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In order to discover the structure of local community more effectively, this paper puts forward a new local community detection
algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration
ability of a single nodemust be less thanmultiple nodes, so the beginning of the community extension of the algorithm in this paper
is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively
densely connected with each other.The algorithmmainly includes two phases. First it detects theminimal cluster and then finds the
local community extended from the minimal cluster. Experimental results show that the quality of the local community detected
by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

1. Introduction

Community detection on complex networks has been a hot
research field. Recently, a large number of algorithms for
studying the global structure of the network are proposed,
such as the modularity optimization algorithms [1, 2], the
spectral clustering algorithms [3–6], the hierarchical cluster-
ing algorithms [7–10], and the label propagation algorithms
[11–14]. However, with the continuous expansion of complex
networks, it is easy to collect large network dataset with
millions of nodes. How to store such a large-scale dataset
in computer memory to analyze is a huge challenge for
scholars. The calculation for studying the overall structure
of this kind of large-scale networks is unimaginable. So local
community detection becomes an appealing problem and has
drawn more and more attention [15–18]. The main task of
local community detection is to find a community using the
local information of the network. Local community detection
has good extensibility. If the local community detection
algorithm is iteratively executed, more local communities
can be found and the whole community structure of the
network can be obtained. The time complexity of this kind
of global community detection algorithm is dependent on
the efficiency and accuracy of local community detection
algorithms, so the research of local community detection

algorithm still has a long way to go. There are several
problems that need to be solved in the research of local
community detection. First, we should determine the initial
state and find the initial node for local community detection,
so as to determine the needed local information; then, we
need to select an objective function, and through continuous
iterative optimization of the objective function we find the
community structure with high quality; after that we need to
find a suitable node expansion method, so that the algorithm
can extract the local community from the initial state step by
step; finally, in order to terminate the algorithm, a suitable
termination condition is needed to determine the boundary
of the community.

Most of local community detection algorithms are based
on the above-mentioned process. The definition of local
community detection is to find the local community structure
from one or more nodes, but most of the existing local
community detection algorithms, including Clauset [15],
LWP [16], and LS [17], are starting from only one initial
node. They greedily select the optimal nodes from the
candidate nodes and add them into the local community.
LMD [18] algorithm extends not from the initial node but
from its closest and next closest local degree central nodes.
It discovers a local community from each of these nodes,
respectively. It still starts from single node and discovers
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Figure 1: Definition of local community.

many local communities for the initial node. In general, the
aggregation ability of a single node is lower than that of
multiple nodes. Sowedonot just rely on the initial node as the
beginning of local community expansion. Our primary goal
is to find a minimal cluster closely connected to the initial
node and then detect local community based on the minimal
cluster. This can avoid instability because of the excessive
dependence on the initial node. In this paper, we introduce a
local community detection algorithm based on the minimal
cluster—NewLCD. In this new algorithm, the beginning of
community expansion is no longer from the initial node only,
but a cluster of nodes relatively closely connected to the initial
node. The algorithm mainly consists of two parts: one is the
detection of theminimal cluster, and the other is the detection
of the local community based on the minimal cluster. At
the same time, the algorithm can be applied to the global
community detection. After finding one local community
using this algorithm, we can repeat the process to obtain the
global community structure of the whole network.

2. Related Works of Local
Community Detection

2.1. Definition of Local Community. The problem of local
community detection is proposed by Clauset [15]. Usually
we define the local community problem in the following
way: there is a nondirected graph 𝐺 = (𝑉, 𝐸), 𝑉 represents
the set of nodes, and 𝐸 represents the edges in the graph.
The connecting information of partial nodes in the graph is
known or can be obtained. The local community is defined
as 𝐷. The set of nodes connected with 𝐷 is defined as 𝑆 and
the set of nodes in 𝐷 connected with nodes in 𝑆 is defined
as the boundary node set 𝐵. That is to say, any node in 𝐵 is
connected to one node in 𝑆, and the rest of𝐷 is the core node
set 𝐶, as shown in Figure 1.

Local community detection problem is to start from
a preselected source node. It adds the node meeting the
conditions in 𝑆 into𝐷 and removes the node which does not
meet the conditions from D gradually.

2.2. Related Algorithms. At present, many local community
detection algorithms have been proposed. We introduce two
representative local community detection algorithms.

(1) Clauset Algorithm. In order to solve the problem of local
community detection, Clauset [15] put forward the local

community modularity R and gave a fast convergence greedy
algorithm to find the local community with the greatest
modularity.

