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1 Introduction
Let H be a real Hilbert space, and CB(H) be the family of all nonempty bounded closed
subsets of H. We will consider the following problem:
Fori,j=1,2, ..., N, let Ay H— CB(H), N;: H x H —» H, gz H - H,
T,-HxHx---xH—>H
N

be nonlinear mappings, and let ¢: H — R U {+co} be real

function.

Findxj, x5, ..., xG € H,

uy € Anxj, uj, € Apx;, ..., ujy € AINXY, ..., uy; € ANiX}, uy, € h th
Ao % A * such that
N2Xy, o eey uNN € NNXN
(Ti(ufy, uly, .o, uiy), ni(x &i(x7))) = @i(8i(x}))—wi(x), VxeH, i=1,2, ...N. (1.1)

Problem (1.1) is called the set-valued nonlinear generalized quasi-variational-like
inclusions.

Various special cases of the problem (1.1) had been studied by many authors before.
Here, we mention some of them as follows:

(1) IfN=2,A11 =A1n = A, Ay; = Ay, = B, Ty = T, T1(A("), B(")) : H— CB(H), then
the problem (1.1) reduces to find x* € H, u* € Ax* v* € Bx* such that

(T(u*, v*), n(x, g(x"))) = (8(x")) —¢(x), VxeH. (1.2)

Problem (1.2) was introduced and studied by Ding [1] in 2001.

(2) IfN=2,A; = Ajp = Ay = Ay = I, g= I (identical operator), n(x, y) = x-y, ¢; = P =
¢, T:Hx H— H, T1(A11x, A12y) = p1T (A1), Anix) + Anx - Ay, TolAaix, Agy) = poT
(Ag1x, A2gy) + Aggy - Azpx, then the problem (1.1) reduces to find x*, y* € H such that
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{ (1 T(y"s x*) +x* =", x—x") +(x) —(x*) =0, VxeH, p1>0; (1.3)

(p2T(x*, ) +y* —x*, x—y*) +o(x) —@(y*) >0, VxeH, p;>0.

Problem (1.3) was studied by He and Gu [2] in 2009.
(3) Let K © H be a closed convex subset, ¢(x) = Ix(x), the problem (1.3) reduces to
find x* y* e K such that

{ (MT(", &) +x* =), x—x") 20, YaeK, pi>0; (1.4)

(p2T(x*, y*)+y* —x*, x—y*) >0, VxeK, p;>0.

Problem (1.4) was inspected and studied by Chang [3], Verma [4,5] and Huang [6].

WIUN=2A1n=An=An=An=1Lg:H—> H Tilxy) = piTy + gx) - gO), Tolx, y) =
paTx + g(y) - glx), (p1, P2>0), N(x, ¥) = g(x) - g(y), then the problem (1.1) reduces to find x*
y*€ H such that

{ (o1 Ty* +8(x*) — 8(y*), 8(x) —&(x*)) = 0, Vx € H; (1.5)
(o2 Tx* + g(y*) — 8(x*), 8(x) —8(y*)) =0, VxeH.

Problem (1.5) was introduced and studied by Hajjafar and Verma [7].
(5) If N = 3, n(x, y) = x - y, then the problem (1.1) reduces to find

X7, %5, x5 € H, ufy € Anxy, uj; € Apx3, ujz € Aix3(i=1,2,3) such that

(Th(u3y, uly, uis) X —81(x7)) = @1(81(x])) —¢1(x), VxeH;
(Ta(uby, u3,, us3), X —82(x3)) = @2(82(x5)) — @a(x), Vx € H; (1.6)
(T3(u5y, u3y, uiz), x —g3(x3)) = ¢3(83(x5)) —¢s(x), VxeH.

Problem (1.6) was studied by Kazmi et al. [8].

For more special cases, please refer to [1-9] and the references therein.

Remark 1.1. Yang [10] pointed out a fact for the problem (1.4) discussed in refer-
ence [5], namely, if the problem (1.4) has a solution (x*, y*), then x* = y*. Therefore,
actually, the problem(1.4) is a single variational inequality:

(T(x*, x*), x—x*) >0, VxeK.

In this article, we study the problem (1.1). By using the 1 proximal mapping techni-
que, we prove the existence of solutions and approximate the solutions by some new
N -step iterative algorithms. Our results extend and improve some known results in
the references [1-9].

2 Preliminaries

In this article, we need the following concepts and lemmas.
Definition 2.1 [1] A mapping g : H — H is said to be
(i) &-strongly monotone if there exists a constant ¢ >0 such that

8(x) —8(), x—n = E|x—y|>, Vx yeH.

(ii) ¢-Lipschitz continuous if there exists a constant { >0 such that

lg@) —s)| <¢|x—y|, vxyeH.

