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In this paper, we address the analysis and the state-feedback synthesis problems for lin-
ear parameter-varying (LPV) sampled-data control systems. We assume that the state-
space data of the plant and the sampling interval depend on parameters that are
measurable in real-time and vary in a compact set with bounded variation rates. We
explore criteria such as the stability, the energy-to-energy gain (induced L? norm) and the
energy-to-peak gain (induced L*-to-L™ norm) of such sampled-data LPV systems using
parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-
data state-feedback control synthesis problems are examined. Both analysis and synthe-
sis conditions are formulated in terms of linear matrix inequalities that can be solved via
efficient interior-point algorithms.

Keywords: Parameter-varying systems; Sampled-data systems;
Linear matrix inequalities

1 INTRODUCTION

The control of engineering systems often involves a continuous-time
plant controlled using discrete-time measurements via analog-to-digital
(A/D) and digital-to-analog (D/A) devices for interfacing. Sampled-
data control has recently received increased attention to address the anal-
ysis and feedback control synthesis for these systems with guarantees
for stability, performance and intersample behavior [3,5,6,8]. To this
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146 K. TAN AND K.M. GRIGORIADIS

end, H?, H* and I' control methodologies have been developed in a
sampled-data framework using lifting techniques to associate a time-
invariant discrete-time system with infinite-dimensional input/output
spaces to the initial sampled-data one, such that system induced norms
are preserved.

In this work, the analysis and state-feedback control synthesis prob-
lems for linear parameter-varying (LPV) sampled-data systems are
examined. The LPV systems theory [1,2,10,11,16] has been motivated
by the gain-scheduling approach for control of linear and nonlinear sys-
tems [12]. It provides a systematic methodology to design parameter-
dependent controllers that guarantee stability and performance
specifications using computationally efficient linear matrix inequality
(LMI) optimization tools. Hence, in our work, we assume that the
state-space data of the sampled-data system and the length of the
sampling interval depend on system parameters that are available for
measurement in real time at the sampling instances. The dependency
of the sampling interval on measurable system parameters allows the
treatment of systems with variable sampling rates, such as engines,
manufacturing systems and telerobotic systems. For example, in an
internal combustion engine, the sampling interval is variable and
depends on the engine speed (event-based sampling).

We seek to develop controllers that are scheduled based on the mea-
surement of the parameters to guarantee stability and desired perfor-
mance specifications. Two performance objectives are examined in this
work: the energy-to-energy gain (induced L? norm) and the energy-to-
peak gain (induced L?-to-L* norm). A lifting approach [3,5] is fol-
lowed to transform the sampled-data system to a discrete-time system
with infinite-dimensional input/output spaces. Due to the parameter
dependence of the system matrices and the sampling interval, the lifted
system is a discrete-time LPV system with infinite dimensional input
and output spaces. Parameter-dependent Lyapunov functions are
utilized to develop analysis and state-feedback control synthesis
results. The analysis and synthesis conditions are formulated in terms
of parameter-dependent LMIs that can be discretized over the param-
eter space and solved using efficient interior point optimization algo-
rithms. For the special case where the parameter set is a singleton,
our results provide analysis and synthesis conditions for standard
(parameter-independent) sampled-data systems in terms of LMIs.
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The notation to be used in this paper is as follows: The L? norm of a
vector valued function f(7) is || /]I, = {fg" /() f(2) dr}'? and the L™
norm is || ||, = sup, {f"(¢)f (z)}l/ %, For a discrete-time vector valued
signal f(k), the > norm is || f|, = {Eg"f’(k)f(k)}]/2 and the /°° norm
is || flle = sup, {f"(k)f(k)}"/*. (-} stands for the transpose of a real
matrix and (-)* denotes the adjoint of a operator on Hilbert space. The
matrix norm || - || is the maximum singular value of a matrix, that is
|4]| = &(A4) = {Amax(44T)}'/?. Given a real matrix B, the orthogonal
complement B~ is defined as the (possibly non-unique) matrix that
satisfies B*B=0 and B~B*" >0. Hence, B* can be computed from
the singular value decomposition of B as follows: B+ = TU] where T
is an arbitrary nonsingular matrix and U, is defined from the singular

value decomposition
o of|vr
0 of|Vy|

The standard notation >, > (<, <) is used to denote the positive
(negative) definite and semidefinite ordering of matrices.

