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To understand the influence of an inserted endoscope and magnetohydrodynamic (MHD)
power-law fluid on peristaltic motion, an attempt has been made for flow through tubes.
The magnetic field of uniform strength is applied in the transverse direction to the flow.
The analysis has been performed under long wavelength at low-Reynolds number as-
sumption. The velocity fields and axial pressure gradient have been evaluated analytically.
Numerical results are also presented and discussed.
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1. Introduction

In the functioning of ureters, intestines, esophagus, and in medical instruments such as
the heart-lung machine, fluid is transported by a unique process; a series of contractions
of the wall propagates along the length of the tube causing fluid to be transported in the
direction of the wave. This is called peristaltic pumping. The problem of peristaltic trans-
port in two-dimensional channels and in axisymmetric tubes has received considerable
attentioin. Several investigators [2, 3, 6, 9, 13, 14, 20, 24, 26, 28, 31–33, 35, 36, 38, 39] re-
ported the studies of peristaltic hydrodynamic flows of Newtonian and non-Newtonian
fluids.

Biomagnetic fluid dynamics is a relatively new area that deals with the fluid dynamics
of magnetohydrodynamic biological fluids. During the last decades, extensive literature is
available on the MHD flows of biological fluids. Such flows have numerous applications
in bioengineering and medical sciences. Specifically, magnetic wound or cancer tumor
treatment causing magnetic hyperthermia, bleeding reduction during surgeries, and tar-
geted transport of drugs using magnetic particles as drug carriers are few such examples.
In fact, a biomegnetic fluid exists in a living creature and its flow is effected through
a magnetic field. Blood is a biomagnetic fluid. It behaves as a magnetic fluid, due to the
complex interaction of the intercellular protein, cell membrane, and the hemoglobin. It is
also known that blood possesses the property of diamagnetic material when oxygenated
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and paramagnetic when deoxygenated. Only few studies [1, 37, 40] deal with the peri-
staltic transport of magnetohydrodynamic flows. In the studies [19, 23, 30], the blood is
effected by a magnetic field under physiological conditions. More recently, Misery et al.
[21] and Hakeem et al. [8] discussed the effects of an endoscope on the peristaltic mo-
tion involving hydrodynamic Newtonian and generalized Newtonian fluids, respectively.
To make the mathematical problem tractable, the above-mentioned studies are examined
under one or more simplifying assumptions. Note that the endoscopes are either semi-
rigid or completely rigid tubes that can only be inserted with the exertion of considerable
force by a physician. As a consequence, they are liable to damage the internal vessels of
the body and may induce patient discomfort during insertion. Even catheters, which are
more flexible, can do damage when pushed into the different vessels and lumens of the
body [4, 5, 7, 41]. Recently, there have been several attempts to use biological inspiration
as the basis for novel endoscopes. Keeping in view the flexible movements of snakes, Hi-
rose [12] has studied the endoscopes that can bend in response to the activation of shape
memory alloy wires.

It is the purpose of the present investigation to see the effects of an endoscope on the
magnetohydrodynamic flow of a power-law fluid. It is a well-accepted fact that blood, in
a homogenized sense, can be modeled as a power-law fluid while flowing in large blood
vessels (see [15] and several references therein). Although the power-law model is known
widely, yet it does not exhibit significant normal stress differences. The viscosity however
depends strongly on the rate of shear. It is worth remarking that for shear-thinning fluids,
the zero-shear rate viscosity blows up. In the case of a shear-thickening fluids, their gen-
eralized velocities tend to zero as the shear rate goes to zero. For detailed discussion of the
various forms of generalized viscosities, we refer the reader to the paper by Málek et al.
[17]. This study deals with issues concerning mathematical results, especially concerning
the existence, uniqueness, and stability of flows of fluids that can shear-thicken or shear-
thin. A discussion on issues concerning non-Newtonian fluids, the behavior of various
types of power-law fluids, and more general fluids of complexity one can be found in the
survey article by Rajagopal [25]. The results concerning the stability and uniqueness of
flows of fluids of complexity n, and hence complexity one, are described in great length.
Moreover, rigorous mathematical results have been established for fluid that can shear-
thin or shear-thicken in the book of Málek et al. [16]. The reader may consult this book
for relevant details of definitions of weak solution, derivation of several inequalities, the
limiting processes, and so forth.