The definition of local community modularity is as
follows:

𝑅 = ∑𝑖𝑗 𝐴 𝑖𝑗𝛿 (𝑖, 𝑗)∑𝑖𝑗 𝐴 𝑖𝑗 , (1)

where 𝑖 and 𝑗 represent two nodes in the graph. If nodes 𝑖 and𝑗 are connected, the value of𝐴 𝑖𝑗 is 1; otherwise, it is 0; if nodes𝑖 and 𝑗 are both in𝐷, the value of 𝛿(𝑖, 𝑗) is 1; otherwise, it is 0.
The local community detection process of Clauset algo-

rithm is similar to that of web crawler algorithm. First,
Clauset algorithm starts from an initial node V. Node V is
added to the subgraph 𝐷, and all its neighbor nodes are
added to 𝑆. Then the algorithm adds the node in 𝑆 which can
bring themaximum increment of𝑅 into the local community
iteratively, until the scale of the local community reaches the
preset size. That is to say, the algorithm needs to set up a
parameter to decide the size of the community, and the result
is greatly influenced by the initial node.

(2) LWP Algorithm. LWP [16] algorithm is an improved algo-
rithm and it has a clear end condition compared with Clauset
algorithm. The algorithm defines another local community
modularity𝑀, which is expressed as

𝑀 = (1/2)∑𝑖𝑗 𝐴 𝑖𝑗𝛿 (𝑖, 𝑗)∑𝑖𝑗 𝜆 (𝑖, 𝑗) , (2)

where 𝑖 and 𝑗 represent two nodes in the graph. If nodes 𝑖 and𝑗 are connected to each other, the value of 𝐴 𝑖𝑗 is 1; otherwise,
it is 0; if nodes 𝑖 and 𝑗 are both in 𝐷, the value of 𝛿(𝑖, 𝑗) is 1;
otherwise, it is 0; if only one of the nodes 𝑖 and 𝑗 is in 𝐷, the
value of 𝜆(𝑖, 𝑗) is 1; otherwise, it is 0.

Given an undirected and unweighted graph𝐺(𝑉, 𝐸), LWP
algorithm starts from an initial node to find a subgraph with
maximum value of𝑀. If the subgraph is a community (i.e.,𝑀 > 1), then it returns the subgraph as a community.
Otherwise, it is considered that there is no community that
can be found starting from this initial node. For an initial
node, LWP algorithm finds a subgraph with the maximum
value of local modularity𝑀 by two steps. First, the algorithm
is initialized by constructing a subgraph with only an initial
node V and all the neighbor nodes of node V are added to
the set 𝑆. Then the algorithm performs incremental step and
pruning step.

In the incremental step, the node selected from 𝑆 which
can make the local modularity of𝐷 increase with the highest
value is added to 𝐷 iteratively. The greedy algorithm will
iteratively add nodes in 𝑆 to 𝐷, until no node in 𝑆 can be
added. In the pruning step, if the local modularity of 𝐷
becomes larger when removing a node from 𝐷, then really
remove it from 𝐷. In the process of pruning, the algorithm
must ensure that the connectivity of 𝑆 is not destroyed until
no node can be removed. Then update the set 𝑆 and repeat
the two steps until there is no change in the process. The
algorithm has a high Recall, but its accuracy is low.
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The complexity of these two algorithms is𝑂(𝐾2𝑑), where𝐾 is the number of nodes to be explored in the local
community and 𝑑 is the average degree of the nodes to be
explored in the local community.

3. Description of the Proposed Algorithm

3.1. Discovery of Minimal Cluster. Generally, a network can
be described by a graph𝐺 = (𝑉, 𝐸), where𝑉 is the set of nodes
and 𝐸 is the set of edges. It contains 𝑛 nodes and 𝑚 edges. 𝐶
represents a node set of a local community in the network and|𝐶| is the number of nodes in𝐶. We introduce two definitions
related to the algorithm proposed in this paper.

Definition 1 (neighbor node set). It is a set of nodes connected
directly to a single node or a community.