BZ[U] Uz]

2 PRELIMINARIES

Consider the following continuous-time LPV plant

x(1) = A(p(0))x(1) + Bi(p(1))w(t) + B2 p(2))u(?)
z(1) = Ci(p(0))x(2) + D (p(2))w(2) + Di2(p(2))u(2) (1)
y(1) = x(1)

where x(7) € R” is the state vector, w(f) € R™ is the vector of exogenous
inputs, u(7) € R™ is the vector of control inputs, z(z) € R?' is the vector
of controlled outputs, and y(f) € R" is the vector of measured outputs.
We assume that the state-space matrices A(-), Bi(-), Bx(-), Ci(-), D11(*)
and Dj,(-) are bounded continuous functions of a time-varying param-
eter vector p(t) € F,. The set Fy is the set of allowable parameter
trajectories

Fp={p:p(t) e RCR’, p(tx +7) = p(t), T € [0, h( p(k)),
|pi(tkr1) —pi(te)| < vi, i=1,2,...,5}

Il



148 K. TAN AND K.M. GRIGORIADIS

where 1, are sample instances, 4 is the sampling interval and R is a
compact subset of R®. So, p(¢) is assumed to be a bounded piecewise-
constant vector-valued function with bounded variation rates. It is
assumed that at the sampling instances 7, k=0, 1,2, ..., the parameter
vector p(f) is measurable. We seek to design sampled-data control
schemes that depend on the measurement of the parameter vector p(?)
to guarantee stability and performance of the closed-loop system, see
Fig. 1. In this formulation, the controller K(p) is a state-feedback con-
trol gain that is scheduled based on p, Sy, is an ideal sampler (with
sampling interval A(p)), and Hyp) is a zero-order hold (with sampling
interval 4(p)). The sampling interval 4 is a bounded continuous func-
tion of the parameter vector p. The sampling and hold operators Sy,
and Hy, are assumed to be synchronized. We call Hj,(,)K(p)Spp) the
sampled-data LPV controller.

The lifting technique plays a key role in solving sampled-data con-
trol problems [3]. The sampled-data LPV control system in Fig. 1 can be
converted to the following discrete-time LPV control system in Fig. 2,

z w
P(p)
Y u
Sh(P) K (p)—H h(p)

FIGURE | LPV sampled-data control system.

Zh(p) Wh(p)
Pi(p)
Yn(p) Uh(p)
K(p)

FIGURE 2 Lifted LPV sampled-data control system.
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where

Wh( ) 0 w1 0
Pip)=| 7 P(p)| ¥ :
0 Suy 0 Hyy

and W), is the lifting operator defined by Wiy: L?[0,00) = 17 4
such that

Ty = Wi o T (R)(1) =1t +7), 7€[0,h(p(W))).

Notice that although lifting techniques applied to sampled-data sys-
tems with constant sampled-period result in a discrete-time LTI repre-
sentation, in our case where the sampling interval is a function of the
parameter vector p we obtain a discrete-time LPV representation.

The lifting operator W, provides an isometric mapping between the
continuous and discrete normed spaces. In this paper, we will consider
the signal spaces whose norms are the L? and /” norms for p=2
(energy of a signal) and oo (peak value of a signal). The lifted system
P;(p) has a state-space realization,

xn(k + 1) = An(p(k))xn(k) + B (p(k))wa(k) + Bia(p(k))un(k)
zp(k) = Cu (p(k))xn(k) + Dpi1 (p(k))wn(k) + Dma(p(k))un(k)
yi(k) = xi(k)

)
where  x4(k) =x(t), ungy=u(te), yu(k)=y(t), Wh=WnpW, zp=
Wi z. The state-space matrices Ay(-), Byo(-) are matrix valued func-
tions, while By;(), Cpi(-), Dp11(-) and Dy12(-) are operator valued. All
these operators have finite rank. The system Pj(p) is an infinite dimen-
sional LPV system. In our approach, the control design problem for
P,(p) will be transformed to a problem involving a finite-dimensional
input/output plant that depends on the parameter vector p. Then, an
LPYV control design scheme will be implemented for control synthesis.

3 LPV SAMPLED-DATA ENERGY-TO-ENERGY
GAIN ANALYSIS

Consider the unforced LPV system

x(1) = A(p(1))x(2) 3)
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where p(-) € F}, and A(-) is a bounded continuous function of p. Since
p(-) is a piecewise-constant function of ¢, so will be A(-). The system (3)
has a lifted representation

xn(k + 1) = An(p(k))xn(k) 4)

where x,(k) is the kth component of the lifted state vector and

An(p) = exp(h(p)A(p)).
The following result provides conditions for asymptotic stability of
the LPV system (3) in terms of the lifted system (4).

THEOREM 1  Consider the unforced LPV system (3) and A;(p) defined
in (4). If there exists a bounded continuous matrix function Q(p)>0,
such that

A (p)Q(p)An(p) — Q(p+4q) <0 (5)

forallp e R, p+q € R and |q)| < v;, then the system (3) is asymptoti-
cally stable, that is, the solution x(-) converges to zero as t — oo for all
p() € F.

