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The estimation of the Smoothed Conditional Scale Function for time series was taken out under the conditional heteroscedastic
innovations by imitating the kernel smoothing in nonparametric QAR-QARCH scheme.The estimation was taken out based on the
quantile regression methodology proposed by Koenker and Bassett. And the proof of the asymptotic properties of the Conditional
Scale Function estimator for this type of process was given and its consistency was shown.

1. Introduction

Consider a Quantile Autoregressive model,𝑋𝑡 = 𝛼𝜏 (𝑍𝑡) + 𝑢𝑡, 𝑡 = 1, 2, . . . , (1)

where 𝛼𝜏(𝑍𝑡) is the 𝜏th Conditional Quantile Function of 𝑋𝑡
given 𝑍𝑡 and the innovation 𝑢𝑡 is assumed to be independent
and identically distributedwith zero 𝜏th quantile and constant
scale function; see [1]. A kernel estimator of 𝛼𝜏(𝑍𝑡) has been
determined and its consistency is shown [2]. A bootstrap
kernel estimator of 𝛼𝜏(𝑍𝑡) was determined and shown to
be consistent [3]. This research will extend [3] by assuming
that the innovations follow Quantile Autoregressive Con-
ditional Heteroscedastic process similar to Autoregressive-
QuantileAutoregressiveConditionalHeteroscedastic process
proposed in [1]:𝑋𝑡 = 𝛼𝜏 (𝑍𝑡) + 𝜛𝜏 (𝑍𝑡) 𝜀𝑡, 𝑡 = 1, 2, . . . , (2)

where 𝛼𝜏(𝑍𝑡) is the conditional 𝜃-quantile function of 𝑋𝑡
given𝑍𝑡;𝜛𝜏(𝑍𝑡) is a conditional scale function at 𝜏-level, and

𝜀𝑡 is independent and identically distributed (i.i.d.) error with
zero 𝜏-quantile and unit scale. The function 𝜛𝜏(𝑍𝑡) can be
expressed as 𝜛𝜏 (𝑍𝑡) = 𝜆𝜛 (𝑍𝑡) , (3)

where 𝜛(𝑍𝑡) is the so-called volatility found in [4, 5] which
are papers of reference on Engle’s ARCH models among
many others and 𝜆 is a positive constant depending on 𝜏
[see [6]]. An example of this kind of function is Auto-
regressive-Generalized Autoregressive Conditional Hetero-
scedastic AR(1)-GARCH(1,1),𝑋𝑡 = 𝛼𝑡 + 𝜛𝑡𝑒𝑡, 𝑡 = 1, 2, . . . , (4)

where 𝛼𝑡 = 𝜇 + 𝛿𝑋𝑡−1, 𝜛𝑡 = √𝑤 + 𝛼𝑋2𝑡−1 + 𝛽𝜛2𝑡−1, 𝜇 ∈ (−∞,∞), |𝛿| < 1, 𝛽 > 0, 𝛼 > 0, 𝑤 > 0, 𝛼 + 𝛽 < 1, and 𝑒𝑡 ∼
i.i.d. with 0 mean and variance 1. Note that 𝛼𝑡 may also be an
ARMA (see [7]).The specifications for model (4) are given in
Section 4.2.

Hindawi
Journal of Probability and Statistics
Volume 2018, Article ID 4816716, 13 pages
https://doi.org/10.1155/2018/4816716

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194642164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-2233-463X
https://doi.org/10.1155/2018/4816716


2 Journal of Probability and Statistics

Table 1: Description of the most used kernel functions.

Kernel functions Expressions 𝐾(𝑢) 𝑟 𝑅(𝐾) 𝜇2(𝐾) Eff(𝐾)
Gaussian 1√2 exp(−𝑢22 ) 𝐼R ∞ 12√2 1 0.2821

Epanechnikov 34 (1 − 𝑢2) 𝐼{|𝑢|≤1} 2 35 15 0.2683

Uniform 12𝐼{|𝑢|≤1} 0 12 13 0.2887

Triangular (1 − |𝑢|) 𝐼{|𝑢|≤1} 1
Triweight 3532 (1 − 𝑢2)3 𝐼{|𝑢|≤1} 6 23 16 0.2722

Tricube 7081 (1 − 󵄨󵄨󵄨󵄨𝑢3󵄨󵄨󵄨󵄨)3𝐼{|𝑢|≤1} 9 175247 35243 0.2689

Biweight 1516 (1 − 𝑢2)2 𝐼{|𝑢|≤1} 4 57 17 0.2700

Cosine 𝜋4 cos(𝜋2 𝑢) ∞ 𝜋216 −8 + 𝜋2𝜋2 0.2685

Considering other financial time seriesmodels, themodel
(1) can be seen as a robust generalization of AR-ARCH-
models, introduced in [7], and their nonparametric gener-
alizations reviewed by [8]. For instance, consider a financial
time series model of AR(𝑝)-ARCH(𝑝)-type,𝑋𝑡 = 𝛼 (𝑍𝑡) + 𝜛 (𝑍𝑡) 𝑒𝑡, 𝑡 = 1, 2, . . . , (5)

where 𝑍𝑡 = (X𝑡−1, 𝑋𝑡−2, . . . , 𝑋𝑡−𝑝) and 𝛼(⋅) and 𝜛(⋅) are arbi-
trary functions representing, respectively, the conditional
mean and conditional variance of the process.

The focus of this paper is to determine a smoothed
estimator of the conditional scale function (CSF) and its
asymptotic properties.This study is essential since volatility is
inherent in many areas, for example, hydrology, finance, and
weather. The volatility needs to be estimated robustly even
when the moments of distribution do not exist.

A partitioned stationary 𝛼-mixed time series (𝑋𝑡, 𝑍𝑡),
where the 𝑋𝑡 ∈ R and the variate 𝑍𝑡 ∈ R𝑑 are, respectively,
A𝑡-measurable and A𝑡−1-measurable, is considered. For
some 𝜏 ∈ (0, 1), the conditional 𝜏-quantile of 𝑋𝑡 given the
past 𝐹𝑡−1 assumed to be determined by 𝑍𝑡 is estimated. For
simplicity, we assume that𝑍𝑡 = 𝑋𝑡−1 ∈ R throughout the rest
of the discussion.

We derive a smoothed nonparametric estimator of 𝜛𝜏(𝑧)
and show its consistency using standard estimate of Nadaraya
[9]-Watson [10] type. This estimate is obtained from the
estimate of the conditional scale function in [11] which is a
type of estimator that has some disadvantages of not being
adaptive and having some boundary effects but can be fixed
by well-known techniques ([12]). It is though a constrained
estimator in (0, 1) and a monotonically increasing function.
This is very important to our estimation of the conditional
distribution function and its inverse.

2. Methods and Estimations

Let 𝑓(𝑧) and 𝑓(𝑥, 𝑧) denote the probability density function
(pdf) of 𝑋𝑡 and the joint pdf of (𝑋𝑡, 𝑍𝑡). The dependence
between the exogenous 𝑋𝑡 and the endogenous variables is

described by the following conditional probability density
function (CPDF): 𝑓 (𝑥 | 𝑧) = 𝑓 (𝑥, 𝑧)𝑓 (𝑥) (6)

and the conditional cumulative distribution function
(CCDF)𝐹 (𝑥 | 𝑧) = ∫𝑥

−∞
𝑓 (𝑠 | 𝑧) 𝑑𝑠 = 𝑃 (𝑋 ≤ 𝑥 | 𝑍𝑡 = 𝑧)= 𝐸 [𝐼{𝑋𝑡≤𝑥} | 𝑍𝑡 = 𝑧] . (7)

The estimation of the conditional scale function is derived
through the CCDF. However, the following assumptions and
definitions (these assumptions are commonly used for kernel
density estimation (KDE), bias reduction [13], asymptotic
properties, and normality proof) are necessary (see Table 1).

Assumption 1.

(i) 𝑓(𝑥, 𝑧) and 𝑓(𝑧) exist.
(ii) For fixed (𝑥, 𝑧), 0 < 𝐹(𝑥 | 𝑧) < 1 and 𝑓(𝑧) > 0 are

continuous in the neighborhood of 𝑧 where the esti-
mator is to be estimated.

(iii) The derivatives 𝐹(𝑗)(𝑥) = 𝑑𝑗𝐹(𝑥 | 𝑧)/𝑑𝑧𝑗 and 𝑓(𝑗)(𝑧)= 𝑑𝑗𝑓(𝑧)/𝑑𝑧𝑗 for 𝑗 = 1, 2 exist.
(iv) 𝐹(𝑥 | 𝑧) is a convex function in 𝑥 for fixed 𝑧.
(v) The conditional density 𝑓(𝑥 | 𝑧) = 𝑑𝐹(𝑥 | 𝑧)/𝑑𝑥

exists and is continuous in the neighborhood of 𝑥.
(vi) 𝑓(𝜛𝜏(𝑧) | 𝑧) > 0.

Assumption 2. The kernel function𝐾 : R𝑑 → R is

(i) Symmetrical:𝐾(𝑠) = 𝐾(−𝑠) with 𝑠 ∈ R𝑑

(ii) Nonnegative and bounded: for Γ < ∞, 0 < 𝐾(𝑠) ≤ Γ,𝑠 ∈ R𝑑
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(iii) Lipschitz: ∃𝜆 > 0, 𝑚𝑘 < ∞ such that |𝐾(𝑠) − 𝐾(𝑡)| ≤𝑚𝑘|𝑠 − 𝑡𝜆| for all 𝑠, 𝑡 ∈ R𝑑

(iv) A pdf: ∫𝐾(𝑠)𝑑𝑠 = 1 with ∫
R𝑑
𝑠𝐾(𝑠) = 0.