Definition 2.2 [1] A mapping 1 : H x H — H is said to be
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(i) o - strongly monotone if there exists a constant o >0 such that

2, Vx, y € H;

=y nx y) =olx—y
(ii) 7 - Lipschitz continuous if there exists a constant 7 >0 such that
In(x. )| < t|x—vy|, Vx yeH

Definition 2.3 [1,11] Let A : H — CB(H) be a set-valued mapping,
T-HxHx---xH—H
—

N
(i) o - (A, g)-strongly monotone in the ith argument if o >0 such that

is said to be

(T(o, iy o )=T(o vy, 222), 8@ =) = afx =y, Vx, yeH, weAx wveAy.

(ii) (s1, S2, - - -, Sn)-Lipschitz continuous if there exist constants sy, s3, . . ., sy >0
such that for all x;, ye H,i=1,2,...,N,
||T(x1, X2, ooer AN) = T(V1, Y20 -y yN)” <5 ||x1 -1 ||+52 ||x2 — y2H+- CHSN ||xN - yNH .

(iii) A set-valued A is said to be 0 - H - Lipschitz continuous if there exists a con-
stant 0 >0 such that

H(Ax, Ay) <8 |x—y|, Vx yeH,

where H(-,) is the Hausdorff metric on CB(H).
Definition 2.4 [1] A functional f: H xH — RU{+co} is said to be 0-diagonally quasi-
concave (in short,0-DQCV) in «, if for any finite set {x;, . . . , xa} © H and for any

n n

y= ZH Aix; with A; = 0 and ZH ri=1,
min f(x;, y) <0.
1<i<n

Definition 2.5 [1] Let 1 : H x H — H be a single-valued mapping. A proper func-
tional ¢ : H — RU{+oo} is said to be n-subdifferentiable at a point x € H, if there exists
a point f * € H such that

(* n(y, x)) <o) —e(x), VyeH,

where f * is called a 1- subgradient of ¢ at x. The set of all n-subgradients of ¢ at x
is denoted by 9,¢(x). We have

oe(x) ={f* e H, {f*, n(y, x)) <o(y) —¢(x), VyeH]} (2.1)

Definition 2.6 [1] Let 1, ¢ be according to Definition 2.5, if for each x € H and p
>0,there exists a unique point # € H such that

(u—x, n(y, u)) = pp(u) — pe(y), VyeH, (2.2)

then the mapping x — u denoted by Ji, is said to be 17- proximal mapping of ¢. By
(2.1) and the definition of Jj, we have x - u € pd,¢(x), it follows that

Jo(x) = (I +pdye) 1 (x).
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Lemma 2.1 [1] Let n : H x H — H be continuous and o-strongly monotone such
that n(x, y) = -n(y, x) for all x, y € H. And for any given x € H, the function h(y, u) =
(x - u, N(y, u)) is 0-DQCV in y. Let ¢ : H - R U {+} be a lower semicontinuous 7n-
subdifferentiable proper functional on H, then for any given p >0 and x € H there
exists a unique # € H such that

(u—x, n(y, u)) = pp(u) — pe(y), VyeH.

e, u=J)(x).
Lemma 2.2 Let n : H x H - H be o0- strongly monotone and 7 -Lipschitz continu-
ous such that n(x, y) = -n(y, x). Let kh(y, u), ¢, p be according to Lemma 2.1, then the

T

. -Lipschitz continuous.

n-proximal mapping JJ (%) of ¢ is

3 Main results

Theorem 3.1 (x, x5, ..., x{ufy, U, ..., Uiy, i=1,2, ..., N.) is a solution of pro-

blem (1.1) if and only if (x], X3, ..., X5 ufy, U, -, Uiy i=1,2, ..., N.) satisfies
the following relation: For every i = 1, 2, .. . N,
8i(xF) = Jo(&i(xF) — piTi(usy, uly, .., uly)), (3.1)

pi -1
where Jii = (I + pidyei)~",  pi> 0.
Proof. Assume the (X7, x5, ..., XGiujy, Ulos ooy Uiny «-o0 Uy URs -- o0 UNN)

satisfies relation (3.1). Since Jii = (I + pidy¢i)~", we have
8i(x7) + pidy0i(8i(x7)) € &i(x7) — AiTi(uy, Uy, - ty)-
ie,
=T (ufy, uly, oo, uly) € dnei(gi(xF)).
By the Definition 2.5 of n,-subdifferential, the above relation holds if and only if
—(Ti(ufy, uiy, oo i) mi(x &i(x7))) < @i(x) — @i(8i(x})),  Vxe€H,

and hence

(Ti(usy, uly oo uiy) mi(x (7)) > @i(8i(x)) —@i(x), VYxeH,i=1,2,...,N.
e, (X7, a5, ..., xpul, uh, oo, Uy, i=1,2, ..., N.) is a solution of the problem
(1.1). O

Now, we give iterative algorithms of problem (1.1).