Proof We first show that the system (4) is asymptotically stable if
(5) holds for some matrix function Q(p)>0. Let V(k) = x] (k) x
Q(p(k — 1))xp(k). Because of the compactness of R, it is true that

V(k) 2 inf dmin(Q(p))[n(K) 2 = min Amin (Q(2)) 61 (6)11

V(k) < sup Amax(Q()) 14 (K)II7 = max Amax(Q(7)) [BAG]2
PER pe

Notice that p(k — 1) = p(k) + g(k) for some g(k) with |¢;(k)| < v;. Hence,
AV(K) = V(k+1) — V(k)
= x;,(k + 1)Q(p(k))x;(k + 1) — x;(k)Q(p(k — 1))xn(k)
= x;,(k)4,(p(k))Q(p(k)) An( p(k))xn(k)
= x,(k)Q(p(k) + q(k))xa(k)
= x;,(k)[4;,(p(k))Q(p(K))An( p(k)) — Q(p(k) + q(k))]xa(k)

< /\maxnxh(k)”%-
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The value of  sup,cr pigergisy [44(P(K)Q(p(K))An(p(k)) —
Q(p(k) + q(k))] is attainable since R is a compact subset of R’ and

we denote this value by Anax. Note that because of (5), Amax <0.
Hence, V(k) is a Lyapunov function for (4). From Lyapunov stability
theory [15], we obtain that (4) is asymptotically stable, that is, x,(k)
converges to 0 as k — oc.

Now consider the state x(¢) of (3) between sampling instances. We
have that

Itk + )2 = lle* P 7x() 1, < NPT [lxa(k) .

Notice that SUPre(o,4], peR [[ePET|| = sup, oy per Tmax(€PEIT) s
reached since it is the supremum of a bounded continuous function on
the compact set [0, 4] x R. If we demote this supremum by M, then

Xt + 1)l < Mljxa(k)l,  for 7 € [0, A(p(k)))-

Hence, since x,(k) converges to 0 as k — oo, we obtain that x(¢) con-
verges to 0 as 1 — oo. Therefore, the system (3) is asymtotically stable.

If the assumptions of Theorem 1 are satisfied, we will say that the
LPYV system is sampled-data parameter-dependent quadratically stable
(or SDPDQ stable). Hence, SDPDQ stability implies asymptotic sta-
bility for the unforced LPV system in (3). Here we consider the matrix
function Q in an affine form

=00+ ZPiQi
pa

where Q;, i=0,1,...,s are constant matrices. This matrix function is
continuous and bounded for p € R.

COROLLARY 2 Consider the unforced LPV system (3) and A;(p)
defined in (4). If there exists an affine function Q(p) = Qo+
Z,LlpiQi > 0, such that

A,(P)Q(P)An(p Zi "o (6)

for all p € R, then the system (3) is SDPDQ stable.
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Remark 3 The notation Y, =(-) in (6) is used to indicate that every
combination of +(-) and —(-) should be included in the inequality.
That is, the inequality (6) represents 2° different combinations in the
summation.

To examine the energy-to-energy (induced L? norm) problem, now
consider the following input—output LPV system

xX(2) = A(p(0))x(1) + B(p(2))w(1)
z(t) = C(p(1))x(2) + D(p(1))w()

with p € F},. This system can be lifted to the following discrete-time
LPYV representation

xp(k + 1) = An(p(k))xn(k) + Bu(p(k))wa(k)
zp(k) = Cu(p(k))xn(k) + Da(p(k))wn(k)

where wy(k) and z,(k) are the kth components of the lifted input/
output signals, and the operators B;, and Cj, have finite rank. The fol-
lowing result provides conditions for the LPV system (7) to have
energy-to-energy gain (induced L? norm) less that + in terms of the
lifted system (8).

()

(8)

THEOREM 4  Consider the input—output LPV system in (7) withp € Fp,
and its lifted representation (8) with Dj;Djy — v21 < 0. Then (7) is
SDPDQ stable and has energy-to-energy gain less than vy if there exists
a bounded continuous matrix function Q(p) > 0, such that

A (p)Q(p)Aa(p) — Q(p +9) A(p)Q(p)Ba(p)
+ Ca(P)Ca(p) <0 (9)
By(p)Q(p)Aa(p) Bl(p)Q(p)Ba(p) — 7?1

where A4(p), Ba(p) and C4(p) are matrix valued function satisfying

Ad(p) = An(p) + Bu(p)D;(p)(v*T — Du(p)D;(p)) ' Cu(p)
Ba(p)By(p) = v*Bu(p)(v*I — D;(p)Du(p))” ' B} (p)
CY(p)Ca(p) = ¥*Ci(p)(v*I — Du(p)D;(p)) ' Ci(p)

forallpe R,p+q€Rand|q|<vy,i=1,2,...,s
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Proof Condition (9) implies that the (1, 1) block in the left-hand side
of (9) is negative definite. Hence, Theorem 1 guarantees that the sys-
tem (7) is SDPDQ stable. We consider now the energy-to-energy gain
of system (8). The Schur complement formula implies the following
condition from (9)

A0A44— Q(p+q) + A,0Ba(v* — B1QBs) ' BiQ A4+ C)Cy < 0.