Assumption 3. The process {(𝑋𝑡, 𝑍𝑡), 𝑡 = 1, 2, . . .} is strong
mixing with 𝛼(𝑠) = 𝑜(𝑠−2−𝛿), 𝛿 > 0; see [14, Theorem 1.7].

Assumption 4. The sequence {𝑏𝑛}𝑛∈N of the smoothing
parameters is such that 𝑏𝑛 → 0, 𝑛𝑏𝑝𝑛 → ∞ as 𝑛 → ∞ and𝑏𝑛 > 0.
Definition 5 (strong mixing). Let 𝑋𝑡 = {. . . , 𝑋𝑡−1, 𝑋𝑡, 𝑋𝑡+1,. . .} be a stationary time series endowed with 𝜎-algebrasA𝑡 ={𝑋𝑗, −∞ < 𝑗 ≤ 𝑡} andA𝑡 = {𝑋𝑗, 𝑡 ≤ 𝑗 < ∞}. Define 𝛼(𝑠) as𝛼 (𝑠) = sup

𝐴∈A𝑡,𝐵∈A
𝑡+𝑠

{|𝑃 (𝐴 ∩ 𝐵) − 𝑃 (𝐴) 𝑃 (𝐵)|} . (8)

If 𝛼(𝑠) → 0 as 𝑠 → ∞, then the process is strong mixing.

The results in this section are about the case when the
Autoregressive part of the model (4) 𝛼𝑡,𝜏 = 𝛼𝜏(𝑧) = 0 for
any 𝜏 ∈ (0, 1). We therefore consider the model𝑋𝑡 = 𝜛𝜏 (𝑍𝑡) 𝜀𝑡, 𝑡 = 1, 2, . . . . (9)

Define the check-function as𝛾𝜏 (𝑋, 𝜇) = 𝛾𝜏 (𝑋 − 𝜇) = (𝜏 − 𝐼{𝑋−𝜇≤0}) (𝑋 − 𝜇) . (10)

Here, 𝐼{ } is the indicator function. Therefore, 𝛾𝜏 is a piece-
wisemonotone increasing function. 𝛾𝜏(⋅, ⋅) is a function of any
real random variable 𝑋 with distribution function 𝐹𝑋(𝑥) =𝑃(𝑋 ≤ 𝑥) = 𝐸𝐼{𝑋≤𝑥}, and a real value, 𝜇 ∈ R, is the asym-
metric absolute value function whose amount of asymmetry
depends on 𝜏; see [15]. In case where𝑋𝑡 is symmetric and 𝜏 =1/2, then we have the fact that 2𝛾𝜏(𝑋𝑡, 𝜇) is an absolute value
function and 𝜛0.5(𝑍𝑡) is the conditional median absolute
deviation (CMAD) of 𝑋𝑡. When 𝛼 became 0 in model (5),
we have a purely heteroscedastic ARCHmodel introduced in
[16] and 𝛼𝜏(𝑍𝑡) for 𝜏 > 0.5, which, in this particular case, can
be seen as a conditional scale function at 𝜏-level.

The check-function in (10) is Lipschitz continuous by the
following theorem.

Theorem6. Let 𝛾𝜏 be defined as in (10) and (𝑥, 𝜎) ∈ R2.Then,𝛾𝜏 satisfies the Lipschitz continuity condition:󵄨󵄨󵄨󵄨󵄨𝛾𝜏 (𝑥, 𝜎) − 𝛾𝜏 (𝑥, 𝜎󸀠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀 󵄨󵄨󵄨󵄨󵄨𝜎 − 𝜎󸀠󵄨󵄨󵄨󵄨󵄨 (11)

with the Lipschitz constant𝑀 = 1 and for all 𝜎, 𝜎󸀠.
Proof of Theorem 6. See the proof of Lemma 3.1 in [1, p. 74-
75].

By the next theorem we show clearly why the errors {𝜀𝑡}
in model (2) are assumed to be zero 𝜏-quantile and unit
scale.

Theorem 7. Consider model (5) and the so-called check-func-
tion in (10); then, for 𝜛𝜏(𝑍𝑡) ∈ R∗+,𝜀𝑡 = 𝑋𝑡 − 𝛼𝜏 (𝑍𝑡)𝜛𝜏 (𝑍𝑡) (12)

is zero 𝜏-quantile and unit scale. And the following equations
are verifiable: 𝑃 (𝑋𝑡 ≤ 𝛼𝜏 (𝑍𝑡) | 𝑍𝑡) = 𝜏, (13)𝑃 (𝛾𝜏 (𝑋𝑡, 𝛼𝜏 (𝑍𝑡)) ≤ 𝜛𝜏 (𝑍𝑡) | 𝑍𝑡) = 𝜏. (14)

Proof of Theorem 7. The 𝜏th-quantile operator is𝑄𝜏 (𝑌𝑡) = inf {𝜇 ∈ R : 𝑃 (𝑌𝑡 ≤ 𝜇 | 𝑍𝑡) ≥ 𝜏} (15)

with well-defined properties in [1, p. 9-10]. From model (5),
the conditional 𝜏-quantile of𝑋𝑡 is𝑞𝜏 (𝑍𝑡) = 𝑄𝜏 (𝑋𝑡) = 𝛼 (𝑍𝑡) + 𝜛 (𝑍𝑡) 𝑞𝑒𝜏, (16)

where 𝑞𝑒𝜏 is the 𝜏-quantiles of 𝑒𝑡. Then, using model (5) and
(16), we get 𝑋𝑡 − 𝑞𝜏 (𝑍𝑡) = 𝜛 (𝑍𝑡) (𝑒𝑡 − 𝑞𝑒𝜏) , (17)𝛾𝜏 (𝑋𝑡, 𝑞𝜏 (𝑍𝑡)) = 𝜛 (𝑍𝑡) 𝛾𝜏 (𝑒𝑡, 𝑞𝑒𝜏) . (18)

And the 𝜏th-quantile of (18) is𝑄𝜏 (𝛾𝜏 (𝑋𝑡, 𝑞𝜏 (𝑍𝑡))) = 𝜛 (𝑍𝑡) 𝑄𝜏 (𝛾𝜏 (𝑒𝑡, 𝑞𝑒𝜏))= 𝜛 (𝑍𝑡) 𝑄𝑒𝜏, (19)

where 𝑄𝑒𝜏 is the 𝜏-quantile of 𝛾𝜏(𝑒𝑡, 𝑞𝑒𝜏). Note that, from (17),𝑄𝜏(𝑋𝑡 − 𝑞𝜏(𝑍𝑡)) = 0. The quotient𝑋𝑡 − 𝛼𝜏 (𝑍𝑡)𝑄𝜏 (𝛾𝜏 (𝑋𝑡, 𝛼𝜏 (𝑍𝑡))) = 𝑒𝑡 − 𝑞𝑒𝜏𝑄𝑒𝜏 (20)

is zero 𝜏-quantile and unit scale and can be seen as model
(2) if 𝜀𝑡 = (𝑒𝑡 − 𝑞𝑒𝜏)/𝑄𝑒𝜏, 𝛼𝜏(𝑍𝑡) = 𝑞𝜏(𝑍𝑡), and 𝜛𝜏(𝑍𝑡) =𝑄𝜏(𝛾𝜏(𝑋𝑡, 𝛼𝜏(𝑍𝑡))).

Now, assuming that 𝜀𝑡 (independent of 𝑍𝑡) in model (2)
is zero 𝜏-quantile, it is equivalent to write

Pr (𝜀𝑡 ≤ 0) = Pr (𝜀𝑡 ≤ 0 | 𝑍𝑡) = 𝜏 󳨐⇒
Pr(𝑋𝑡 − 𝛼𝜏 (𝑍𝑡)𝜛𝜏 (𝑍𝑡) ≤ 0 | 𝑍𝑡) = 𝜏. (21)

This proves (13) for 𝜛𝜏(𝑧) > 0. Also, 𝜀𝑡 is unit scale, which
means

Pr (𝛾𝜏 (𝜀𝑡) ≤ 1) = 𝜏 󳨐⇒
Pr(𝛾𝜏 (𝑋𝑡 − 𝛼𝜏 (𝑍𝑡)𝜛𝜏 (𝑍𝑡) ) ≤ 1 | 𝑍𝑡) = 𝜏 󳨐⇒

Pr (𝛾𝜏 (𝑋𝑡 − 𝛼𝜏 (𝑍𝑡)) ≤ 𝜛𝜏 (𝑍𝑡) | 𝑍𝑡) = 𝜏. (22)
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Assuming 𝛼𝜏(𝑍𝑡) = 0, the estimator, 𝜛𝜏(𝑍𝑡), of the con-
ditional scale function,𝜛𝜏(𝑍𝑡), is obtained through the mini-
mization of the objective function𝜑 (𝑧, 𝜛) = 𝐸 [𝛾𝜏 (𝛾𝜏 (𝑋𝑡) , 𝜛) | 𝑍𝑡 = 𝑧] . (23)

Thus, the conditional scale function may be obtained by
minimizing 𝜑(𝑧, 𝜛) with respect to 𝜛; that is,𝜛𝜏 (𝑧) = argmin