Algorithm(I) For given 1Y, x9, ..., x) € H, u} € Aux9, ud, € Apxd, ..., ul € Al
let

xp=x) = g1(x)) +J0 (&1(x)) — ;o (uy, ul,, -, udy)):

Xy = x5 — 82(x9) +J2(82(x9) — paTa(ufy, uly, ..., u3N)):

Xy = X3 — N (R) + N (@N(6R) — ANTN (U, U, -+ UlN))-
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By Nadler [12], fori=1,2,...,N,j=1,2,..., N, there exists u}] € Aijle such that

Jug

<(1+ l)H(Al]x Al]x ), j=12, ..., N.
Let

X =x} —gi(x)) +]£;ﬁ(g,'(xi1) —piTi(u)y, ub, oo uly)), i=1,2, ..., N.
By induction, we can define sequences {x}, {uj} satisfying

x =l — i () + T (&) — piTi(uly, uly, ..., ulky)),

where forany i,j=1,2,...,N;n=0,1,2,...,

1
n NaN n n+1 . n . n+1
U € Ayxy',  up — T < (1+ n+1)H(AU (xj>, Ajj (xj ))

Theorem 3.2 Let H be a real Hilbert space. For i,j =1, 2, ..., N, let set-valued
mapping A;: H — CB(H) be 6;; - H - Lipschitz continuous. Let mapping 1;: H x H —
H be o;- strongly monotone and 7;-Lipschitz continuous such that n,(x, y) = -n:(y, x)
for all x, y € H and for any given x € H, the function &,(y, u) = (x - gi(u), N:(y, u)) is
0-DQCU in y. Let mapping g: H — H be &-strongly monotone and (;-Lipschitz contin-

Ti:HxHx---xH—H
uous, and _— be (s1, . . ., sy)-Lipschitz continuous and ¢; -
N

(A, g)-strongly monotone in the ith argument. Let ¢ H — R U {+co} be a lower semi-
continuous 17;-subdifferentiable proper functional. If there exist p;, . . ., px >0 such
that foralli=1,2,..., N

1 1
Ti Tr
(1—2&5+¢7)2 + (; (82 — 2pici + ps787) 2 + Z Pusidi < 1; (3.2)
! k=1ki
then the iterative sequences

{x?}r ey {xﬁj}r {uql }/ ey {qu}, ceey {u;l\jl}r ey {u;l\]N}, generated by algorithm (I)
converge strongly to X7, ..., X3, Wi, «.., UiN, --. UKy, .-, UKy, respectively, and
(%, x5, o, XN, Uy, Uy o Uiy oees U, URgs -.., URy) is a solution of the pro-
blem (1.1).

Proof. For i = 1, 2, . .., N, by algorithm (I) and Lemma 2.2, we have

o™t = | = = i (o) + I (8 () = T (uis i - i)

o +g,( ; )*1”’( i () = T ()|
< o = g () i ()|
||f”‘( () = £iTs (uiy, uiys -0 i) (3.3)
—Jp (8 (1) = T (i iy )|
Hx = i () + & ()|

o Hgi(xi )= () — T (o, U)ol Ul
1

Page 5 of 9



Cao Journal of Inequalities and Applications 2012, 2012:41 Page 6 of 9

http://www.journalofinequalitiesandapplications.com/content/2012/1/41

Since gis &-strongly monotone and (;-Lipschitz continuous, we obtain
et =i = (s () — s (D = 1= 2602 = 64

Notice that,

& () =& (") = i (T (s o i) = T (™ -0 i) |

= ||g( T’ _81'( ?71) — P (T' (“znlr Wigs wes Uiigs Wi Uiiers «ons “?N) (3.5)
( o Ui wees Ujiig, “lnl h T RVE ”1”[\1))”
+ Pi ” (“?1 s eeer Ui ”21‘_1/ TRV “Z\l) -T (”?1_1' ”?2_1/ s “:’1\71)”

Since T is (sy, . . . , sy)-Lipschitz continuous and ¢; - (A, g;)- strongly monotone in
the ith argument, we get
lg: (<) — & (x?_l) = o1 (T (s ufy oo Uiy uf uliyy, oo )
_T'(“?lr “;’zr e Uiy ”371r Uiipts - “TN)”
= [lsi () — i (x H = 2pi(8i () — & (1), T (ufy, iy, oo wliy, i u, e Uy
- T ( Uy, Uy, e, Uiy, ”i,i y YRV ”fo))

n n n n
+ P} ITi ( Uiy, Uiy en Upiogs Uiy Uliygs - ”iN)