(11)
The matrix inversion lemma
(A+BCD) ' =4'— 4 'B(C"'+ DA'B) ' DA™
and the expressions (10) provide the following result.
A, 045 + C; Cy + (4,0B, + C; Dy)
x (v — B;QBy — D}D;)" (B QAx + D;Ch)
= ALQ A4+ C)Cy+ A4QBa(v*I — BLOB,) ' BiQA,.
Hence, (11) results in
A0 Ay — Q(p + ) + (4,QBy + C;Dy)(v’I — B; OBy — D;Dy) ™
X (B;QAy+ D, Cy)+ C;C, < 0. (12)

Now notice that (9) implies
BiQB, —~2I < 0.
From the Schur complement formula, this is equivalent to
-1 B

Q a2

B, ~U
Note the relation in (10) and using the Schur complement formula
again, we get

-2n-1 B
70 7 S0,
By  I—~72D;Dy
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SO
v — D; D, — B; 0By, > 0. (13)

Hence, applying again the Schur complement formula we obtain from
(12) and (13)

4,04, = 0(p+q) + C;Ch 0BG | "
By QA + D;Cy B; OBy + D;Dy — v '
Multiplying by [x;(k) w;(k)] and its adjoint from left and right,
respectively, we obtain

xp(k 4+ DQ(p(k))xa(k + 1) — x4(K)Q( plk — 1))x(k)
+ 23 (K)za (k) — 5 2wj (k)wa(k) < 0.

Now, take the summation from k=0 to k = oo, and since system (7) is
SDPDQ) stable, that is limy_,., x4(k) =0, we obtain

2 2
lzaly < 2[lwallz

i.e., the energy-to-energy gain of the system is less than .

If the assumptions of Theorem 4 are satisfied, we will say that the
LPV sampled-data system is SDPDQ stable and has energy-to-energy
gain less than ~.

Remark 5 The condition D;Dj, — ~2I < 0 can be checked by matrix
computation [5], and if it is true, the expressions in (10) are well
defined. Cy(-), By(:), D;(-) are operators but their compositions in the
right-hand side of (10) are matrix valued for fixed p. Then, B,(-) and
C4(-) can be obtained by a matrix factorization, for example, the
Cholesky factorization. By gridding the parameter space R, the condi-
tion (9) can be tested via a finite dimensional LMI optimization.

COROLLARY 6 Consider the input—output LPV system in (7) with
p € F3, and its lifted representation (8) with DDy, — 21 < 0. Then (7) is
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SDPDQ stable and has energy-to-energy gain less than -y if there exists
an affine matrix function Q(p) = Qo + Y., piQi > 0, such that for all
PER

44(p)Q(p)4a(p) — O(p) A(p)Q(p)Balp)
=D £(nQi) + Cyp)Cu(p) <0.
Bi(p)Q(p)4a(p) BY(p)Q(p)Ba(p) — 71

4 LPV SAMPLED-DATA ENERGY-TO-ENERGY
GAIN CONTROL DESIGN

Consider the system (2), which has the same energy-to-energy gain as
the system (1). We assume that y,(k) = x,(k), that is, the states are
available at the sampling times for feedback. The LPV sampled-data
energy-to-energy control synthesis problem is to design a parameter
varying controller K( p) with a lifted representation

(k) = F(p(k))xn(k) (15)

to render the closed-loop system SDPDQ stable and to guarantee an
energy-to-energy gain less than a given bound +. The sampled-data
state-space synthesis problem can be converted to a discrete-time
state-feedback LPV synthesis problem using the following result.

