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We revise the interrelations between the classical Black Scholes equation, the diffusion
equation and Burgers equation. Some of the algebraic properties the diffusion equation
shows are elaborated and qualitatively presented. The related numerical elementary
recipes are briefly elucidated in context of the diffusion equation. The quality of the
approximations to the exact solutions is compared throughout the visualizations. The
article mainly is based on the pedagogical style of the presentations to the Novacella
Easter School 2000 on Financial Mathematics.
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1. INTRODUCTION

The Black Scholes equation has played and is
playing a strong role in mathematical modelling of
financial markets. It connects the understanding
of option prizing with diffusion models and thus
yields a fascinating interaction between phenom-
ena in nature with phenomena in society. For
a detailed description concerning the Black
Scholes equation, see [10]. For general reference,
see [1-4, 6-9, 11]. Discretizations of this equation
have also been investigated in detail, and in
principle it seems that there is nothing really new

about this celebrated equation. Its symmetry
properties however are still a remarkable mathe-
matical fact, in detail with respect to its transfor-
mation properties into the classical heat or

diffusion equation.
In this article, we prosecute the strategy of

reducing solutions of the Black-Scholes equation
to solutions of the classical diffusion equation as

described in detail in [10, 11]. We give some explicit
examples in which we compare the quality of exact
algebraic solutions to the classical diffusion
equation with solutions obtained by the standard
numerical recipes as proposed in [10]. As a
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consequence, we obtain the main result that has
been elucidated in great detail on the Novacella
Easter School 2000: The conventional recipes
proposed in [10,11] yield a fine qualitative
accuracy. As for the standard error analysis, we
recommend the reader to refer to [5].
The Easter School in Novacella, Italy, was an

attempt to communicate questions in the area of
discrete dynamics in nature and society to students
in mathematical finance, mathematics, to students
in computer science and students in physics and to
encourage them to scientifically interact.
The homepage of the Novacella Easter School

2000 is www-ml.ma.tum.de/bilder/2000/ostersem_
4 00
The organization of this article shall now be as

follows:
In the second chapter we revise the interrelation

between Black-Scholes equation, diffusion equa-
tion and Burgers equation.

In the third and the fourth chapter, algebraic
solutions and numerical approximations are devel-
oped. They are compared at the end of the fourth
chapter.
The authors would like to mention in particular

that the impressive graphic results were also
partially made possible by the help of Tobias
Lasser who had addressed the topic of solution
strategies to ordinary differential equations during
the Novacella Easter School.

2. EXAMPLES OF EQUATION
TRANSFORMS

The connection between the Black Scholes equa-
tion and the diffusion equation belongs to the
standard procedures being taught in computa-
tional finance. For the convenience of the reader,
we are going to state it right here at the very
beginning of the article.
The Blaek-Scholes equation is given by

OC
02S2 02C OC

0--7 + rS- - rC 0

where C refes to a call, S denoting the underlying
asset, the time. 0" refers to the volatility of the
underlying asset, r means the interest rate.
By setting

S-- Eex t--T-(i/2)0" C-- Ev(x,r) (2)

we remove the dimensions of the original
Black-Scholes PDE which now results in the
equation

01 021 OV 2r
&

kv k (3)

Putting now

v eX+/"u(x, r) (4)

and setting

2l(k" -1) /3:-- (k+l) (5)

we end up with the diffusion equation

OU 02U
(6)

07" OX2

where -oc < x < oc, r > 0.
Let us show that also another partial differential

equation can be reduced to the diffusion equation
by standard methods:
The partial differential equation

OU OU 02U
0--7 + u 0- Ox2 (7)

is nonlinear and usually referred to by the name
Burgers equation. It is remarkable that one can
linearize this equation in the following way.
Assume that v(x, t) is a purely positive function
for which the expression

0
oxln(v(x,t)) (8)
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is well defined
the function

for any (x,t)E R2. Defining 3. ALGEBRAIC SOLUTIONS
TO THE DIFFUSION EQUATION

U’[2 --,
O

ln(v(x, t))(x, t) H u(x, t) -2-O-x (9)

From a classification viewpoint, the diffusion resp.
heat equation is a second order linear partial
differential equation which is parabolic,

one obtains first by evaluating (7) that

20v
u(x,t) (10)

v Ox

We now differentiate the function u with respect
to t, x and obtain

Ou 20v Ov 2 021
O v2 0t Ox v OtOx (11)

O-- v- -x v Ox (12)

Now, taking the second derivative of u with
respect to x, we receive

02it 4 (OV) 60VO2V 203V
3 -X V20X OX2 V OX (13)

Combining these expressions in the sense of (7),
one recognizes the following: The function u we
have introduced by v yields a solution to Burgers
equation if

Ox Ot Ox2 vx Ot Oxz (14)

Thus, if the solution v is a positive solution to the
heat resp. diffusion Eq. (6) for any (x, t)E 2, the
function u, defined by (9) provides a solution to
Burgers equation.