L) (3.6)
< & =X - 20 il — x| 2 2 — w7

1 2
< (6 = 200) 1 = et (10 ) ) (9l A )Y

2
< |:§-2 — 2pit; +pi25f6i2i(l + ;) ] [l — 2~ ]H

Therefore,

n n n—1 n
T,( Uitr Uigr oovr Wijqs Ui s Ujipgs ooe

Hgl (xln) —&i (xlr’lil) — P (Ti( rll’ unZ’ et un -1 un’ u11+1’ et u:}\])

1
e L T O T TP uN)H
1 (3.7)

1\?|2
SF‘MW%WK J}waww

o | Ti (ufy ulby, ooy iy, ul iy, o )

_T( i lr uiZ 1: cees un llr un 1' u11+1’ Y uZ\?l)“

And

< pi (s oty — w7t sz fluy =y M+

wsicn Jufy = i |+ s i —uiin |+ oo e iy — il
< pi |:51 (1 + ;) H (Anx}, A,»lx'f’l)] +5; (1 + rll) H (A, Apxy ')+
1 (3.8)
+§i1 (1 + n) H (Ajj1xy, Ajicix! )
+Siv1 (1 + Tll) H (Aijs1xly, Aiinx') + -+ sy (1 + i) H (Ainxpy, A,Nx[’ifl):|

1
< 5 (1 N n) L5180 [ = 20| + 52600 [ — 1 4 -

+si-18ii-1 iy — X5+ siadiin |2y — 5|+ swdin 2R — 2]
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It follows from (3.3)-(3.8) that for everyi =1, 2, ... ,N,

1
) 2
”x?ﬂ _xln” < \/1—2§i+CiZ+Z<€i2_2piai+pl 125121( rll> )2 ||x;1_xln_1||
(3.9)
Ti 1 N s -1
+;0i6i (1 + n) Z ‘5k i g — 7'
k=1,k#i
So,
] B ] BUSY ey
1
N Tif. o 202 1\%)2 1
< Z \/1 —2$i+§1'2+ o Ei —2,01‘061‘+,01 1811< Tl) ”xlﬂ_x?i ”
i-1 !
n 1
D T (P [F R
O Tk " (3.10)
1
N 2
) 1 2
=Z{\/1—2Ei+§iz+rl <Ei2—2pi0li+,0, 125121< ))
i=1 7 "
N . 1
+ Z 'Pko_};siaki (1 + n) ”x - 1”
k=1,k#i
<6 (I =7+ g g e o =),
where
1
X 1 2 2 N Tk 1
6, = m?_X \/1 — 2& + {1 ) (Eiz — 2,01'011' + )0125126121 (1 + n> ) + }(ﬂ;#i pko'kSiSki (1 * ﬂ)
Letting
1
T T
0 ks 12,,,, \/1 —25+¢7+ li(giz _2,01‘011'4',0151817{ 2+ Z P . s18k1 !

k=1,ki

from (3.2) we have 0 < 0 <1, and hence {x} ... {x}}are also Cauchy sequences. Thus

there exist x7, ..., X3 € H such that af - x'(n > o0),i=1,2,...,N.

Now we prove u]—>u(n —oo)fori=1,2,...,N,j=1,2,...,N By
u—u"1 < (1 1 H(Ax", A1) < 1+ 8 [l — a1

U e (A X Ak ) = n )i TN

It follows that {u ;} are also Cauchy sequence. Therefore, there exist u,] € H such

that uj; — uiz(n — o0).
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Note that
£ * * n n Xk
d (uij, Aijxj> < ‘uij — uj d (uij, A,-]-xj>
* n n k * n n *
< ‘uij — U +H (Ai]-xj, Aijx]-) < ‘uij — uUH + 8jj e 0(n — o0).

ijr
=1,2,...,N. By

We have d (u* A,-jx;*> = 0.Since Aijxf is closed, u;-;- € Aijxf, for eachi=12,...,N,j

4= () I 1 () — T s ), =12 N,
and the continuity of i ]5,’}, Ti, let n — oo, we have that
0=—g(x) +J5 (8i (xF) — oiTi (s uly, .. 13y)),

and

* k * * * k
U] € Ajixy, Uy € Ay, ..., Uy € AiNXY.

OBy Theorem 3.1, (x}, x5, ..., X%, ufy, u}, ..., uly, i=1,2, ..., N) is a solution
of the problem (1.1). This completes the proof.0

Remark 3.1 For a suitable choice of T}, A;, 1;, gand ¢;, Theorem 3.2 includes many
known results of generalized quasi-variational-like inclusions as special cases (see
[1-8]),where ¢;is nonconvex and A;is noncompact.
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