LEMMA 7 Suppose D}, Dpy — v2I < 0. The state-feedback gain F(p)
in (15) makes the sampled-data system (2) SDPDQ stable with energy-
to-energy gain less than v if and only if the same state-feedback gain
F(p) makes the following discrete-time system (16) PDQ stable with
energy-to-energy gain less than ~

xa(k +1) = Aa(p(k),v)xa(k) + Ba(p(k), v)wa(k) + Bar(p(k), v)ua(k)

za(k) = Car(p(k),v)xa(k) + Dar2( p(k), v)ua(k)
(16)
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with state-space matrices satisfying

Ad(p) = An(p) + Bu(p)Djy (P)(v*I = D1 (p) Dy ()~ Ci(p)
Ba(p) = Bia(p) + Bu(p) Dy (p)(v* T — Dini(p)
x Djy1(p))” Duna(p)
Ba(p)Bjy(p) = v*Bu(p)(v*1 = D1y (P) D1 (p)) ™' By (p)

Ca(p) Ca(p) ],
Dy (p) | [ Do (p)
Ca(p ], | CGalp) }
= I-D D
v Dilz(P)J (v w1(P) D11 (p)) D (p)
(17)
and the state-feedback controller is
ua(k) = F(p(k))xa(k). (18)

Proof The closed loop system for the plant (2) and the control (15) is

xn(k + 1) = (An(p(k)) + Bia(p(k))F(p(k)))xn(k) + Bu (p(k))wa(k)
zn(k) = (Cn (p(K))+ D2 (p(k))F(p(K)))xn(k)+ Dii (p(K)) wa (k).

On the other hand, the closed loop system for the plant (16) and the
control (18) is

xa(k +1) = (44a(p(k)) + Baa(p(k))F(p(k)))xa(k) + Bai (p(k))wa(k)
za(k) = (Ca(p(k)) + Daz(p(k))F(p(k)))xa(k).

By Theorem 4 the energy-to-energy gain of the two systems is less than
~ noting that (17) implies that (10) holds for the two closed loop
systems.

For simplicity, we assume that D4 ,(p) has full column rank for all
p € R. Then the system can be expressed in a form where

D 0
2=
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The following result provides the synthesis conditions for the energy-
to-energy gain sample-data LPV control problem.

THEOREM 8 Suppose Dj, Dy —~*1 <0. The state-feedback gain
F(p) in (15) makes the system (2) SDPDQ stable with energy-to-energy
gain less than vy if and only if there exists a matrix function S(p) >0,
such that forallp e R,p+q € R, |q| <v,i=1,2,...,s

~S(p+4) S(p+a)(44(p) S(p+9)Cluy (p)]
- Cc'uz(P)Bt;l(P))
(4a(p) — Ba(p)Car2(p))S(p+q) —S(P)+7*Ba(p)By(p) 0 <0
— Bax(p) By (p)
Ca(p)S(p+q) 0 -1 ]
(19)
—S(p) +~ *Ba(p)Bjy(p) < 0. (20)

In this case, the state-feedback gain is

F(p) = ~[[+ Byp(p)(S(p) = v *Bar(p) Biy (p)) " Bao(p)]™
x [Bip(P)(S(p) =7 *Bar(p) By (p) ™ 4a(p) + Caiz(p)]. (21)
Proof First we proof the necessity part. From Lemma 7, we only

need to investigate the discrete-time LPV system (16) instead of the
sampled-data system (2). The closed loop system of (16) and (18) is

xd(k + 1) = Afxd(k) + Bawga(k)

(22)
za(k) = Crxa(k)

where

Af = Agz+ BpF
Cr=Ca + DapF.
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From Theorem 4, we know that the system (22) is SDPDQ stable and
has energy-to-energy gain less than ~ if and only if there exists a
bounded continuous matrix function Q(p) >0, such that

[A}QAf“Q(P“*“I)"‘Cf'Cf A; 0By

, . 5 ] < 0. (23)
B, 04y B, OBa — 71

Let S(p)=0"'(p), and S(p)>0 is bounded continuous as Q(p) is.
Then (23) can be rewritten as

~S(p+q)+C}C 0 4
[ (p+4)+C/Cr }+[ T s, Bal<0. (29)

0 —~2 B,

Applying the Schur complement formula, this is equivalent to

-Sp+q O 4 C

0 —~2] B 0

7 dl <0.
Ay Ba -S 0
Cy 0 0 -1

Pre- and post-multiplying this inequality by S(p + ¢) in first row and
column, we obtain

-S(p+q) 0 Sr+qd, S(p+4q)Cy
+S(p+q)F'B), +S(p+q)F Dy,

0 —y2I B, 0
A4S(p+4q) By -8 0 <0.
+ BnFS(p+q)
CaS(p+q) 0 0 -1

L + D2 FS(p+9q)



LPV SAMPLED-DATA SYSTEMS 159

From the Schur complement formula, this is equivalent to

-S(p+4q) S(p+q)4; S(p+4q)Cy ]
+S(p+4q)F'By, + S(p+q)F' Dy,
AsS(p+q) —S+~"2BaB), 0

