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Reliability testing is often carried out with small sample sizes and short duration because of increasing costs and the restriction of
development time. Therefore, for highly reliable products, zero-failure data are often collected in such tests, which could not be
used to evaluate reliability by traditional methods. To cope with this problem, the match distribution curve method was proposed
by some researchers. The key step needed to exercise this method is to estimate the failure probability, which has yet to be solved
in the case of the Weibull distribution. This paper presents a method to estimate the intervals of failure probability for the Weibull
distribution by using the concavity or convexity and property of the distribution function. Furthermore, to use the method in
practice, this paper proposes using the approximate value of the shape parameter determined by either engineering experience or
by hypothesis testing through a p value. The estimation of the failure probability is thus calculated using a Bayesian approach. A
numerical example is presented to validate the effectiveness and robustness of the method.

1. Introduction

Reliability testing is usually required in product development
to evaluate product reliability. Product lifetimes are becoming
longer than in previous decades because of the improvement
of reliability. Therefore, with the restrictions of increasing
costs and short development times, reliability testing is often
carried out with small sample sizes and short duration, which
will often lead to zero-failure data [1]. Accordingly, it is
desirable to estimate product reliability using the zero-failure
data.

The zero-failure scenario is described as follows.
Let 𝐹 (𝑡, 𝜃) denote the lifetime distribution of a product,

where 𝜃 ∈ Θ is the parameter of the distribution and
Θ is the parameter space. The reliability test is composed
of 𝑘 truncated tests with corresponding censored time
𝑡
𝑖 (𝑖 = 1, 2, . . . , 𝑘), which satisfies 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
. The

sample size for the 𝑖th test is 𝑛
𝑖
. As no failure is observed

in the tests, the zero-failure data is expressed by (𝑡
𝑖
, 𝑛
𝑖
), 𝑖 =

1, 2, . . . , 𝑘. Let 𝑝
𝑖
= 𝑃 (𝑇 ≤ 𝑡

𝑖
) = 𝐹 (𝑡

𝑖
) denote the failure

probability of the product at time 𝑡
𝑖
. Then 𝑝

𝑖
satisfies the

following statements:

(1) 𝑝
0
= 0, when 𝑡 = 0;

(2) 𝑝
1
< ⋅ ⋅ ⋅ < 𝑝

𝑘
.

Let 𝑠
𝑖
= ∑
𝑘

𝑗=𝑖
𝑛
𝑗
denote the number of samples at time 𝑡

𝑖
;

that is, there are 𝑠
𝑖
samples in the reliability test at time 𝑡

𝑖
.

Estimating product reliability based on zero-failure data
is challenging. Welker and Lipow [1] first raised this problem
and, since then, some researchers have made progress on
the topic [2, 3]. For the binomial distribution, Bailey [4]
proposes a model to predict failure probability from zero-
failure data; however, his model requires a large sample size.
Based on zero-failure data,Wang andLanganke [5] present an
approach that compares the reliability index—mean time to
failure (MTTF)—between a newly designed product and the
old product, but their approach is based on the assumption
that the shape parameters for the two products are the same,
which limits the application in practice. Miller et al. [6]
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study the estimation of failure probability for software when
no errors are observed in testing. Jiang et al. [7] construct
the shrinkage preliminary test estimator (SPTE) to estimate
the reliability of a product following a Weibull distribution,
when a prior estimate is available. Chen et al. [8] introduce
the optimal confidence limit method to obtain the optimal
lower confidence limit of some parameters of reliability
distributions, in the case of zero-failure data. However, their
method only considers one sample in each test and could not
be applied to the case of multiple samples in each test. As
no failure is observed in the tests, the maximum likelihood
estimation (MLE) approach could not be applied in such
a scenario. To solve this problem, L. Wang and B. Wang
[9] propose the modified maximum likelihood estimation
(MMLE), introducing a new parameter, 𝐿, to modify the
results obtained by applying MLE on the zero-failure data.
The key to MMLE is the value of parameter 𝐿. However,
some researchers have found that the parameter, 𝐿, will often
cause the overestimation of parameters. The overestimation
usually results from the improper use of the zero-failure data,
which has raised debates among researchers for a long time.
One solution is to introduce failure informationwhen dealing
with zero-failure data [10]. The key to this method is to
acquire the failure information (i.e., failure time), whereas
it is often estimated by the zero-failure data. This will result
in an inaccurate estimate when the test duration is far less
than the real lifetime of a product [11]. Mao and Luo [12]
present the match distribution curve (MDC) method to
solve the evaluation on zero-failure data: first, estimating the
failure probability 𝑝

𝑖
at censoring time 𝑡

𝑖
is carried out; then,

the data pairs (𝑡
𝑖
, 𝑝
𝑖
) are used to construct a distribution

curve to estimate the parameters of the distribution; finally,
the reliability can be evaluated based on the distribution.
The MDC method is widely used in various distributions
with zero-failure data; however, it is not discussed in the
case of a Weibull distribution because of the computational
complexity of the distribution. Motivated by this problem,
we focus our research on the failure probability estimation
method in a Weibull distribution.