𝜛∈R+

𝜑 (𝑧, 𝜛) , (24)𝜛𝜏 (𝑧) = inf {𝜇 ∈ 𝑅∗+ : 𝐹 (𝜇 | 𝑧) ≥ 𝜏}= 𝐹−1 (𝜏 | 𝑧) . (25)

The kernel estimator of (24) at 𝑍𝑡 = 𝑧 is given by𝜛𝜏 (𝑧) = argmin
𝜛∈R+

𝜑𝑛 (𝑧, 𝜛) . (26)

We can express the estimate of 𝜑(𝑧, 𝜛) in the random design
as it was developed in [17]. Let 𝑌∗𝑡 = 𝛾𝜏(𝛾𝜏(𝑋𝑡), 𝜛) be a
nonnegative function of 𝑋𝑡 and 𝑌∗ = (𝑌∗1 , 𝑌∗2 , . . . , 𝑌∗𝑛 ) a
random vector inR∗+ = (0,∞), 𝑡 = 1, 2, . . . , 𝑛. In the random
design, the conditional expectation (23) can be rewritten as
follows:𝜑 (𝑧, 𝜛) = 𝐸 [𝑌∗ | 𝑍𝑡 = 𝑧] = ∫𝑦∗𝑓 (𝑦∗ | 𝑧) 𝑑𝑦∗

= ∫𝑦∗𝑓 (𝑦∗, 𝑧)𝑓 (𝑧) 𝑑𝑦∗, (27)

where 𝑓(𝑦∗ | 𝑧) represents the conditional pdf of 𝑌∗𝑡 = 𝑦∗
given 𝑍𝑡 = 𝑧, 𝑓(𝑦∗, 𝑧) is the joint pdf of the two random
variables 𝑌∗ and 𝑍, and 𝑓(𝑧) is the pdf of 𝑍𝑡 = 𝑧. Using [9,
10] with𝐾𝑏(𝑢) = 𝑏−1𝐾(𝑢𝑏−1), a 1-dimensional rescaled kernel
with bandwidth 𝑏 > 0, we have the following estimates of𝑓(𝑦∗, 𝑧) and 𝑓(𝑧) [18]:

𝑓 (𝑦∗, 𝑧) = 1𝑛 𝑛∑
𝑡=1

𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)𝐾𝑏𝑦∗ (𝑦∗ − 𝑌∗𝑡 ) ,
𝑓 (𝑧) = 1𝑛 𝑛∑

𝑡=1

𝐾𝑏z (𝑍𝑡 − 𝑧) . (28)

From the estimations above, 𝜑(𝑧, 𝜛), the estimate of 𝜑(𝑧, 𝜛),
is

𝜑𝑛 (𝑧, 𝜛) = ∫ 𝑦∗∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)𝐾𝑏𝑦∗ (𝑦∗ − 𝑌∗𝑡 )∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) 𝑑𝑦∗
= ∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) ∫ 𝑦∗𝐾𝑏𝑦∗ (𝑦∗ − 𝑌∗𝑡 ) 𝑑𝑦∗∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)= ∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) ∫ [(𝑦∗ − 𝑌∗𝑡 ) + 𝑌∗𝑡 ]𝐾𝑏𝑦∗ (𝑦∗ − 𝑌∗𝑡 ) 𝑑𝑦∗∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)

(29)

and considering the regularity conditions of 𝐾𝑏 in Assump-
tion 2 and also the fact that 𝑑(𝑦∗ − 𝑌∗𝑡 ) = 𝑑𝑦∗, 𝑌∗𝑡 ∈ R+, we
have 𝜑𝑛 (𝑧, 𝜛) = ∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)𝑌∗𝑡∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)= 𝑛−1∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)𝑌∗𝑡𝑓 (𝑧) , (30)

where 𝑓(𝑧) is the estimate of the marginal pdf of 𝑍𝑡 at point𝑧 and 𝑌∗ can be rewritten as𝑌∗𝑡 = [𝑋𝑡 (𝜏 − 𝐼{𝑋𝑡≤0}) − 𝜛] (𝜏 − 𝐼{𝑋𝑡(𝜏−𝐼{𝑋𝑡≤0})≤𝜛}) (31)

and the derivative of 𝜑𝑛(𝑧, 𝜛) with respect to 𝜛 is𝑑𝜑𝑛 (𝑧, 𝜛)𝑑𝜛= (𝑛𝑓 (𝑧))−1 𝑛∑
𝑡=1

𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) (𝐼{𝑋𝑡(𝜏−𝐼{𝑋𝑡≤0})≤𝜛} − 𝜏) . (32)

The minimizer of (30) is obtained from 𝑑𝜑𝑛(𝑧, 𝜛)/𝑑𝜛 = 0.
This leads to the following equation:(𝑛𝑓 (𝑧))−1 𝑛∑

𝑡=1

𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) (𝐼{𝑋∗𝑡 ≤𝜛}) = 𝜏, (33)

where 𝑋∗𝑡 = 𝑋𝑡 (𝜏 − 𝐼{𝑋𝑡≤0}) ∈ R
∗
+, (34)

for all 𝑋𝑡 ∈ R, 𝑡 = 1, 2, . . .. Note that 𝑌∗𝑡 = 𝐼{𝑋∗𝑡 ≤𝜛} in (27).
The left part of (33) is a (unsmoothed) conditional cumulative
distribution function (CCDF),𝐹 (𝑥∗ | 𝑧) = (𝑛𝑓 (𝑧))−1 𝑛∑

𝑡=1

𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) (𝐼{𝑋∗𝑡 ≤𝑥∗}) , (35)

that needs to be estimated and our estimator is therefore𝜛𝜏 (𝑧) = inf {𝑥∗ ∈ R+ : 𝐹 (𝑥∗ | 𝑧) ≥ 𝜏} ≡ 𝐹−1 (𝜏 | 𝑧) (36)

which is equivalent to 𝐹(𝜛(𝑧) | 𝑧) = 𝜏.
An algorithm for estimating 𝐹(𝑥∗ | 𝑧) is proposed in the

following section. This estimator suffers from the problem
of boundary effects as we can see it on Figure 2 due to
outliers. We obtain unsmoothed curves of the CCDF because
the smoothness is only in the 𝑍 direction. A method is
proposed by [19] to smooth it in the 𝑦.The form of Smoothed
Conditional Distribution Estimator is𝐹 (𝑥∗ | 𝑧)= (𝑛𝑓 (𝑧))−1 𝑛∑

𝑡=1

𝐾ℎ (𝑧 − 𝑍𝑡) 𝐺(𝑥∗ − 𝑋∗𝑡ℎ0 ) , (37)

where 𝐺(⋅) is an integrated kernel with the smoothing para-
meter ℎ0 in the 𝑋∗ direction. This estimate is smooth rather
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than the NW which is a jump function in 𝑦. To deal with
boundary effects, one may think of the Weighted Nadaraya-
Watson (WNW) estimate of the CDF discussed in [12, 20],
[21, p. 3–18] among others. TheWNW estimator’s expression
is 𝐹WNW (𝑥∗ | 𝑧) = ∑𝑛𝑡=1 𝑝𝑡 (𝑧, 𝜆)𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) 𝐼{𝑋∗𝑡 ≤𝑥∗}∑𝑛𝑡=1 𝑝𝑡 (𝑧, 𝜆)𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) (38)

with conditions ∑𝑛𝑡=1 𝑝𝑡(𝑧, 𝜆) = 1 and Lambda is determined
using the Newton-Raphson iteration. Smoothing the CDF
does not smooth the estimator in (36).

2.1. Algorithm. This algorithm estimates the empirical CCDF,𝐹(𝑥∗ | 𝑧), and its inverse 𝐹−1(𝜏 | 𝑧). Starting with the estima-
tion of the former, the denominator is easy to compute as the
estimator of the probability density function of𝑍 as vector of
points 𝑧.

(1) Obtain𝑋∗𝑡 = 𝛾𝜏(𝑋𝑡), 𝑡 = 1, 2, . . ., for all 𝜏 ∈ (0, 1).
(2) Check if each 𝑥∗𝑡 is less than or equal to each observa-

tion of the whole sequence 𝑥∗ = (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 ) ∈
R𝑛. The result determines 𝐼{𝑥∗𝑡 ≤𝑥} which can be
expressed in (0, 1)-matrix of order 𝑛 × 𝑛.

(3) Construct 𝑧∗1 = min(𝑍) < 𝑧∗2 < ⋅ ⋅ ⋅ < 𝑧∗𝑁 = max(𝑍)
from the sequence of i.i.d random variable 𝑍 =(𝑍1, 𝑍2, . . . , 𝑍𝑛) with observation 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛).𝑁 is the number of 𝑧∗𝑖 from which the probability
density function (pdf) of 𝑍𝑡 is to be estimated.

