ N. Now assume that
(x, fx) ∈ E(G). (A similar deduction can be made if (fx,x) ∈ E(G).) By condition (), there is
a subsequence (f knx)n∈N of (f nx)n∈N such that (f knx,x∗) ∈ E(G) for each n ∈ N. A path inG
can be formed by using the points x, fx, . . . , f kx,x∗ and hence x∗ ∈ [x]G̃. Since f is orbitally
G-continuous, we see that x∗ is a fixed point for f |[x]G̃.
To prove (i), using (iii) we have F(f ) �= ∅ if Xf �= ∅. Suppose that F(f ) �= ∅. By using the

assumption that � ⊆ E(G), we immediately obtain Xf �= ∅. Hence (i) holds.
For proving (ii) let x ∈ Xf . If we use weak connectivity of G, we have X = [x]G̃ and by

applying (iii) we obtain the desired result. �

The next example illustrates that f must be orbitally G-continuous in order to obtain
statements which are given in Theorem .

Example  Let X = [, ] be endowed with the usual metric. Consider

E(G) =
{
(, )

} ∪ {
(,x) : x ≥ /

} ∪ {
(x, y) : x, y ∈ (, ]

}
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/39
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and f : X → X,

fx =

{
x
 , if x ∈ (, ];

 , if x = .

Then G is weakly connected, Xf is nonempty and f is a (G,ψ)-graphic contraction where
ψ(ω) = ω

 , but it is not orbitally G-continuous. Thus, f does not have a fixed point.

Remark  In Theorem , by replacing the condition that the triple (X,d,G) satisfies ()
and f is orbitally G-continuous with the mapping f is orbitally continuous, we have the
above result, too.

The following example demonstrates that the (G,ψ)-graphic contraction ismore general
than the (G,ψ)-contraction.

Example  Let X = [, ] be endowed with the usual metric. Take

E(G) =
{
(, )

} ∪ {
(, )

} ∪ {
(x, y) ∈ (, ]× (, ] : x ≥ y

}
,

and f : X → X as follows:

fx =

{
x
 , if x ∈ (, ],

 , if x = .

Then G is weakly connected and Xf is nonempty and f is a (G,ψ)-graphic contraction
with ψ(ω) = ω

 which is not a (G,ψ)-contraction.

Proof It is clear that G is weakly connected, Xf �= ∅, and with simple calculations it can be
easily seen that f is a (G,ψ)-graphic contraction. Take

ψ

(
d
(
f , f




))
≤ cψ

(
d
(
,




))
⇒ 


≤ c



,

which is a contradiction since c ∈ [, ). Thus, f is not (G,ψ)-contraction. �

Remark  In Theorem , if we take ψ(ω) = ω, then we get Theorem ., which is given
in [].
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