From fluid dynamics point of view, there is no difference between an endoscope and
catheter, but from physiological point of view we cannot use a catheter for small intes-
tine. The assumption for the present analysis is that the wavelength of the peristaltic wave
is large compared with the radius of the outer tube. This assumption is similar to those
used in the references [10, 11, 18, 22, 27, 29, 30, 32, 34, 36]. The solution to the govern-
ing nonlinear problem is given. The results for pressure rise and frictional forces on the
inner and outer tubes have been computed numerically. Comparison is made between
the results for hydrodynamic fluid and the magnetohydrodynamic fluid. The difference
between the results of Newtonian and power-law fluid is noted. Finally, the results of an
endoscope on the flow are also discussed.
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2. Position of the problem

We consider the MHD flow of a power-law fluid through coaxial uniform tubes. The
inner tube is rigid while the outer tube has a sinusoidal wave travelling down its wall.
We choose cylindrical coordinates (R,Z) such that Z-axis is along the centerline of the
inner and outer tubes and R is the distance measured radially. The conducting fluid is
permeated by an imposed uniform magnetic field B0 which acts in the transverse direc-
tion. In the low-magnetic-Reynolds number case, in which the induced magnetic field
can be ignored, the magnetic body force J×B0 becomes σ(V×B0)×B0 when imposed,
induced electric fields are negligible, and only the magnetic field B0 contributes to the
current J = σ(V×B0). Here, V is the velocity and σ is the electrical conductivity of the
fluid, which has density ρ and dynamic viscosity μ.

The motion of an incompressible MHD flow is described through the following equa-
tions:
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(2.1)

In the above equations, t is the time, p is the pressure, U and W are radial and axial ve-
locities, respectively, in the fixed frame, and for a power-law fluid, the extra-stress tensor
S is [12]

S= μ
[

tr
(

A
2
1

)]m
A1, (2.2)

where tr is the trace, m is the power-law exponent, and the first kinematical tensor A1 is

A1 =
(∇V

)
+
(∇V

)∗
, (2.3)

in which (∗) is the matrix transpose. It should be noted that for m= 0, we get the results
for Newtonian fluids, while for m< 0 (m> 0) corresponds to the results of shear-thinning
(shear-thickening) fluids.

The geometries of the wall surfaces are

r1 = a1, (2.4)

r2 = a2 + b sin
2π
λ

(
Z− ct

)
, (2.5)

where a1 is the radius of the inner tube, a2 is the radius of the outer tube at the inlet, c is
the wave speed, b is the wave amplitude, and λ is the wavelength.

In the fixed coordinate system (R,Z), the motion is unsteady because of the moving
boundary. However, if observed in a coordinate system (r,z) moving at the speed c, it can
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be treated as steady because the boundary shape appears to be stationary. The relationship
between the two coordinate frames is given by

z = Z− ct, r = R,

w(r,z)=W(R,Z− ct)− c, u
(
r,z
)=U

(
R,Z− ct

)
,

(2.6)

in which u and w are the radial and axial velocities in the moving frame.
The boundary conditions in the moving frame are

w =−c at r = r1, r = r2, u= 0 at r = r1. (2.7)

Using relationship (2.6) introducing the following nondimensional variables and param-
eters
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λ
,
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(2.8)

(2.1) and boundary conditions (2.7) become

Re δ3
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1
r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.11)

w =−1 at r = r1 = ε, r = r2 = 1 +φ sin2πz, (2.12)

u= 0 at r = r1. (2.13)

In the above equations, δ is the wave number, φ is the amplitude ratio, Re is the general-
ized Reynolds number, M is the generalized Hartmann number, and

Srr = 2δ
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For long-wavelength analysis, (2.9), (2.10), and (2.14)–(2.17) give

−∂p

∂r
= 0, (2.18)

∂p

∂z
= 1

r

∂

∂r

[
r
(
∂w

∂r

)2m+1
]
−M2(w+ 1). (2.19)

Equation (2.18) indicates that p is not a function of r. Hence, p is only a function of z.
The expressions for flow rate (F), pressure rise (ΔPλ) and frictional forces on inner

(F(i)
λ ) and outer (F(0)

λ ) tubes in nondimensional variables are [19, 21]

F =
∫ rz

r1

wrdr, (2.20)

ΔPλ =
∫ 1

0

(
dp

dz

)
dz, (2.21)

F(i)
λ =

∫ 1

0
r2

1

(
− dp
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)
dz, (2.22)

F(0)
λ =

∫ 1

0
r2

2

(
− dp

dz

)
dz. (2.23)

3. Analytical and numerical solutions

In this section, we consider analytical solutions for the case, m = 0. For this particular
case we are able to determine the pressure gradient dp/dz in terms of the flow rate F. We
use this result for dp/dz in the numerical solution for the case m �= 0. This allows us to
determine the effect of m on the fluid velocities. Choosing m= 0, (2.19) reduces to