(4) Determine the matrix of kernels 𝐾 which is𝐾
=(𝐾𝑏 (𝑧∗1 − 𝑍1) 𝐾𝑏 (𝑧∗1 − 𝑍2) ⋅ ⋅ ⋅ 𝐾𝑏 (𝑧∗1 − 𝑍𝑛)𝐾𝑏 (𝑧∗2 − 𝑍1) 𝐾𝑏 (𝑧∗2 − 𝑍2) ⋅ ⋅ ⋅ 𝐾𝑏 (𝑧∗2 − 𝑍𝑛)... ... ... ...𝐾𝑏 (𝑧∗𝑁 − 𝑍1) 𝐾𝑏 (𝑧∗𝑁 − 𝑍2) ⋅ ⋅ ⋅ 𝐾𝑏 (𝑧∗𝑁 − 𝑍𝑛)). (39)

The row sums of 𝐾 over 𝑛 give the estimator of the
pdf of 𝑍𝑡 at 𝑧∗𝑖 , 𝑔(𝑧∗𝑖 ), 𝑖 = 1, 2, . . . , 𝑁. We obtain
the matrix of weights 𝑊 by the ration of 𝐾 and 𝐾I𝑛
(element-wise), where I𝑛 is amatrix of 𝑛×𝑛 ones. Note
that the row sums of𝑊 are 1.
Let 𝑀 be the (0, 1)-matrix from 2. The estimator of
the Conditional Cumulative Distribution Function
(CCDF) is𝐹 (𝑥∗ | 𝑧∗) = 𝑊𝑀 = 𝐾𝑀/ (𝐾I𝑛) . (40)

2.2. Nadaraya-Watson Smoothing Method. We can make𝜛𝜏(𝑧) smooth by using NW regression (one can also use
LOWESS (LOcally WEighted Scatter plot Smoother) regres-
sion introduced by [22] to smooth the estimator in (36) and
it solves the problem of boundary effects). This will provide
a smoothed curve at each level 𝜏 ∈ (0, 1). We write the
regression equation as𝑌𝑡 = 𝜛𝜏,𝑠 (𝑍𝑡) + 𝜂𝑡 (41)

with 𝑌𝑡 = 𝜛𝜏(𝑍𝑡) and 𝜛𝜏,𝑠(𝑥) = 𝐸[𝜛𝜏(𝑧) | 𝑍𝑡 = 𝑧] and the
errors {𝜂𝑖} satisfy 𝐸[𝜂𝑖] = 0, 𝑉(𝜂𝑖) = 𝜎2𝜂 , and cov(𝜂𝑖) = 0 for𝑖 ̸= 𝑗. Note that 𝜛𝜏,𝑠(𝑥) can be derived using joint pdf 𝑓(𝑦, 𝑧)
as 𝜛𝜏,𝑠 (𝑧) = 𝐸 [𝑌 | 𝑍 = 𝑧] = ∫𝑦𝑓 (𝑦, 𝑧)𝑓 (𝑧) 𝑑𝑦, (42)

where 𝑓(𝑦, 𝑧) and 𝑓(𝑧) are estimated as in (28).
We can perform some transformations on (42) in order

to show that it is actually better than the unsmoothed one. By
Assumption 1 (iv) and the fact that 𝐹(𝜛𝜏(𝑧) | 𝑧) = 𝜏, we have𝐹 (𝜛𝜏,𝑠 (𝑍𝑡) | 𝑧) = 𝐹 (𝐸 [𝜛𝜏 (𝑧) | 𝑍𝑡 = 𝑧] | 𝑧)≤ 𝐸 [𝐹 (𝜛𝜏 (𝑧) | 𝑧) | 𝑍𝑡 = 𝑧]= 𝐹 (𝜛𝜏 (𝑍𝑡) | 𝑧) = 𝜏. (43)

We have used Jensen’s theorem for conditional expectation
found in [23] and stated as follows.

Theorem 8 (Jensen’s inequality). For any convex function 𝑙,𝐸 [𝑙 (𝑋)] ≥ 𝑙 (𝐸 [𝑋]) . (44)

Proof of Theorem 8. Suppose that 𝑙 is differentiable. The
function 𝑙 is convex if𝑙 (𝑥) ≥ 𝑙 (𝑦) + (𝑥 − 𝑦) 𝑙󸀠 (𝑥) , for any 𝑥, 𝑦. (45)

Let 𝑥 = 𝑋 and 𝑦 = 𝐸[𝑋]. The inequality 𝑙(𝑋) ≥ 𝑙(𝐸[𝑋]) +(𝑋−𝐸[𝑋])𝑙󸀠(𝑋) is true for all𝑋 and taking its expectation on
both sides proves the theorem.

This inequality is applicable when 𝑓 is a conditional
convex function and when 𝐸[⋅] is a conditional expectation.
The estimator 𝜛𝜏,𝑠(𝑍𝑡) is also element of the set to which the
unsmoothed estimator belongs. This means that 𝐹(𝜛𝜏,𝑠(𝑍𝑡) |𝑧) ≥ 𝜏. The estimator is empirically given by𝜛𝜏,𝑠 (𝑧) = ∑𝑛𝑡=1𝐾𝑏 (𝑍𝑡 − 𝑧) 𝑦𝑡∑𝑛𝑡=1𝐾𝑏 (𝑍𝑡 − 𝑧)= ∑𝑛𝑡=1𝐾𝑏 (𝑍𝑡 − 𝑧)𝜛𝜏 (𝑍𝑡)∑𝑛𝑡=1𝐾𝑏 (𝑍𝑡 − 𝑧) . (46)

2.2.1. Asymptotic Properties. To show the asymptotic proper-
ties of our estimator, we compute its expectation and variance.
Assuming the data (𝑌, 𝑍) is i.i.d, the expectation of the
numerator is given by𝐸 [𝐾𝑏 (𝑍𝑡 − 𝑧)𝑌𝑡] = ∬ V𝑏𝐾(𝑢 − 𝑧𝑏 )𝑓 (𝑢, V) 𝑑𝑢 𝑑V= ∬ V𝐾 (𝑠) 𝑓 (V | 𝑧 + 𝑠𝑏) 𝑓 (𝑧 + 𝑠𝑏) 𝑑𝑠 𝑑V= ∫𝐾 (𝑠) 𝑓 (𝑧 + 𝑠𝑏) (∫ V𝑓 (V | 𝑧 = 𝑠𝑏) 𝑑V) 𝑑𝑠= ∫𝐾 (𝑠) 𝑓 (𝑧 + 𝑠𝑏) 𝜛𝜏,𝑠 (𝑧 + 𝑠ℎ) 𝑑𝑠.

(47)
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We assume that the first and the second derivatives of 𝜛𝜏,𝑠(𝑧)
at point𝑍𝑡 = 𝑧 exist.That is, by Taylor’s expansion of𝑓(𝑧+𝑠𝑏)
and 𝜛𝜏,𝑠(𝑧 + 𝑠ℎ) given by𝑓 (𝑧 + 𝑠ℎ) = 𝑓 (𝑧) + 𝑓(1) (𝑧)1! 𝑠𝑏𝑧 + 𝑓(2) (𝑧)2! (𝑠𝑏𝑧)2+ 𝑜 (𝑏2𝑧) ,𝜛𝜏,𝑠 (𝑧 + 𝑠ℎ) = 𝜛𝜏,𝑠 (𝑧) + 𝜛(1)𝜏,𝑠 (𝑧)1! 𝑠𝑏𝑧 + 𝜛(2)𝜏,𝑠 (𝑧)2! (𝑠𝑏𝑧)2+ 𝑜 (𝑏2𝑧) ,

(48)

we get𝐸 [𝐾𝑏 (𝑍𝑡 − 𝑧)𝑌𝑡] = 𝜛𝜏,𝑠 (𝑧) 𝑓 (𝑧) + 12𝑏2𝜇2 (𝐾)⋅ (𝑓 (𝑧) 𝜛(2)𝜏,𝑠 (𝑧) + 𝑓(1) (𝑧) 𝜛(1)𝜏,𝑠 (𝑧)+ 𝑓(2) (𝑧) 𝜛𝜏,𝑠 (𝑧)) + 𝑜 (ℎ3) . (49)

Similarly, the expectation of the numerator is𝐸 [𝐾𝑏 (𝑍𝑡 − 𝑧)] = 𝑓 (𝑧) + 12𝑏2𝜇2 (𝐾) 𝑓(2) (𝑧)+ 𝑜 (ℎ2) . (50)

For 𝑏2 small enough, (1 + (1/2)𝑏2𝜇2(𝐾)(𝑓(2)(𝑧)/𝑓(𝑧)))−1 ≈1 − (1/2)𝑏2𝜇2(𝐾)(𝑓(2)(𝑧)/𝑓(𝑧)). Thus,𝐸 [𝜛𝜏,𝑠 (𝑧)]≈ 𝜛𝜏,𝑠 (𝑧)+ 12𝑏2𝜇2 (𝐾)(𝜛(2)𝜏,𝑠 (𝑧) + 2𝑓(1) (𝑧)𝑓 (𝑧) 𝜛(1)𝜏,𝑠 (𝑧)) . (51)

The variance of the numerator, say 𝑉(𝑁), is𝑉(1𝑛 𝑛∑
𝑡=1

𝐾𝑏 (𝑍𝑡 − 𝑧)𝑌𝑡) = 1𝑛𝑏2𝑉(𝐾(𝑍𝑡 − 𝑧𝑏 )𝑌𝑡)
= 1𝑛𝑏2 (𝐸[𝐾2 (𝑍𝑡 − 𝑧𝑏 )𝑦2𝑡 ]
− (𝐸[𝐾(𝑍𝑡 − 𝑧𝑏 )𝑌𝑡])2) ≈ 1𝑛𝑏⋅ ∬ V2𝐾2 (𝑠) 𝑓 (V | 𝑧 + 𝑠𝑏) 𝑓 (𝑧 + 𝑠𝑏) 𝑑𝑠 𝑑V− 𝑜 (1𝑛) = 1𝑛𝑏⋅ ∫𝐾2 (𝑠) 𝑓 (𝑧 + 𝑠𝑏) (∫ V2𝑓 (V | 𝑧 + 𝑠𝑏) 𝑑V)𝑑𝑠− 𝑜 (1𝑛) ≈ 1𝑛𝑏𝑅 (𝐾)𝑓 (𝑧) [𝜎2𝜂 + 𝜛2𝜏,𝑠 (𝑧)] .