For node 𝑖, its neighbor node set can be expressed as𝑁(𝑖) = {𝑗 | (𝑖, 𝑗) ∈ 𝐸}.
For community 𝐶 containing 𝑛 nodes, its neighbor node

set can be expressed as follows:

𝑁(𝐶) = 𝑛⋃
𝑖=1
𝑁(𝑖) − 𝑛⋃

𝑖=1
𝑖. (3)

Definition 2 (number of shared neighbors). The number of
shared neighbors for nodes 𝑖 and 𝑗 can be calculated as

𝑊(𝑖, 𝑗) = 󵄨󵄨󵄨󵄨𝑁 (𝑖) ∩ 𝑁 (𝑗)󵄨󵄨󵄨󵄨 . (4)

Theminimal cluster detection is the key of the algorithm.
The minimal cluster is the set of nodes that connect to the
initial node most closely. We introduce a method proposed
in [22] to find the nodes that are closely connected with the
initial nodes. It uses the density function Ψ [23] which is
widely used and can be calculated as

Ψ (𝐶) =
󵄨󵄨󵄨󵄨󵄨𝐶in󵄨󵄨󵄨󵄨󵄨( |𝐶|2 ) ,

(|𝐶|2 ) =
|𝐶| (|𝐶| − 1)

2 ,
(5)

where |𝐶in| represents the number of edges in community 𝐶
and |𝐶| represents the number of nodes in community𝐶.The
largerΨ(𝐶) is, themore densely the nodes in𝐶 are connected.
It is necessary to set a threshold 𝜏(𝐶) for Ψ(𝐶) to decide
which nodes are selected to form the initial minimal cluster.
Reference [22] gave the definition of this threshold function
as shown in

𝜏 (𝐶) = 𝜎 (𝐶)( |𝐶|2 ) , where 𝜎 (𝐶) = (|𝐶|2 )
1−1/( |𝐶|2 ) . (6)

𝜏(𝐶) and 𝜎(𝐶) are the thresholds to select the nodes that
constitute the minimal cluster 𝐶. If Ψ(𝐶) ≥ 𝜏(𝐶) or |𝐶in| ≥𝜎(𝐶), these nodes are considered to form a minimal cluster.
Compared with other methods, the threshold value does not
depend on the artificial setting, but it is totally dependent

Input: 𝐺 = (𝑉, 𝐸), V
Output: Minimal Cluster 𝐶
(1) 𝐶 = Φ;
(2) for 𝑢 ∈ 𝑁(V) do
(3) if𝑊(𝜇, V) is the largest
(4) Let 𝐶 = 𝑁(𝜇) ∩ 𝑁(V) ∪ {𝜇, V};
(5) end if
(6) end for
(7) return 𝐶
Algorithm 1: Locating minimal cluster.

on the nodes in 𝐶, so the uncertainty of the algorithm is
reduced. Through this process, all nodes in the network can
be assigned to several densely connected clusters. In the
process, the constraint conditions of the minimal clusters
are relatively strict. Then the global community structure of
the network is found by combining these minimal clusters.
This is a process from local to global by finding all minimal
clusters to obtain the global structure of the network. Our
local community detection algorithm only needs to find one
community in the global network. Inspired by this idea, we
improve this algorithm as shown in Algorithm 1.

In the network 𝐺, we want to find the minimal cluster
containing node V. First we need to traverse all the neighbors
of node V and to find the node 𝑢 which shares the most
neighbors with node V (step 3).Then take nodes 𝑢, V and their
shared neighbor nodes as the initial minimal cluster (step 4).
Generally speaking, node V and its neighbor nodes are most
likely to belong to the same community. We find the node𝑢 most closely connected with v according to the number of
their shared neighbors. The more the number of their shared
neighbors is, the more closely the two nodes are connected.
That is to say, the nodes connected with both nodes 𝑢 and
V are more likely to belong to the same community. We
put them together as the initial minimal cluster of local
community expansion, which is effective and reliable verified
by experiences.

The process of finding theminimal cluster is illustrated by
an example shown in Figure 2. Suppose that we want to find
theminimal cluster containing node 1.We need to traverse its
neighbor nodes 2, 3, 4, and 6, where𝑊(1, 2) = 2, 𝑊(1, 3) =3, 𝑊(1, 4) = 1, and𝑊(1, 6) = 2.We can see that node 3 is the
most closely connected one to node 1, so the minimal cluster
is 𝐶 = 𝑁(1) ∩ 𝑁(3) ∪ {1, 3} = {1, 2, 3, 4, 6}. 𝐶 is the starting
node set of local community extension.

3.2. Detection of Local Community. First of all, we use
Algorithm 1 to find the node which is most closely connected
to the initial node. We take node 𝑢 and node V as well as
their shared neighbor nodes as the initialminimal cluster.The
second part of the algorithm is based on the minimal cluster
to carry out the expansion of nodes and finally find the local
community. The specific process is shown in Algorithm 2.