W have now got some motivation to focus
on comparing solutions to the diffusion equa-
tion which, as we have seen, is closely related to
the Black-Scholes equation and to Burgers
equation.

0t/ 02bt
(15)Ot Ox2

In a conventional sense, linearity is understood as

usual, i.e., along with the solutions Ul (x, t) and u2

(x, t) for the equation, all linear combinations Cl Ul

(x, t)+ c2 u2 (x, t) solve the equation as well. The
solutions u (x, t) (u: x ) model the time
dependent temperature in a long, fully insulated
bar which is assumed to be one-dimensional.
One obtains the most simple solutions by

combining polynomial functions in x and as
follows:

u(x, t) (c ) (16)

u(x, t) x (17)

x2u(x, t) - -+- (18)

1.6

1.4

1.2

0.8"

0.6-

0.4"

0.2-

O

--6_"4 8/’0
-2

0

6
8 2
10

GRAPH u(x, t)= 1.
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GRAPH 3 u(x, t) (1/2)x q- t.

Concerning the solution structure, "more diffi-
cult" solutions exist as well, for instance

u(x, t) ce"x+"2t (c, n E ) (19)

as we can easily verify:

Or1 enx+n2t 0 enx+n2t 02u
cn2 cn

Ot Ox OX2

As (Ou/Ot) (02u/Ox2) is a linear differential equa-
tion, we obtain other solutions by constructing
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GRAPH 4 u(x, t) e(1/2)x + (1/4)t

linear combinations of the particular solutions of
type (19)"

k

u(x, t) Zc,e"X+"2t (c, ) (20)
n=l

This can easily be checked by using induction
methods: The case k-1 is obviously clear,
therefore we address k- k:

k

11k(X t) ZcnenX+n2t
n=l

--\n=l(lcnenX+n2t)/ q-Ckekx+k2t.

As the partial derivative of a function is lin-
ear, y=lcnenx+nt gives a solution because

k-1n--1 c,enx+"t satisfies the initial condition. As
for ckex+t compare (19). Starting the summa-
tion at a lower negative index doesn’t cause any
problems.
We can construct a different solution fulfilling

the following boundary conditions:

u(x, O) f(x) O < x < Tr

u(0, t) 0 t>0

u(Tr, t)-O t>0
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It reads

u(x, t) c sin (nx)e-"2t (21)

as one can explicitly prove"

-cn2 sin (nx)e-n2t0---
Oc Ou
Ox

cn cos nx)e
-nt

Ox2

Obviously further solutions are obtained by
changing sin into cos, sinh or cosh.
Due to the linearity of the heat resp. diffusion

equation, the sum again gives a solution:

b/(X, t) ZCn sin (nx)e-nzt (Cn E ) (22)
n=l

GRAPH 7 u(x,t)=sin ((1/2)x)e -O/4)t with =k, k E [0, 10].
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1-
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GRAPH 9 u(x, t) w’l
z-,n--0 sin(nx)e-n2t with t=0.05+k.0.2,

k [o, 51.

Note that it is very similar to the probability
density of the normal distribution (S),u--
(1/crv/)e-(a/2)((x-)/)
Function (23) yields a solution of the heat

equation:

02U

Ou c c e_(1/4)(x2/t).Oq--- - t-/2 e
(1/4 x2

"(41-x2)-t2

( x2 ) (1/4)(x2/t)
4t5/ 2t3/

c e-

----0-----
0 ( c (---ttX ))
(e-(]/4)(x/t). (---t). (---t))+

c _1q-(--e-(1/4)(xZ/t)" (
2 ’222t J

c

4

Looking at the probability density ((s),u=
(1/crx/)e-(a/2)((x-")/)2 and choosing #=0,
b(s) becomes symmetric with respect to the y-axis.
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From the viewpoint of st chastlcs, a quite x V "interesting solution is given as follows:
o loo

20
40

5c-f-e-(1/4)(x2/t) (t > O, c E ) (23).(x,t)
GRAPH 11 u(x,t) (1/v)e-(I/4)(x2/t).
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GRAPH 12 u(x,t) (l/v/-i)e-(1/4)(x2/’). with t= +k, k E
[o, o1.
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GRAPH 13 u(x,t) (1/,v/)e-(1/4)(x2/t) with x=0.5.k,
kE [0, 11].

solution of the heat equation when substituting
0
-2 by 2t:

0
0-5

0 e-( 1/2)((x-/z)/x/)

4X/ t3/2
e-(1/4)((x-/z)2/t) +

e-(1/4)((x-/z)z/t)) (1-(x-- #)2 )-42

_( (x-#)2

).8X/ tS/2 4V t3/2

e-(1/4)((x-/z)2/t).

02

OX2 q(X)(x/’,/z)
0
Ox 2v/-

e-(1/4)((x-/z) /t).