(52)

Note that ∫ V2𝑓(V | 𝑧 + 𝑠𝑏)𝑑𝑠 ≈ 𝐸[𝑌2𝑡 | 𝑍𝑡 = 𝑧]. Similarly, the
variance of the denominator, 𝑉(𝐷), is 𝑉((1/𝑛)∑𝑛𝑡=1𝐾𝑏(𝑍𝑡 −𝑧)) ≈ (1/𝑛𝑏)𝑓(𝑧)𝑅(𝐾).

The covariance of the numerator and the denominator of
the estimator in (46) are given by

cov (𝑁,𝐷)= cov( 1𝑛𝑏 𝑛∑
𝑡=1

𝐾(𝑍𝑡 − 𝑧𝑏 )𝑌𝑡, 1𝑛𝑏 𝑛∑
𝑡=1

𝐾(𝑍𝑡 − 𝑧𝑏 ))
= 1𝑛𝑏2 cov(𝐾(𝑍𝑡 − 𝑧𝑏 )𝑌𝑡, 𝐾 (𝑍𝑡 − 𝑧𝑏 ))
= 1𝑛𝑏2 (𝐸[𝐾2 (𝑍𝑡 − 𝑧𝑏 )𝑌𝑡]− 𝐸[𝐾(𝑍𝑡 − 𝑧𝑏 )𝑌𝑡]𝐸 [𝐾(𝑍𝑡 − 𝑧𝑏 )]) ≈ 1𝑛𝑏⋅ 𝑅 (𝐾) 𝑓 (𝑧) 𝜛𝜏,𝑠 (𝑧) − 𝑜 (1𝑛) .

(53)

The variance of the estimator in (46) is the variance of a
ratio of correlated variables that can be calculated using the
approximation found in [24]:𝑉(𝑁𝐷)

≈ (𝐸 [𝑁]𝐸 [𝐷])2 [ 𝑉 (𝑁)(𝐸 [𝑁])2 + 𝑉 (𝐷)(𝐸 [𝐷])2 − 2cov (𝑁,𝐷)𝐸 [𝑁] 𝐸 [𝐷]] (54)

= 𝑅 (𝐾) 𝜎2𝜂𝑛𝑏𝑓 (𝑧) . (55)

If Assumption 3 for strongmixing processes holds, then from
the Central Limit Theorem (CLT) we have√𝑛𝑏 (𝜛𝜏,𝑠 (𝑧) − 𝜛𝜏,𝑠 (𝑧) − Bias (𝜛𝜏,𝑠 (𝑧)))

𝐷󳨀→ N(0, 𝑅 (𝐾) 𝜎2𝜂𝑓 (𝑧) ) . (56)

2.3. Asymptotic Normality of QARCH. TheCCDF in (35) can
be written in the form of an arithmetic mean of a random
variable 𝐿:𝐹 (𝑥∗ | 𝑧) = 1𝑛 𝑛∑

𝑡=1

𝐿 𝑡
with 𝐿 𝑡 = 𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) 𝐼{𝑋∗𝑡 ≤𝑥∗}(1/𝑛)∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) (57)

and the approximation of the expectation of 𝐿 is

𝐸 [𝐿 𝑡] ≈ 𝐸 [𝐾𝑏𝑧 (𝑍𝑡 − 𝑧) 𝐼{𝑋∗𝑡 ≤𝑥∗}]𝐸 [(1/𝑛)∑𝑛𝑡=1𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)] = 𝐸 [𝑁]𝐸 [𝐷] (58)
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[see [24]]. Using the i.i.d assumption over the data, the
numerator is

𝐸 [𝑁] = 1𝑏𝑧𝐸[𝐾(𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}]= 1𝑏𝑧 ∫∫𝑥∗−∞𝐾(𝑢 − 𝑧𝑏𝑧 )𝑓 (𝑢, V) 𝑑𝑢 𝑑V= ∫𝐹 (𝑥∗ | 𝑧 + 𝑠ℎ)𝐾 (𝑠) 𝑓 (𝑧 + 𝑠ℎ) 𝑑𝑠.
(59)

We have used the change of variables 𝑠 = (𝑢 − 𝑧)/𝑏𝑧, the
definition of the conditional density function turned into𝑓(𝑧+𝑠𝑏𝑧, V) = 𝑓(V | 𝑧 + 𝑠ℎ)𝑓(𝑧 + 𝑠𝑏𝑧), and Fubuni’s theorem for

multiple integrals. Taylor series expansions of 𝐹(V | 𝑧 + 𝑠ℎ)
and 𝑓(𝑧 + 𝑠ℎ) yield𝐸 [𝑁] = 𝑓 (𝑧) 𝐹 (𝑥∗ | 𝑧) + 𝑏2𝑧𝜇2 (𝐾)⋅ [𝑓(1) (𝑧) 𝐹(1) (𝑥∗ | 𝑧) + 12𝑓(2) (𝑧) 𝐹 (𝑥∗ | 𝑧)+ 12𝑓 (𝑧) 𝐹(2) (𝑥∗ | 𝑧) + 𝑜 (𝑏2𝑧)]

(60)

and, for the denominator, we have𝐸 [𝐷] = 𝑓 (𝑧) + 12𝑏2𝑧𝜇2 (𝐾) 𝑓(2) (𝑧) + 𝑜 (𝑏2𝑧) . (61)

Thus,

𝐸 [𝐿 𝑡]≈ 𝑓 (𝑧) [𝐹 (𝑥∗ | 𝑧) + 𝑏2𝑧𝜇2 (𝐾) ((𝑓(1) (𝑧) /𝑓 (𝑧)) 𝐹(1) (𝑥∗ | 𝑧) + (1/2) (𝑓(2) (𝑧) /𝑓 (𝑧)) 𝐹 (𝑥∗ | 𝑧) + (1/2) 𝐹(2) (𝑥∗ | 𝑧))]𝑓 (𝑧) (1 + (1/2) 𝑏2𝑧𝜇2 (𝐾) (𝑓(2) (𝑧) /𝑓 (𝑧)))= 𝐹 (𝑥∗ | 𝑧) + 12𝑏2𝑧𝜇2 (𝐾)(2𝑓(1) (𝑧)𝑓 (𝑧) 𝐹(1) (𝑥∗ | 𝑧) + 𝐹(2) (𝑥∗ | 𝑧)) + 𝑜 (𝑏4𝑧) .
(62)

From the assumption that 𝑏𝑧 → 0, the denominator is ap-
proximated to 1 − 𝑏2𝑧𝜇2(𝐾)(𝑓(2)(𝑧)/2𝑓(𝑧)). Hence,

Bias (𝐹 (𝑥∗ | 𝑧)) ≈ 12𝑏2𝑧𝜇2 (𝐾)⋅ (2𝑓(1) (𝑧)𝑓 (𝑧) 𝐹(1) (𝑥∗ | 𝑧) + 𝐹(2) (𝑥∗ | 𝑧)) . (63)

Some authors assumed that, in this case, the first derivative of
the true pdf of 𝑍 at point 𝑧 can be zero [19] as the one for the
fixed design and, therefore, the bias can be given by

Bias (𝐹 (𝑥∗ | 𝑧)) ≈ 12𝑏2𝑧𝜇2 (𝐾) (𝐹(2) (𝑥∗ | 𝑧)) . (64)

We have

𝑉 (𝑁) = 𝑉( 1𝑏𝑧𝐾(𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}) = 1𝑏2𝑧⋅ 𝑉 (𝐾(𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗})= 1𝑏2𝑧 (𝐸[𝐾2 (𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}]− (𝐸[𝐾(𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}])2)

≈ 𝐹 (𝑥∗ | 𝑧) 𝑓 (𝑧) 𝑅 (𝐾)𝑏𝑧 − 𝑜 (1) ,
𝑉 (𝐷) = 𝑉(1𝑛 𝑛∑

𝑡=1

𝐾𝑏𝑧 (𝑍𝑡 − 𝑧)) = 1𝑛𝑏2𝑧⋅ 𝑉 (𝐾(𝑍𝑡 − 𝑧𝑏𝑧 )) = 1𝑛𝑏2𝑧 (𝐸[𝐾2 (𝑍𝑡 − 𝑧𝑏𝑧 )]
− (𝐸[𝐾(𝑍𝑡 − 𝑧𝑏𝑧 )])2) ≈ 𝑓 (𝑧) 𝑅 (𝐾)𝑛𝑏𝑧 − 𝑜 (1𝑛) ,

cov (𝑁,𝐷) = 1𝑛𝑏2𝑧⋅ cov(𝐾(𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}, 𝐾 (𝑍𝑡 − 𝑧𝑏𝑧 )) ≈ 1𝑛𝑏2𝑧⋅ 𝐸 [𝐾2 (𝑍𝑡 − 𝑧𝑏𝑧 ) 𝐼{𝑋∗𝑡 ≤𝑥∗}] − 𝑜 (1𝑛) ≈ 1𝑛𝑏𝑧⋅ 𝐹 (𝑥∗ | 𝑧) 𝑓 (𝑧) 𝑅 (𝐾) .
(65)

Using the same approximation in (54), the variance of 𝐹(𝑥∗ |𝑧) is
𝑉 (𝐿 𝑡) ≈ 𝐹 (𝑥∗ | 𝑧) [𝑅 (𝐾) (1 − 𝐹 (𝑥∗ | 𝑧))𝑏𝑧𝑓 (𝑧) ] (66)
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and by the Central Limit Theorem, using Assumption 3 for{(𝑋∗𝑡 , 𝑍𝑡), 𝑡 = 1, 2, . . .},√𝑛 (𝐹 (𝑥∗ | 𝑧) − 𝐹 (𝑥∗ | 𝑧) − Bias (𝐹 (𝑥∗ | 𝑧)))
𝐷󳨀→ N (0, 𝑉 (𝐿 𝑡)) . (67)

Notice that the expectation of 𝐹(𝑥∗ | 𝑧) is the same as the
one of 𝐿 and the variance is𝑉(𝐿 𝑡)/𝑛. To show the asymptotic
normality of 𝜛𝜏(𝑧), we use the following theorem.