∂2w

∂r2
+

1
r

∂w

∂r
−M2(w+ 1)−G(z)= 0, (3.1)

where G(z)= dp/dz. Solving (3.1) subject to the boundary conditions (2.12), we obtain
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)
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)
+ I0(εM)K0
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(
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)
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(
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+
((− I0(Mr) + I0

(
Mr2(z)

))
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+
(
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(
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+
(− I0(εM) + I0(Mr)

)
K0
(
Mr2(z)

))
G(z)

}
,

(3.2)
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where I0 is the modified Bessel function of the first kind of order 0, K0 is the modified
Bessel function of the second kind of order 0. Substituting (3.2) into (2.11) and solving
subject to (2.13), we find that

u(r,z)=
[

2M4r
(
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(
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We can determine the pressure gradient in terms of the flow rate by substituting (3.2)
into (2.20) and solving for G(z). We find that

G(z)= dp

dz
= [4 + ε2M2(I2(εM)K0

(
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(3.4)

When we take both m= 0 and M = 0, then (2.19) reduces to

∂2w

∂r2
+

1
r

∂w

∂r
−G(z)= 0. (3.5)

We determine the velocity components and pressure gradient in the same way as indi-
cated above and get

w(r,z)= [4( log(ε)− log
(
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))]−1

× {− 4log(ε) + 4log
(
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)
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(
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(
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)

− r2 log
(
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)
+
(− log(ε) + log(r)

)
r2(z)2)},

(3.6)
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u(r,z)= [16r
(

log(ε)− log
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r2(z)

× ((− ε4− r4) log(ε)

+ ε2(ε2− r2 + 2r2 log(r)
)

+
(
ε2− r2)2

log
(
r2(z)

)

+
(− ε2 + r2 + 2r2( log(ε)− log(r)
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(3.7)

G(z)= dp

dz
= [ε4(− 1 + log(ε)− log

(
r2(z)
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+ 2ε2r2(z)2 +
(− 1− log(ε) + log

(
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r2(z)4]−1

× {− 8
(

log(ε)− log
(
r2(z)

))(
ε2− 2F − r2(z)2)}.

(3.8)

For the case m �= 0, we try to solve (3.1) subject to the boundary conditions (2.12) nu-
merically. The partial differential equation (3.1) can be written as

∂2w

∂r2
= M2r + rG(z) +M2rw− (∂w/∂r)2m+1

(2m+ 1)r(∂w/∂r)2m
. (3.9)

When m = 0 the denominator of (3.9) is just r. Since the domain of the problem is r ∈
[ε,r2(z)], this does not present a problem when solving (3.9) for the case m= 0 subject
to (2.12). For m �= 0 as

(
∂w

∂r

)2m

−→ 0, (3.10)

the partial differential equation becomes singular. As m increases, (3.9) becomes singular
much faster. This singular nature of the partial differential equation makes it difficult
to fit the boundary conditions (2.12) when trying to determine a numerical solution of
(2.19) for arbitrary m.

Instead, we consider an approximate solution of the form

w =w0 +mw1, m� 1. (3.11)

Substituting (3.11) into (2.19), taking dp/dz = G(z), and separating to leading order in
m, we obtain (3.2) and

∂2w1

∂r2
+

1
r

∂w1

∂r
−M2w1 + 2

∂2w0

∂r2

(
1 + log

(
∂w0

∂r

))
+

2
r

∂w0

∂r
log
(
∂w0

∂r

)
= 0. (3.12)



8 Endoscope effects on MHD peristaltic flow

0.42

0.4

0.38

0.36

0.34

0.32

ε

1

0.8
0.6

0.4
0.2

0

z

0
200

400

600
d
p/
d
z

(a)

0.42

0.4

0.38

0.36

0.34

0.32

ε

1

0.8
0.6

0.4
0.2

0

z

500

1000

1500

d
p/
d
z

(b)

Figure 4.1. Plot showing the effects of changing ε on the pressure gradient dp/dz for (a) M = 0 (b)
M = 10.

Equation (3.12) is solved numerically subject to the boundary conditions

w1(ε)= 0, w1
(
r2(z)

)= 0. (3.13)

When solving (3.12) numerically for the case M �= 0, G(z) is given by (3.4) and w0 is given
by (3.2). For the case M = 0, G(z) is given by (3.8) and w0 is given by (3.6).