<0.
+ BpFS(p+q)

CaS(p+4q) 0 -1
+Da2FS(p+q)

We write it in a basic LMI form
VEW + W'F'V' +0 <0 (25)
where
-S(p+9q) Sp+a9A;  S(p+q9)Cy

0= 4sS(p+q) —-S+7*BaBj 0
CaS(p+q) 0 -1

V=[0 Bj Dj,], W=[S(p+q) 0 0]

Notice that

0

I

0
~Bj

1 0

1
vt = 0 [de} = , Wt=

S ~N O
~N © O

D

S O O~
S ~N © O

The solvability conditions for the basic LMI (25) are [13]
Vv <o
WLew <0

which are exactly (19) and (20).

Now we prove the sufficiency part. We seek to prove that the state-
feedback gain (21) guarantees that (23) holds for 0 =S~' under con-
ditions (19) and (20).



160 K. TAN AND K.M. GRIGORIADIS

It is true that (20) is equivalent to
By S™'By — I <0.

Using the Schur complementary formula, (35) holds if we can prove
that M <0 where

My =-S(p+q) " + ClyyCait + (Clys + F)(Cara + F)
— (Ay+ F'Bp)(—S + 7_2BdlB,’11)_1(Ad + BpF).

By solving

dM _
FFTI =2Cq2 + 2F + 2B, (S — v 2By B}y) " (A4 + BinF) =0

we get (21). To prove that M; <0 for such F, using the Schur compli-
mentary formula for (19), we obtain

M,=-S(p+q) '+ CionnCan — (4 — Cip,Blp)
x (=S +7"2BaBj — BuBjp)™ (42— BunCarz2) < 0

It can be checked that M| = M, for F given by (21). Let

M=M —M,
= (A~ ClpyB1p)(S — v 2BaB)y + BoBlp) ™ (4a — BoCarz)
+ ChiaCain + AY(S — v 2BaB)y) ' Ay
— (Ay(S =7 ?BaBly) "' B+ Clpy)
x (I+ Bpp(S =~y *BaiBj) ' Ba)™
X (Blp(S =y 2BaBly) ' Aa+ Cipy)-

M =0 can be verified by checking that the coefficients for the terms
ChiaCaz, AyAa, ChpAain M all equal 0. For example

Mo = Cill = (S =7y 2BaB)y + BBlp)™'

— (I+ Bjy(S =7 BaB)y) ' Bn) ' |Cyy
=0
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since

(I+ Bj,(S - ’7_2BdlBa,u)_le2)_1 =I—(S—~y2ByBj + BdZBéz)—l-

Remark 9 The state-feedback gain (21) is same as the static state
feedback law in [14] (where a minus sign is missing) by letting S= P,
where P is the solution of an algebraic Riccati equation in [14].

COROLLARY 10  Suppose D}y Dy — v21I < 0. The state-feedback gain
F(p) in (15) makes the system (2) SDPDQ stable with energy-to-energy
gain less than ~y if there exists an affine matrix function S(p) = So+
Y1 piSi > 0, such that for allp € R

~S(r) = 32 +(08) (S(p) +3 i(v,-S,-)) (4(p) (s< N+Y i(v,-Sf))
i= i=1 i=1

—Ci2(P)By () x Cgi1(p)
(Aa(p) — Ba(p)Car2(p)) —S(p) + 7 2Bar(p)By (P) 0

X (S(P) + ZY i(v,S,—)) —Ba2(P) By (p)
=1

<0

(=]

-1

Can(p) (S(!J) + i :l:(v,-S,))

~S(p) +772Ba(p)By(p) <O.

In this case, the state-feedback gain is given by (21).

5 LPV SAMPLED-DATA ENERGY-TO-PEAK GAIN PROBLEM

Now we consider the energy-to-peak gain problem for the following
LPV system

(26)

with p € F},. Note that the system (26) has no feedthrough term,
otherwise this system will not have a finite energy-to-peak gain.
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Since the lifting operator also preserves the peak norm, the system (26)
can be lifted to

xp(k 4 1) = An(p(k))xn(k) + Bi(p(k))wa(k)

(27)
zn(k) = Cu(p(k))xn(k) + Du(p(k))wn(k).
Note that D, is nonzero even though there is no feedthrough term in
the system (26).