Theorem9 (deltamethod). Suppose𝐹(𝑥∗ | 𝑧) has the asymp-
totic normal distribution as in (67). Suppose 𝑔(⋅) is a continu-
ous function that has a derivative 𝑔(1)(⋅) at 𝜇 = 𝐸[𝐹(𝑥∗ | 𝑧)].
Then√𝑛𝑏𝑧 (𝑔 (𝐹 (𝑥∗ | 𝑧)) − 𝑔 (𝜇))

𝐷󳨀→ N(0, [𝑔(1) (𝜇)]2 𝑅 (𝐾) (1 − 𝐹 (𝑥∗ | 𝑧))𝑓 (𝑧) ) . (68)

Proof of Theorem 9. The first-order Taylor expansion of 𝑔(⋅)
about the point 𝜇, and evaluated at the random variable𝐹(𝑥∗ | 𝑧), is𝑔 (𝐹 (𝑥∗ | 𝑧)) ≈ 𝑔 (𝜇) + 𝑔(1) (𝜇) (𝐹 (𝑥∗ | 𝑧) − 𝜇) (69)

and subtracting𝑔(𝜇) fromboth sides andmultiplying by√𝑛𝑏,
we get √𝑛𝑏 (𝑔 (𝐹 (𝑥∗ | 𝑧)) − 𝑔 (𝜇))≈ √𝑛𝑏𝑔(1) (𝜇) (𝐹 (𝑥∗ | 𝑧) − 𝜇) (70)

which tends toN(0, [𝑔(1)(𝜇)]2(𝑅(𝐾)(1−𝐹(𝑥∗ | 𝑧))/𝑓(𝑧))) in
distribution.

For𝑔(𝜇) = 𝐹−1(𝜇 | 𝑧), thus,𝑔(1)(𝜇) = 1/𝑓(𝐹−1(𝜇 | 𝑧) | 𝑧).
In the next section, it is shown that the AMSE (Asymptotic
Mean Squared Error) of 𝐹(𝑥∗ | 𝑧) is equal to 𝑜(𝑏4)+𝑜(1/(𝑛𝑏))
which tends to 0 as 𝑛 → ∞ and 𝑏 → 0. This shows the
consistency of the CCDF estimate, that is,𝐹(𝑥∗ | 𝑧)→𝑝𝐹(𝑥∗ |𝑧), and we have 1𝑓 (𝐹−1 (𝜇 | 𝑧) | 𝑧) 𝑝󳨀→ 1𝑓 (𝐹−1 (𝜏 | 𝑧) | 𝑧)= 1𝑓 (𝜛𝜏 (𝑧) | 𝑧) (71)

at points 𝑥∗’s that satisfy (36). Using again the first-order
Taylor expansion, we also have𝑔 (𝜇) = 𝑔 (𝐹 (𝑥∗ | 𝑧) + Bias (𝐹 (𝑥∗ | 𝑧)))≈ 𝑔 (𝐹 (𝑥∗ | 𝑧)) + Bias (𝐹 (𝑥∗ | 𝑧))

× 𝑔(1) (𝐹 (𝑥∗ | 𝑧)) = 𝑥∗ + Bias (𝐹 (𝑥∗ | 𝑧))𝑓 (𝑥∗ | 𝑧)
(72)

for𝑥∗’s satisfying (36) and replacing𝐹(𝜛𝜏(𝑧) | 𝑧) by𝐹(𝜛𝜏(𝑧) |𝑧) using the uniqueness assumption of 𝜛𝜏(𝑧), (68) becomes√𝑛𝑏 (𝜛𝜏 (𝑧) − 𝜛𝜏 (𝑧) − Bias (𝜛𝜏 (𝑧)))
𝐷󳨀→ N(0, 𝑅 (𝐾) 𝜏 (1 − 𝜏)𝑓 (𝑧) [𝑓 (𝜛𝜏 (𝑧) | 𝑧)]2) (73)

with Bias(𝜛𝜏(𝑧)) = Bias(𝐹(𝜛𝜏(𝑧) | 𝑧))/𝑓(𝜛𝜏(𝑧) | 𝑧) ≈(1/2𝑓(𝜛𝜏(𝑧) | 𝑧))𝑏2𝑧𝜇2(𝐾)(𝐹(2)(𝜛𝜏(𝑧) | 𝑧)).
This result can be used to calculate the optimal bandwidth

to compute the good estimation of the CSF.

3. Bandwidth Selections

3.1. Optimal Bandwidth for Density Estimations. In nonpara-
metric estimations, specially in Kernel Density Estimations,
computing a curve of an arbitrary function from the data
without guessing the shape in advance requires an adequate
choice of the smoothing parameter. The most used method
is the “plug-in” method which consists of assigning a pilot
bandwidth in order to estimate the derivatives of 𝑓(𝑧). We
choose the bandwidth that minimizes the AMISE (Asymp-
totic Mean Integrated Squared Error) below.

AMISE (𝑓 (𝑧)) = ∫𝐸 [(𝑓 (𝑧) − 𝑓 (𝑧))2] 𝑑𝑧= ∫𝐸 [(𝑓 (𝑧) − 𝐸 [𝑓 (𝑧)] + Bias (𝑓 (𝑧)))2] 𝑑𝑧= ∫ {𝐸 [(𝑓 (𝑧) − 𝐸 [𝑓 (𝑧)])2] + Bias2 (𝑓 (𝑧))} 𝑑𝑧= ∫ {𝑉 (𝑓 (𝑧)) + Bias2 (𝑓 (𝑧))} 𝑑𝑧= ∫{𝑅 (𝐾)𝑓 (𝑧)𝑛𝑏 + 14𝑏4𝜇22 (𝐾) [𝑓(2) (𝑧)]2}𝑑𝑧= 𝑅 (𝐾)𝑛𝑏 + 14𝑏4𝜇22 (𝐾) 𝑅 (𝑓(2) (𝑧)) .
(74)

The general form of the 𝑟th derivatives of the AMISE
with respect to 𝑏 was studied in [25], considering that the
unknown functions in (74) are also functions of the smooth-
ing parameter.𝑑𝑑𝑧𝑟AMISE (𝑓 (𝑧)) = 𝑅 (𝐾(𝑟))𝑛𝑏2𝑟+1+ 14𝑏4𝜇22 (𝐾) 𝑅 (𝑓(2+𝑟) (𝑧)) . (75)

The optimal smoothing parameter minimizing (75) is

𝑏∗ = [ (2𝑟 + 1) 𝑅 (𝐾(𝑟))𝜇22 (𝐾) 𝑅 (𝑓(2+𝑟) (𝑧))]1/(2𝑟+5) × 𝑛−1/(2𝑟+5). (76)

Using this result, we came up with the optimal version of
optimal bandwidth for CCDF. The aim of derivation of the
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AMISE in (74) is to get the optimal bandwidth for each 𝑓(𝑟)
directly. As an example, we consider the Epanechnikov Ker-
nel function in order to compute 𝑅(𝐾), 𝜇2(𝐾), and the effi-
ciency of the kernel function given by√𝜇2(𝐾)𝑅(𝐾). Epanech-
nikov’s kernel function is𝐾 (𝑢) = 34 (1 − 𝑢2) 𝐼{|𝑢|≤1} 󳨐⇒ 𝑅 (𝐾)= 34 ∫1−1 (1 − 2𝑢2 + 𝑢4) 𝑑𝑢 = 35 ,𝜇2 (𝐾) = ∫1

−1
𝑢2𝐾 (𝑢) 𝑑𝑢 = ∫1

−1
(𝑢2 − 𝑢4) 𝑑𝑢 = 15

(77)

and its efficiency is measured by

Eff (𝐾) = 𝑅 (𝐾)√𝜇2 (𝐾) = 34√15 = 0.268 (78)

which is the smallest of all the other kernel functions.

3.2. Optimal Bandwidth for CCDF. The optimal bandwidth
for the CCDF estimate is the one that minimizes the AMSE.
It is shown below that the AMSE is actually the summation of
the variance and the bias of the CCDF estimate.This is useful
because the two are linked. When the variance is big, the bias
also is big and when the variance is small, the bias is small.