4. Discussion

In Figures 4.1, 4.2, and 4.3, we plot the effect of changing ε, flow rate, and amplitude
ratio φ on the pressure gradient dp/dz for generalized Hartmann numbers M = 0 and
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Figure 4.2. Plot showing the effects of changing flow rate F on the pressure gradient dp/dz for (a)
M = 0 (b) M = 10.

M = 10. We observe that the pressure gradient increases with increasing ε, flow rate F,
and amplitude ratio φ. The increase in generalized Hartmann number also causes an
increase in the pressure gradient.

The effects of changing ε, flow rate and amplitude ratio φ on the pressure rise ΔPλ,

inner frictional force F(i)
λ and outer frictional force F(o)

λ are plotted in Figures 4.4, 4.5 and
4.6. Here we observe that increasing generalized Hartmann number increases the magni-
tude of the pressure rise, inner, and outer frictional forces. The pressure rise increases and
the frictional forces decrease with the increase in the values of ε, flow rate, and amplitude
ratio.
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Figure 4.3. Plot showing the effects of changing amplitude ratio φ on the pressure gradient dp/dz for
(a) M = 0 (b) M = 10.

The effects of increasing generalized Hartmann number on the velocities w and u are
plotted in Figure 4.7. We note that the increase in generalized Hartmann number reduces
the magnitude of the velocity w while increasing the velocity of u. In both cases, the non-
linearity of the velocity profiles is amplified by increasing generalized Hartmann number.

In Figure 4.8, we plot the numerical solution of (3.12) for M = 0 and M = 10. We note
that increasing the generalized Hartmann number reduces the amplitude of w1. The ve-
locity w = w0 +mw1 is plotted in Figure 4.9 for M = 0 and M = 5. We observe that in
both cases M = 0 and M = 5, increasing m causes a decrease in the magnitude of the ve-
locity. In Figure 4.10 we plot the numerical solution of (2.11) subject to (2.13), where we
have taken w = w0 +mw1 and evaluated the derivative ∂w/∂z using a forward-difference
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Figure 4.4. Plot of the pressure rise Δpλ showing the effects of changing ε, flow rate F, and amplitude
ratio φ for M = 0, M = 5, and M = 10. (a) F = −2, φ = 0.2, (b) ε = 0.32, φ = 0.2, and (c) F = −2,
ε = 0.32.
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Figure 4.6. Plot of the frictional force on the outer tube F(o)
λ showing the effects of changing ε, flow

rate F, and amplitude ratio φ forM = 0,M = 5, andM = 10. (a) F =−2, φ= 0.2, (b) ε = 0.32, φ= 0.2,
and (c) F =−2, ε = 0.32.
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Figure 4.7. Plot of the velocities w(r,z) and u(r,z) for M = 0, M = 5, and M = 10, where F = −2,
φ = 0.2, and ε = 0.32.

scheme w(r,z+h)−w(r,z)/h taking h= 0.001. We observe that increasing m reduces the
magnitude of the velocity.

5. Concluding remarks

In this paper, peristaltic flow of an incompressible power-law fluid has been studied in
the presence of magnetic field. The effects of an endoscope on the flow have been shown.
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Figure 4.8. Plot of the numerical solution of w1(r,z) for (a) M = 0 and (b) M = 5, where F = −2,
φ = 0.2, and ε = 0.32.

The governing nonlinear equation is solved to examine the dependence of the flow on
the power-law exponent in the constitutive model, the applied magnetic field, the flow
rate, the amplitude ratio, and the radius ratio. The comparison between the results of
Newtonian and power-law model has been made. The following conclusions have been
found and summarized as follows.

(a) With the increase of flow rate, amplitude ratio, and radius ratio, the pressure
gradient increases.

(b) The pressure gradient may be increased by increasing generalized Hartmann
number.

(c) The magnitude of velocity may be decreased with increment in power-law expo-
nent.

(d) The pressure rise increases with increasing radius ratio, flow rate, and amplitude
ratio. The behavior of the frictional forces is opposite to that of the pressure rise.
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Figure 4.9. Plot of the velocity w = w0 + mw1 for (a) M = 0, (b) M = 5, where m = 0, m = 0.01,
m= 0.05, F =−2, φ = 0.2, and ε = 0.32.

(e) The increment in the generalized Hartmann number produces large values of u
and small values of w.

(f) The present study seems to be the first attempt in the literature which deals the
MHD non-Newtonian peristaltic flow along with an endoscope. Even, such at-
tempt is not available in the literature for Newtonian fluid. Further aspects and
developments on the problem can be investigated.
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Figure 4.10. Plot of the velocity u for M = 5, where m= 0, m= 0.05, F =−2, φ= 0.2, and ε = 0.32.
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