(
(x- #)).-(1/4)((x-/z)z/t) (

2v/el_(1/4)((x_/z)2/t)( --"1)
(1 (x-#)2

).8x/ ts/2 4x/ t3/2

e-(1/4)((x-/z)2/t).

If additionally 0-2 is substituted by 2t, we exactly
get the same result as in (23) with c (1/2x/-).
The factor c is necessary to ensure that the

integral f_+ c(s)ds equals which reflects the
fact that the probability is conserved.
By direct calculation one can verify that the

density function with parameter # is already a

4. NUMERICAL APPROXIMATIONS
TO THE DIFFUSION EQUATION

4.1. Stating the Difference Scheme

As usual, we replace the partial derivatives by
difference quotients where we introduce first order
difference quotients and second order difference
quotients separately:
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4.1.1. Derivatives of First Order

Ou
(x, 7-) lim

u(x, 7- + &-) u(x, 7-)
Or --,o

Backward Difference

0u
(x, 7-) lim

u(x, 7-) u(x, &)

Forward Difference

Ou
(x, ) lim

u(x, + &) u(x, &)
0 2&

Central Difference

backward diff. forward diff

GRAPH 14 Forward Difference, Backward Difference and
Central Difference.

The approximation is performed as follows:

&- is assumed to be sufficiently small The
evaluation for (Ou/Ox) (x, r) goes in an analogous
way.

4.1.2. Derivatives of Second Order

Reducing the second order derivatives to the given
derivatives of first order yields

02U(x,r) lim (OU(x+6x, r) OU(x,r))Ox x-o
Forward Difference

02U
(x,r) lim (OU (x "r)

OU
(x_6x -r))OX2 xO --Backward Difference

02u
(’ ) o +ON2

T

Central Difference

There are three given methods for approximat-
ing the first derivative.
In total we obtain 27 possibilities of approx-
imating the second derivatives in terms of finite
differences to the u-functions

In the outlined context, the symmetric central
differences are often preferred due to their
invariance with respect to the transformations
x -+ -x bzw. 7- - -7-:

02U
(X, 7) ,OX2

u(x + x, ,-) 2u(x, -) + u(x x,
(6x)2

(24)

4.2. Considering the Errors

As a consequence of the respective Taylor expan-
sion and the additional assumption that u(x, 7")
allows to calculate its lowest derivatives, we can
derive the following equations that give a first
insight into the error behavior:
On the one hand, we obtain

OU
(X, 7")(67")q-R2u(x, , + 6-) u(x, -) + - 2

(25)

with

IR2I max

and on the other hand

oA (x, ) u(x, - + 6) u(x, )
Or & + o(6-)
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u(x,

GRAPH 15 Values of u at a fixed time

respectively

Ou
(x ) (x, ) u(x, ) u."++ 0(8) :

with

0(67") R2T
This means that the error term of the forward

resp. backward difference goes to zero in a linear

way as 6- 0.
Adding the forward and backward difference,

we can derive the following approximations from

(24):

0
(x, ) (x + x, ) (x x, )

Ox 26x + O((X)2)

respectively

02
(x, )

u( + , -) (,- +( ,-(X)2

+ o((6x)2)

Thus the given central differences yield a quadratic
convergence in the stated sense. The stated facts

expliizit

/
u;" v7

u mn.l .m+! U

un’l

implicit

GRAPH 16 Evaluating vm+l by using explicit resp. implicit
methods.

open the possibility of determining exact error

bounds.

4.3. Evaluating the Difference Scheme

The discretization is performed by choosing an

equidistant lattice with mesh lenghts x resp. 6-
and lattice coordinates (n6x, m&-):

u(n x, m-)[
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Numerical Algebraic

GRAPH 17 u(x, t) (1/2)x + t.

Numerical Algebraic

GRAPH 18 u(x,t) (1/1000) v.lo e(1/,O>,x+(,/,oo>,2tZ-n=- 10

Numerical Algebraic

GRAPH 19 u(x,t)=e({/2)x+(1/4)t
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Numerical Algebraic
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GRAPH 22 u(x,t) (1/)e-(]/4)(x2/t).
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4.3.1. The Explicit Approach

Inserting the forward and symmetric backward
central difference into the heat equation now
yields

67 +

u(x + 6x, r) 2u(x, r) + u(x 6x, r) +
(SX)2

+ o((ex)2),

Unm+l m
/An +

m _2um+ m
/An+ /An-

(6x)2
nt- O((X)2) (26)

Ignoring the error terms we receive the follow-
ing approximation formula

Tm+l rn rn rn mv, -v, +c(v,+l+v_1-2v.) mitc-
({SX)2

The way it operates is visualized in Graph 16.

4.3.2. The Implicit Approach

If we insert the backward difference scheme into
Eq. (26) instead of the forward difference scheme,
we obtain an implicit difference method.

In the case of the implicit approach, one now
makes the following observation: To determine all
approximations along the finite lattice, the data
along one of its bars are required.

Let us now compare the exact solutions and
their approximations.
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