AMSE (𝐹 (𝑥∗ | 𝑧)) = 𝐸 [(𝐹 (𝑥∗ | 𝑧) − 𝐹 (𝑥∗ | 𝑧))2]= 𝐸 [(𝐹 (𝑥∗ | 𝑧) − 𝐸 [𝐹 (𝑥∗ | 𝑧)]+ Bias (𝐹 (𝑥∗ | 𝑧)))2] = 𝐸 [(𝐹 (𝑥∗ | 𝑧)− 𝐸 [𝐹 (𝑥∗ | 𝑧)])2] + Bias (𝐹 (𝑥∗ | 𝑧))× 𝐸 [𝐹 (𝑥∗ | 𝑧) − 𝐸 [𝐹 (𝑥∗ | 𝑧)]]+ Bias2 (𝐹 (𝑥∗ | 𝑧)) = 𝑉 (𝐹 (𝑥∗ | 𝑧))+ Bias2 (𝐹 (𝑥∗ | 𝑧)) = 𝑅 (𝐾)𝑛𝑏𝑧𝑓 (𝑧)𝐹 (𝑥∗ | 𝑧) (1− 𝐹 (𝑥∗ | 𝑧)) + 𝑏44 𝜇22 (𝐾) (𝐹(2) (𝑥∗ | 𝑧))2

(79)

which is given by (66) and (64). Therefore,𝑏∗ = argmin
𝑏>0

AMSE (𝐹 (𝑥∗ | 𝑧)) (80)

and (𝑑/𝑑𝑏)AMSE(𝐹(𝑥∗ | 𝑧)) = 0 leads to
𝑏∗ = {𝑅 (𝐾) 𝐹 (𝑥∗ | 𝑧) (1 − 𝐹 (𝑥∗ | 𝑧))𝜇22 (𝐾) 𝑓 (𝑧) (𝐹(2) (𝑥∗ | 𝑧))2 }1/5 × 𝑛−1/5. (81)

This result is practically possible by estimating the unknown
functions which are dependent on the smoothing parameter.

𝐹(2) is the second derivative of the CCDF from (35) at point𝑍𝑡 = 𝑧. The estimator of the 𝑟th derivatives of (35) is𝐹(𝑟) (𝑥∗ | 𝑧) = 𝑑𝑟𝑑𝑧𝑟 𝑛∑𝑡=1𝑊𝑡 (𝑧)𝑋{𝑋∗𝑡 ≤𝑥∗}= 𝑛∑
𝑡=1

𝑊(𝑟)
𝑡 (𝑧)𝑋{𝑋∗𝑡 ≤𝑥∗} (82)

with𝑊𝑡 (𝑧) = 𝐾 ((𝑍𝑡 − 𝑧) /𝑏)∑𝑛𝑡=1𝐾((𝑍𝑡 − 𝑧) /𝑏) = 𝐾 ((𝑍𝑡 − 𝑧) /𝑏)𝑛𝑏𝑓 (𝑧) , (83)

the function of weights. Thus, the first derivative is given by𝑊(1)
𝑡 (𝑧) = 1𝑛𝑏2⋅ 𝐾(1) ((𝑍𝑡 − 𝑧) /𝑏) 𝑓 (𝑧) − 𝑏𝐾 ((𝑍𝑡 − 𝑧) /𝑏) 𝑓(1) (𝑧)[𝑓(1) (𝑧)]2= 1𝑛𝑏2 𝐴𝐵

(84)

and the second derivative is also𝑊(2)
𝑡 (𝑧) = 1𝑛𝑏2 𝐴(1)𝐵 − 𝐵(1)𝐴𝐵2 (85)

with𝐴(1) = (1/𝑏)𝐾(2)((𝑍𝑡−𝑧)/𝑏)𝑓(𝑧)−𝑏𝐾((𝑍𝑡−𝑧)/𝑏)𝑓(2)(𝑧)
and 𝐵(1) = 2𝑓(1)(𝑧)𝑓(𝑧). Note that the estimation of the
CCDF is function of the estimation of the empirical pdf of𝑧. An optimal bandwidth that minimizes the AMISE of 𝑓(𝑧)
can also be the one that is optimal for the estimation of the
CCDF.

Recent findings on the estimation of an optimal band-
width for KDE (Kernel Density Estimation) are numerous
([25–27]) but the estimation of an optimal smoothing param-
eter remains irksome due to computation issue and time
consuming routines. To do so, we adopt what had been done
by [27] to estimate the 𝑟th derivatives of the pdf of 𝑍𝑡 with
respect to 𝑧. We extend the idea to estimate the first and the
second derivative of the CCDF with respect to 𝑧.
4. Simulation Study

4.1. Model Specification. The ARCH(𝑞) models introduced
by [16] are widely used in financial applications. An AR(1)-
ARCH(1) is amixedmodel from anAR(𝑑) andGARCH(𝑝, 𝑞)
for 𝑑 = 1, 𝑝 = 1, and 𝑞 = 0. In time series, an observation
at one time can be correlated with the observations in the
previous time. That is,

Note that the operator ⋅/⋅ means the element-wise
division between matrices.

(5) For each row of 𝐹(⋅ | ⋅), find the smallest 𝑥∗ such that𝐹(𝑥∗ | 𝑧∗) ≥ 𝜏, 𝜏 ∈ (0, 1).
(6) The quantiles 𝜛𝜏(𝑧) are the 𝑥∗’s which satisfy (36).

This gives an unsmoothed estimator curve with bad
shape at boundaries (see Figure 2).
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The data to be simulated is given by 𝑋𝑡 = 𝜇 + 𝛿𝑋𝑡−1 + (𝑤 +𝛼𝑋2𝑡−1)1/2𝑒𝑡, 𝑡 = 1, 2, . . ..
(i) autoregressive process of order 𝑝 = 1, 2, . . .,
AR (𝑝) : 𝑋𝑡 = 𝜇 + 𝛿1𝑋𝑡−1 + 𝛿2𝑋𝑡−2 + ⋅ ⋅ ⋅ + 𝛿𝑝𝑋𝑡−𝑝+ 𝑒𝑡, with 𝜀𝑡 i.i.d, (86)

(ii) autoregressive (𝑝)-General Autoregressive Condi-
tional Heteroscedastic process of order (𝑑 =1, 2, . . . ; 𝑝 = 1, 2, . . . ; 𝑞 = 1, 2, . . .),

AR (𝑑) -GARCH (𝑝, 𝑞) : 𝑋𝑡 = 𝑝∑
𝑖=1

𝑎𝑖𝑋𝑡−𝑖 + 𝜛𝑡𝑒𝑡,
with 𝑒𝑡 i.i.d. and 𝜛𝑡 = (𝑤 + 𝑝∑

𝑖=1

𝛼𝑖𝑢2𝑖−1 + 𝑞∑
𝑖=1

𝛽𝑖𝜛2𝑖−1)1/2 . (87)

4.2. Specifications for AR(1)-GARCH(1,1)

4.2.1. Unconditional Expectation. Theunconditional expecta-
tion is 𝐸 [𝑋𝑡] = 𝜇 + 𝛿𝐸 [𝑋𝑡−1] + 𝐸 [𝜛𝑡𝑒𝑡]= 𝜇 + 𝛿𝐸 [𝑋𝑡] + 𝐸 [𝜛𝑡] 𝐸 [𝑒𝑡] . (88)

Note that 𝐸[𝑋𝑡] = 𝐸[𝑋𝑡−1] is used to ensure the stationarity
of the process. That is, the expectation is therefore given by𝐸 [𝑋𝑡] = 𝜇1 − 𝛿 . (89)

4.2.2. Unconditional Variance. Theunconditional variance of
the model is given by the law of total variance𝑉 (𝑋𝑡) = 𝐸 [𝑉 (𝑋𝑡 | 𝑋𝑡−1)] + 𝑉 (𝐸 [𝑋𝑡 | 𝑋𝑡−1]) (90)= 𝐸 [𝜛2𝑡 ] + 𝑉 [𝛼𝑡] . (91)

We have 𝐸 [𝜛2𝑡 ] = 𝜔 + 𝛼𝐸 [𝑋2𝑡−1] + 𝛽𝐸 [𝜛2𝑡−1] . (92)

Using the i.i.d. assumption on the sequence of random
variables 𝑋1, 𝑋2, . . . , 𝑋𝑛, the expected value of 𝑋2𝑡 can be
calculated as follows:𝐸 [𝑋2𝑡 ] = 𝐸 [𝜇𝑋𝑡 + 𝛿𝑋𝑡−1𝑋𝑡 + 𝜛𝑡𝑒𝑡𝑋𝑡]= 𝜇𝐸 [𝑋𝑡] + 𝛿 (𝐸 [𝑋𝑡])2= 𝜇21 − 𝛿 + 𝛿𝜇2(1 − 𝛿)2= 𝜇2(1 − 𝛿)2 ,

(93)

which is independent of time. In another way,𝐸 [𝑋2𝑡 ] = 𝐸 [𝛼2𝑡 + 2𝛼𝜛𝑡𝑒𝑡 + 𝜛2𝑡 𝑒2𝑡 ]= 𝐸 [𝛼2𝑡 ] + 𝐸 [𝜛2𝑡 ] . (94)

Equation (92) becomes𝐸 [𝜛2𝑡 ] = 𝜔 + 𝛼 (𝐸 [𝛼2𝑡 ] + 𝐸 [𝜛2𝑡 ]) + 𝛽𝐸 [𝜛2𝑡−1]= 𝜔 + 𝛼𝐸 [𝛼2𝑡 ] + (𝛼 + 𝛽) 𝐸 [𝜛2𝑡 ](stationarity) . (95)