In the algorithm, we still use 𝑀 function used in the
LWP algorithm as the criteria of local community expansion.
Algorithm 1 can find the initial minimal cluster 𝐶. After that,
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Input: 𝐺 = (𝑉, 𝐸), C
Output: Local Community LC
(01) Let LC = 𝐶
(02) Calculate N(LC),M
(03) While𝑁(LC) ̸= Φ do
(04) foreach 𝑢 ∈ 𝑁(LC)
(05) if ΔM is the largest
(06) Let LC = LC ∪ {𝑢}
(07) End if
(08) End for
(09) Update N(LC),M
(10) Until no node can be added into LC
(11) Return LC

Algorithm 2: Local community detection.

1
3

2

4

5

6

Figure 2: The discovery of minimal cluster.

Algorithm 2 finds the neighbor node set N(LC) of LC and
calculates the initial value of𝑀 (step 02).Then it traverses all
the nodes in N(LC) (steps 03-04) to find a node which can
make Δ𝑀maximum and add it into the local community LC
(steps 05–08); update N(LC) and 𝑀 (step 09) until no new
node is added to LC (step 10).

The complexity of the NewLCD algorithm is almost the
same as the Clauset algorithm. The NewLCD algorithm uses
extra time of finding minimal cluster which is linear to the
degree of the initial node V.

4. Experimental Results and Analysis

In this section, the NewLCD algorithm is compared with
several representative local community detection algorithms,
namely, LWP, LS, and Clauset, to verify its performance.
The experimental environment is the following: Intel (R)
Core (TM) i5-2400 CPU@ 3.10GHz; memory 2G; operating
system: Windows 7; programming language: C#.Net.

4.1. Experimental Data. The dataset of LFR benchmark
networks and three real network datasets are used in the
experiments.

(1) LFR benchmark networks [24] are currently the most
commonly used synthetic networks in community detection.

Table 1: LFR benchmark network information.

Network ID 𝑁 𝑘 max 𝑘 min 𝑐 max 𝑐 mu
B1 1000 20 50 10 50 0.1∼0.9
B2 1000 20 50 20 100 0.1∼0.9
B3 5000 20 50 10 50 0.1∼0.9
B4 5000 20 50 20 100 0.1∼0.9

Table 2: Real network information.

Network
ID Name Number of nodes Number of edges Reference

R1 Karate 34 78 [19, 20]
R2 Football 115 613 [19, 21]
R3 Polbooks 105 441 [19]

It includes the following parameters: N is the number of
nodes; min 𝑐 is the number of nodes that the minimum
community contains; max 𝑐 is the number of nodes that
the biggest community contains; 𝑘 is the average degree of
nodes in the network; max 𝑘 is the maximum degree of node;
mu is a mixed parameter, which is the probability of nodes
connectedwith nodes of external community.The greatermu
is, the more difficult it is to detect the community structure.
We generate four groups of LFR benchmark networks. Two
groups of networks, B1 and B2, share the common parameters
of 𝑁 = 1000, 𝑘 = 20, and max 𝑘 = 50. The other
two groups of networks, B3 and B4, share the common
parameters of 𝑁 = 5000, 𝑘 = 20, and max 𝑘 = 50. The
community size {min 𝑐,max 𝑐} of B1 and B3 is {10, 50} and
the community size {min 𝑐,max 𝑐} of B2 and B4 is {20, 100},
implying small community networks and large community
networks, respectively; each group contains nine networks
withmu ranging from0.1 to 0.9 representing from low to high
hybrid network. The details are shown in Table 1.

(2) We choose three real networks including Zachary’s
Karate club network (Karate), American college Football
network (Football), and American political books network
(Polbooks). The detailed information is shown in Table 2.

4.2. Experiments on Artificial Networks. Because of the large
size of the synthetic networks, 50 representative nodes are
randomly selected from each group as the initial node
and all the experimental results are averaged as the final
result. Figures 3–6 are the comparison chart of the exper-
imental results of each algorithm on the four groups of
LFR benchmark networks (B1–B4). The ordinate represents
the three evaluation criteria for local community detection,
respectively, and the abscissa is the value of mu (0.1–0.9).The
following conclusions can be obtained by observation.

(1) LS and LWP algorithms have higher Precision com-
pared with Clauset algorithm. But their Recall value is lower
than Clauset algorithm. LS and LWP algorithms cannot have
both high accuracy and Recall. Their comprehensive effect
may be not higher than the benchmark algorithm Clauset.

(2) All these three indicators of NewLCD algorithm are
significantly higher thanClauset algorithm, which shows that
the initial state indeed affects the results of local community
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Figure 3: Comparison of B1.

detection algorithm, and starting from the minimal cluster is
better than a single node.