THEOREM 11  Consider the input—output LPV system (26) withp € Fy
and its lifted form (27). The system (26) is SDPDQ stable and has an
energy-to-peak gain less than or equal to vy if there exists a bounded
continuous matrix function Q(p) > 0 such that

Aa(p)O(p)A,(p) — Q(p + q) + Ba(p)By(p) <0 (28)
Car(P)Q(P)Cir(p) =71 <0 (29)

forte[0,M(p),pER,p+qgER, |q|<v,i=12,...,s, where A;(p),
By(p), Cap, ) are matrix valued function satisfying

Aa(p) = An(p)
Bu(p)By(p) = Bu(p)B;(p) (30)
C(P)Car(p) =7 2C1(p)(v*I - D, (p)Di(p)) ' C:(p)

and C(-), D.(-) have the same definitions as Cy(-), D;(-) by substituting h
with T.

Proof The assumption Q(p)>0 and (28) guarantee that the system
(26) is SDPDQ stable from the Theorem 1. We now consider the
system (27) for its energy-to-peak gain since it is the same as the system
(26). From the Schur complement formula and (30), condition (28) is
equivalent to

-1 0 A
lQO I}—{BE}Q‘I(pﬂLq)[Ah B;] > 0. (31)
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Let wy, be any signal having finite energy, and x;, be the solution of (27).
Then, multiply [x;(k) wj(k)] and its adjoint from left and right
respectively to (31) to obtain

x4 ()0~ (p(k))xn(k) + wi (k) wa (k)
—xj(k+1)Q7 (p(k + 1))xu(k + 1) < 0.

Taking summation from k=0to k=n— 1, we have
n—1
X (mQ (mxn(m) <Y [wa(k)3-
k=0
Using the Schur compliment formula again, this is equivalent to
Z s x4 |
xn(n) Q(n)

which implies

or equivalently
ZHWh I3 + [[wr (m)13 z'(hn+7)
2(hn +7) C,(M)Q(n)C; (n) + D (n)D;(n)

Using the Schur compliment formula and noting that (29) implies

V1> C,(m)Q(n)C (n) + Dy (n)D3(n)
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we have that
llz(hn + T)|| < ~[Iw[0, An + 7|,

holds for 7 €[0, ) and for all n, which means that the energy-to-peak
gain is less than or equal to .

If the assumptions of Theorem 11 are satisfied, we will say that the
LPV sampled-data system is SDPDQ stable and has energy-to-peak
gain less than .

COROLLARY 12 Consider the input—output LPV system (26) with p €
F}, and its lifted form (27). The system (26) is SDPDQ stable and has
an energy-to-peak gain less than or equal to v if there exists an affine
matrix function Q(p) = Qo + Y., piQi > 0 such that for all T € [0, h( p)),
PER

Ad(P)O(P)A4(p) — Q(p) — S £(1Q) + Ba(p)B)(p) < 0

i=1

C,(p)Q(p)Ch(p) — Y2 <.

Next we consider the energy-to-peak gain sampled-data state-
feedback control synthesis. We assume that Dy, in the system (1) is
zero. The controller is assumed to have the state-feedback parameter-
varying form (15).

THEOREM 13 Suppose D D11 —v*1 < 0. The state-feedback gain
F(p) in (15) makes the system (1) SDPDQ stable with energy-to-energy
gain less than ~ if and only if there exists a matrix function F(p) and a
bounded continuous matrix function Q(p) > 0 such that

l—Q(er q) + Ba(p)By(p) Aa(p)Q(p)+ Bar(p) ~(p)} <0 ()
Q(p)A44(p) + F (p)Bly(p) -0(p)

l —~2I Car(P)Q(P) + Dar2( p)F(p) o
O(p)Clyy(p) + F (p)Dlyy1y(p) ~0(p)

(33)
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for T€[0,h), peR, p+q€ER, |q|<vi, i=1,2,...,5, where A4(p),
Baui(p), Bar(p), Cari(p), Dar12(p) are matrix valued function satisfying
A4(p) = An(p)
Ba(p)By (p) = Bu(p)Bj(p)
Bar(p) = Biz(p)

!

{C&ﬂ(p,v) Cii(P7) (34)
D;i‘rlZ(p”Y) Dzi'rlZ(p’ '7)
. C;‘l(p)} D (oD _1[ cx(p) ]
Dol ) T PP )

and C1(-), D11(:), D12(-) have the same definitions as Cpi(-), Dp11(5),
Dy15() by substituting h v~vith 7. If the conditions are satisfied, the state-
feedback gainis F(p) = F(p)0(p)~".

Proof The closed loop system for the plant (2) and the control (15) is
xn(k +1) = (4r(p(k)) + Bia(p(k))F(p(k)))xn(k) + B (p(k))wn(k)
zi(k) = (Cn(p(k)) + Diz(p(k))F(p(k)))xn(k)+ Dii (p(k))wa (k).