We obtain 𝐸 [𝜛2𝑡 ] = 𝜔 + 𝛼𝐸 [𝛼2𝑡 ]1 − 𝛼 − 𝛽 . (96)

The expectation of 𝛼2𝑡 is given by𝐸 [𝛼2𝑡 ] = 𝐸 [(𝜇 + 𝛿𝑋𝑡−1)2]= 𝜇2 + 2𝜇𝛿𝐸 [𝑋𝑡] + 𝛿2𝐸 [𝑋2𝑡 ]= 𝜇2 + 2 𝛿𝜇21 − 𝛿 + 𝛿2𝜇2(1 − 𝛿)2= 𝜇2(1 − 𝛿)2 .
(97)

It follows that 𝐸 [𝜛2𝑡 ] = 𝜔 (1 − 𝛿)2 + 𝛼𝜇2(1 − 𝛼 − 𝛽) (1 − 𝛿)2 (98)

and the variance in (91) becomes𝑉 (𝑋𝑡) = 𝜔 (1 − 𝛿)2 + 𝛼𝜇2(1 − 𝛼 − 𝛽) (1 − 𝛿)2 + 𝑉 (𝜇 + 𝛿𝑋𝑡−1)
= 𝜔 (1 − 𝛿)2 + 𝛼𝜇2(1 − 𝛼 − 𝛽) (1 − 𝛿)2 + 𝛿2𝑉 (𝑋𝑡)
= 𝜔 (1 − 𝛿)2 + 𝛼𝜇2(1 − 𝛼 − 𝛽) (1 − 𝛿2) (1 − 𝛿)2 .

(99)

This variance is positive and finite for 𝜇 ∈ R, |𝛿| < 1, 𝜔 > 0,𝛼 > 0, 𝛽 > 0, and 𝛼 + 𝛽 < 1.
4.3. Model Simulation. We simulated the data from (1) with𝜇 = 0.5, 𝛿 = 0.3, for the AR(1) part and 𝑤 = 0.1, 𝛼 = 0.35,
for the ARCH(1) and 𝑒𝑡 ∼ i.i.d. N(0, 1). The data plot is
represented by Figure 1.

Our algorithm gives the estimation of the conditional
scale function which suffers from boundary effects as it is
seen from Figure 2. This issue is recurrent while performing
Kernel Density Estimations.The reason is that, at the bound-
aries, 𝑔(𝑧) is underestimated because of the minimal number
of points [28]. The consistency of our estimator is dependent
on this problem of big variations at the boundaries. This
increases the Average Squared Error between two different
estimations from the same model.
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Figure 1: Plot of the simulated AR(1)-ARCH(1).
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Figure 2: Conditional scale function estimate at 𝜏 = 0.75.
4.4. Boundary Correction. To correct the boundary effects,
we use the method of box-plot fences proposed by [29] to
detect the extreme values that make the estimation too rough
at the extremities of the CCDF estimations’ curves. Our
estimator, being the inverse of the CCDF, is naturally rough at
extremities. Among the Kernel functions, only the Gaussian
can handle the sparseness of points at boundaries because
its domain is R. The other kernel functions can bring zero
at extremities and make the estimation of the CCDF wrong.
What we do is to omit the points that are extremely far from
the others by the box-plot fencesmethod.Themethod consist
of determining the first and the third quantiles from the 𝑍𝑡’s.
Outliers are the points that are located outside the interval[𝑄1 − 3 × (𝑄3 − 𝑄1) , 𝑄3 + 3 × (𝑄3 − 𝑄1)] , (100)

where𝑄1 and𝑄3 are the first and the third quantiles. Figure 3
is the representation of 𝑍𝑡 and the transformed response
variable𝑋∗𝑡 defined in (34) at level 𝜏 = 0.75.

The gray points are outliers from (100). We lose some
information by deleting them but we get the possibility of
performing the estimation of a continuous curve of the CSF.
Figure 4 is the estimations of the CSF at levels 0.25, 0.5
(median), 0.75, and 0.9. As we can see on the graphic, despite
the optimal bandwidth for the empirical pdf of 𝑍𝑡 at point 𝑧,
we get unsmoothed curves at high level 𝜏 > 0.5.
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Figure 3: Scatter plot and outliers detection.

0

1

2

3

4

X
∗

−0.5 0.0 0.5 1.0 1.5 2.0−1.0
Z

Figure 4: CSF estimations.

The curves represent the estimations of the CSF at 𝜏 =0.9, 0.75, 0.50, 0.25 from up to down. As it is seen in Figure 4,
some curves are not smooth; that is why the NW method
is discussed in Section 2.2 which requires that unsmoothed
estimator and the bins 𝑧∗1 , 𝑧∗2 , . . . , 𝑧∗𝑁. We obtain Figure 5
which combines the two estimations.

The next section discusses how precise is our estimation
with the optimal bandwidth selection with the calculation of
the MASE (Mean Average Squared Errors).

4.5. Consistency. The consistency of the estimator can be
shown with the calculation of the Mean Average Squared
Error providing the quantitative assessment of the accuracy of
our estimator. This is a kind of bootstrap method to calculate
the average gap between𝑚 estimated CSFs. The formula is

MASE (𝜛𝜏 (𝑧))= 1𝑛 𝑛∑
𝑗=1

[ 1𝑚 𝑚∑
𝑖=1

(𝜛𝜏,1 (𝑧𝑖) − 𝜛𝜏,𝑗 (𝑧𝑖))2] . (101)

Table 2 shows that the estimator of the CSF is more precise
at level 𝜏 ≤ 0.55 for both the smoothed and the LOWESS
versions.
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Table 2: Mean average squared errors (MASE).

Kern. func. 𝑛 𝑚 = 10 𝑚 = 50 𝑚 = 100
mase (.25)

Gaussian
250 0.0017 0.0013 0.0010 0.0008 0.0010 0.0009
500 0.0011 0.0008 0.0008 0.0007 0.0007 0.0006
1,000 0.0006 0.0004 0.0005 0.0004 0.0005 0.0004

Epanech
200 0.0012 0.0009 0.0013 0.0011 0.0011 0.0009
500 0.0007 0.0006 0.0010 0.0008 0.0011 0.0009
1,000 0.0006 0.0004 0.0007 0.0005 0.0006 0.0005

Triweight
200 0.0005 0.0005 0.0006 0.0005 0.0006 0.0005
500 0.0006 0.0005 0.0005 0.0004 0.0005 0.0004
1,000 0.0003 0.0002 0.0003 0.0002 0.0004 0.0003

mase (.50)

Gaussian
250 0.0054 0.0045 0.0063 0.0055 0.0051 0.0043
500 0.0036 0.0029 0.0048 0.0042 0.0047 0.0038
1,000 0.0028 0.0022 0.0025 0.0021 0.0028 0.0023

Epanech
200 0.0067 0.0057 0.0105 0.0091 0.0071 0.0060
500 0.0045 0.0036 0.0057 0.0046 0.0042 0.0034
1,000 0.0031 0.0026 0.0041 0.0033 0.0029 0.0023

Triweight
200 0.0008 0.0007 0.0030 0.0026 0.0039 0.0034
500 0.0023 0.0020 0.0021 0.0018 0.0025 0.0021
1,000 0.0019 0.0016 0.0016 0.0013 0.0016 0.0013

mase (.75)

Gaussian
250 0.0234 0.0183 0.0237 0.0197 0.0294 0.0253
500 0.0227 0.0178 0.0223 0.0178 0.0171 0.0132
1,000 0.0099 0.0079 0.0138 0.0110 0.0125 0.0095

Epanech
200 0.0156 0.0123 0.0266 0.0223 0.0274 0.0227
500 0.0184 0.0152 0.0235 0.0189 0.0181 0.0147
1,000 0.0162 0.0130 0.0102 0.0074 0.0136 0.0106

Triweight
200 0.0190 0.0176 0.0145 0.0127 0.0167 0.0150
500 0.0112 0.0099 0.0131 0.0113 0.0097 0.0081
1,000 0.0075 0.0064 0.0073 0.0058 0.0069 0.0056

mase (.90)

Gaussian
250 0.0880 0.0692 0.1180 0.0893 0.0971 0.0770
500 0.0468 0.0377 0.0890 0.0644 0.0742 0.0525
1,000 0.0932 0.0690 0.0491 0.0367 0.0510 0.0365

Epanech
200 0.0664 0.0577 0.1074 0.0866 0.1050 0.0844
500 0.0816 0.0515 0.0827 0.0625 0.0879 0.0617
1,000 0.0740 0.0510 0.0449 0.0315 0.0373 0.0274

Triweight
200 0.0510 0.0434 0.0452 0.0382 0.0467 0.0402
500 0.0453 0.0337 0.0390 0.0333 0.0391 0.0328
1,000 0.0172 0.0133 0.0268 0.0205 0.0267 0.0209

5. Conclusion

We have derived an estimator for the conditional scale func-
tion in an AR(1)-GARCH(1) and despite the heavy-tail of the
data, we could deal with the boundary effect and were able
to show the consistency of the estimator through a Monte
Carlo study. We assumed that the QAR(1) is known and is
zero and, along with the regularity assumptions, we derived

the estimator which can be improved in some next papers.
The very next paper will focus on the estimation when the
QAR(1) is unknown.
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