(3) Overall, NewLCD algorithm is the best. On the four
groups of networks, when the parameter mu is less than 0.5,
NewLCDalgorithm can find almost all the local communities
where each node is located. In high hybrid networks, when
the value of mu is greater than 0.8, the local community
detection effect of NewLCD algorithm is not good, just like
other algorithms. The main reason is that the community
structure of the network is not obvious.

In summary, NewLCD algorithm can detect better local
communities on the artificial networks than the other three
local community detection algorithms.

4.3. Experiments on Real Networks. In order to further
verify the effectiveness of NewLCD algorithm, we compare

it with three other algorithms on three real networks (Karate,
Football, and Polbooks). These three networks are often used
to verify the effectiveness of algorithms on complex networks.
The experimental results are shown in Table 3 and the
maximum values of each indicator are presented in boldface.
The maximum value of Precision on Karate is 0.989 obtained
by LS algorithm. But its Recall value is just 0.329 which is the
minimum value among these four algorithms. So the result
of LS algorithm is the worst. On Karate networks, Clauset
algorithm and LWP algorithm have the same problem as LS,
which means that their Recall value is low. While the Recall
and F-score values of NewLCD algorithm are the largest,
NewLCD algorithm is optimal. On the Football network,
the comprehensive effect of NewLCD algorithm is also the
best. On the Polbooks network, the advantages of NewLCD
algorithm are more obvious, and the three indicators of its
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Table 3: The comparison of algorithms on the real networks.

Dataset Evaluation criteria Clauset LS LWP NewLCD

Karate
Precision 0.927 0.989 0.884 0.934
Recall 0.526 0.329 0.529 0.809
F-score 0.671 0.494 0.662 0.867

Football
Precision 0.803 0.943 0.680 0.880
Recall 0.878 0.732 0.712 0.940
F-score 0.839 0.824 0.696 0.909

Polbooks
Precision 0.741 0.879 0.770 0.914
Recall 0.442 0.182 0.477 0.757
F-score 0.554 0.301 0.589 0.828
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Figure 4: Comparison of B2.
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Figure 5: Comparison of B3.

results are all the best. In summary, not only can NewLCD
algorithm be effectively applied on the artificial network, but
it can also be very effective on the real networks.

Karate network is a classic interpersonal relationship
network of sociology. It reflects the relationship between
managers and trainees in the club. The network is from
a Karate club in an American university. The club’s
administrator and instructor have different opinions on
whether to raise the club fee. As a result, the club splits
into two independent small clubs. Since the structure of
Karate network is simple and it reflects the real world, many
community detection algorithms use it as the standard
experimental dataset to verify the quality of the community.
In order to further verify the effectiveness of the algorithm,

we do a further experiment on Karate. Figure 7 is the real
community structure of Karate. If we select node 8 as the
initial node, Figures 8 and 9 are, respectively, the local
community structure detected by NewLCD and Clauset. {9,14, 15, 18, 20, 22, 28, 27, 24, 25, 32, 23, 26, 29, 8, 30, 33, 31} is
the real local community containing node 8 and {14, 15, 18,20, 22, 26, 29, 9, 8, 30, 32, 33, 23, 27, 2, 28} is the result of Claus-
et. We can see that node 2 is assigned to the local community,
while nodes 23, 24, 25, and 31 are left out. The community
containing node 8 detected byNewLCD is {9, 1415, 18, 20, 22,28, 27, 24, 25, 32, 23, 26, 29, 8, 2, 30, 33, 31}. Only node 2 is
wrongly assigned to the community and there is no omission
of any node. The local community detected by NewLCD is
more similar to the real one. While a node cannot represent
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Figure 6: Comparison of B4.

all situation, we do more experiments expanding from each
node of Karate and compare the corresponding Precision,
Recall, and F-score, as shown in Figure 10. The abscissa
represents the 34 nodes, from 0 to 33, and the ordinate is
F-score, Recall, and Precision, respectively. Although the
Precision values of Clauset are slightly higher than the results
of NewLCD expanding from nodes {4, 5, 6, 10, 23, 26, 27, 29},
the Recall values of Clauset are far lower than the results
of NewLCD. So NewLCD algorithm is much better than
Clauset algorithm.

5. Conclusion

This paper proposes a new local community detection algo-
rithm based on minimal cluster—NewLCD. This algorithm

mainly consists of two parts. The first part is to find the
initial minimal cluster for local community expansion. The
second part is to add nodes from the neighbor node set
which meet the local community condition into the local
community. We compare the improved algorithm with other
three local community detection algorithms on the real and
artificial networks. The experimental results show that the
proposed algorithm can find the local community structure
more effectively than other algorithms.
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Figure 8: The result of NewLCD algorithm on Karate.
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