From Theorem 11, the closed loop system is SDPDQ stable and has
energy-to-peak gain less or equal to « if and only if there exists a
bounded continuous matrix function Q(p) > 0 such that

(Aa+ BoF)Q(Aq+ BoF) — Q(p+4q) + BaBjy <0 (35)

(Cart + Dar2F)Q(p)(Cart + Dari2aF) —¥*1 <0 (36)

where Ay, By, Bar, Car1, Dar1o are defined in (34). Using the Schur
compliment formula, (35) and (36) can be written as

[—Q(P+q)+BdlB§1 (Ad+Bd2F)Q} “0

Q(p)(Aa+ BarF) -0
-2 (Car1 + Dgr12F)Q
< 0.
Q(C41 + Dgr12F)' -0

Then (32) and (33) are obvious by letting F = FQ.
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COROLLARY 14 Suppose D*;; D11 — v < 0. The state-feedback gain
F(p) in (15) makes the system (1) SDPDQ stable with energy-to-energy
gain less than ~y if there exists a matrix function F(p) and an affine
matrix function Q(p) = Qo + >_i, piQi > 0 such that

—Q(p) =Y *+(1Q)  Au(p)Q(p) + Bar(p)F(p)
i=1

+ Ba(p) By (p) <0
O(p)AY(p) + F'(p)B)y(p) ~0(p)
-2 Cart(P)Q(P) + Darta( p)E(p) -0
Q(p)Chy(p) + F'(p) Dy 15(p) -0(p)

for all T €[0, h), p € R. If the conditions are satisfied, the state-feedback

gain is F(p) = F(p)Q(p)~".

6 NUMERICAL EXAMPLE
Consider the problem of designing a sampled-data controller to

control the following plant

25in(0.27) 1.1 + sin(0.2¢)
x(2) = x(t) +

—2.2+sin(0.27) —3.3 +sin(0.2¢)

+

2sin(0.217)
ul(t
0.1 + sin(0.2¢)

0 1 0
x(t)—i—[ ]u(t).

2(t) =

00 1

We assume that the sine term in the above model corresponds to a
plant parameter whose functional representation is not known a priori,
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but it can be measured in real-time. Hence, we define p(f) = sin(0.2¢),
and the original system is formulated as an LPV system as follows

2p(t) 1.1+ p(1) 0.2
x(1) = [ ]x(t) + [ }w(r)
—224p(t) =33+ p(1) 0.2

2p(1) }
+ u(1)
0.1+ p(2)
0 1 0
z(f) = x(t) + }u(z)
0 0 1

The parameter p(f) €[—1, 1]. The sampling period /4 will be chosen to
be a constant #=0.5 for the proposed sampled-data scheme. Since
| p(2)] < 0.2, p(¢) does not change significantly within one sampling
period. We use Corollary 10 to design a sampled-data parameter-
varying controller such that the closed-loop system is SDPDQ stable
and has an energy-to-energy gain less than a criteria v=0.25. For
simplicity, we grid the parameter space using a 10 point grid. Solving
the LMIs in Corollary 10, we get

2.0656 —0.5938

S=1_05938 27369

Given a unit rectangular disturbance w(z) = 1 (¢ € [0, 5]), we simulate the
closed-loop system behavior. The output z(¢) is shown in Fig. 3.

For comparison, we also consider a conventional approach to design
a continuous-time LPV controller for the continuous-time plant, then
discretize the controller. For the same energy-to-energy criteria =
0.25, we design a continuous-time LPV controller. The response is
shown in Fig. 4. Then, we discretize the controller for several sampling
periods: h=0.2, 0.25, 0.3. The response for the cases where #=0.2 and
0.25 are shown in Figs. 5 and 6. Notice that, when /4 > 0.3, the response
diverges. The above comparison shows the advantage of the proposed
sample-data LPV control design scheme.
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FIGURE 4 Continuous LPV controller.

7 CONCLUSION

In this work, the analysis and state-feedback synthesis problems for
linear parameter-varying sampled-data systems have been examined.
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o0 1 2 3 4 5 6 7 8 9 10

FIGURE 6 Discretized controller with 2=0.25.

It is assumed that the system matrices and the sampling interval depend
on system parameters that are measurable in real-time. The stabiliza-
tion, energy-to-energy gain and energy-to-peak gain problems are con-
sidered. Using a lifting approach the analysis and synthesis problems
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are formulated as standard analysis and synthesis problems for an
LPV discrete-time lifted system. The use of parameter-dependent
Lyapunov functions provides LMI-based analysis and synthesis condi-
tions that can be solved using efficient interior-point algorithms. The
resulting discrete-time state-feedback controllers are scheduled based
on the real-time measurement of the parameters. A numerical example
demonstrates the advantage of the proposed approach compared to
the traditional continuous-time design along with discretization.
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