2. Weibull Distribution

When evaluating reliability using test data, we often assume
that the product life follows some kind of distribution. Then,
the parameters of the distribution are estimated based on
the data, and reliability is evaluated by using the determined
distribution. The Weibull distribution is one of the most
commonly used distributions in reliability evaluation because
of its ability to take on various forms by adjusting its
parameters [13]. The two-parameter Weibull distribution is
defined as

𝑓 (𝑡) =
𝑚

𝜂
(
𝑡

𝜂
)

𝑚−1

exp [−( 𝑡
𝜂
)

𝑚

] (𝑡 > 0) , (1)

where𝑚 is the shape parameter and 𝜂 is the scale parameter.
The CDF of the Weibull distribution is defined as

𝐹 (𝑡) = 𝑃 (𝑇 ≤ 𝑡) = 1 − exp [−( 𝑡
𝜂
)

𝑚

] . (2)

The failure rate function 𝜆 (𝑡) = 𝑚/𝜂 (𝑡/𝜂)
𝑚−1 is an

increasing function, when 𝑚 > 1, which describes the
character of various products. The Weibull distribution will
become another type of distribution when the value of shape
parameter 𝑚 varies. For example, it becomes an exponential
distribution when 𝑚 = 1; it becomes a Rayleigh distribution
when 𝑚 = 2; and it approximates a normal distribution
when 𝑚 ∈ [3, 4]. Ning [10] summarizes that a Weibull dis-
tribution can be used to describe traumatic failures, when
𝑚 ≤ 1, and it can be applied to describe degradation failures,
when 𝑚 ≥ 3.25. Therefore, it can be adopted to describe
the combined effects of traumatic failures and degradation
failures, when𝑚 ∈ (1, 3.25), where the ratio of the two failures
is determined by the value of 𝑚. Due to the flexibility of
Weibull distribution, it is widely used in reliability evaluation
in practice, even in the cases of zero-failure data.

As the key step in the MDCmethod is failure probability
estimation, which is yet to be solved in the case of a Weibull
distribution, we present this estimation procedure in the
following section.

3. Failure Probability Estimation

Let 𝑦 = ln ln (1/1 − 𝐹), 𝑥 = ln 𝑡, and 𝑏 = 𝑚 ln 𝜂; then (2) is
transformed into

𝑦 = 𝑚𝑥 − 𝑏. (3)

The linear regression method could be applied to cal-
culate the parameters of the Weibull distribution. Here, the
weighted least square estimationmethod is used to obtain the
estimates of parameters �̂� and 𝜂, which minimizes

𝑄 =

𝑘

∑

𝑖=1

𝑤
𝑖
(𝑦
𝑖
− 𝑚𝑥
𝑖
+ 𝑚 ln 𝜂)2 . (4)

As it is already proven that the weighted least square
estimates, �̂� and 𝜂, are unbiased, we propose the use of the
method and briefly introduce it here.

Denote the weight 𝑤
𝑖
= 𝑛
𝑖
𝑡
𝑖
/∑
𝑘

𝑖=1
𝑛
𝑖
𝑡
𝑖 (𝑖 = 1, 2, . . . , 𝑘),

where 𝑡
𝑖
is failure time. Let 𝐴 = ∑

𝑘

𝑖=1
𝑤
𝑖
𝑥
𝑖
, 𝐵 = ∑

𝑘

𝑖=1
𝑤
𝑖
𝑥
2

𝑖
,

𝐶 = ∑
𝑘

𝑖=1
𝑤
𝑖
𝑦
𝑖
, and 𝐷 = ∑

𝑘

𝑖=1
𝑤
𝑖
𝑥
𝑖
𝑦
𝑖
. The weighted least

square estimates, �̂� and 𝜂, are obtained by referring to

�̂� =
𝐵 − 𝐴

2

𝐷 − 𝐴𝐶
,

𝜂 = exp (𝐵𝐶 − 𝐴𝐷
𝐵 − 𝐴2

) .

(5)

After �̂� and 𝜂 are acquired, given the test time 𝑡
𝑖
, it is easy

to calculate the failure probability at time 𝑡
𝑖
for the Weibull

distribution by

𝑝
𝑖
= 𝐹 (𝑡

𝑖
) = 1 − exp[−(

𝑡
𝑖

𝜂
)

�̂�

] . (6)

The above procedure is typical to obtain the failure
probability at time 𝑡

𝑖
for the Weibull distribution given
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that 𝑡
𝑖 (𝑖 = 1, 2, . . . , 𝑘) is the corresponding failure time. To

calculate the failure probability at time 𝑡
𝑖
for the Weibull

distribution with zero-failure data, we have to consider an
alternative solution. This is discussed in the next subsection
for Weibull distribution.

3.1. Failure Probability Estimation with Zero-Failure Data. In
cases of zero-failure data, Ning [10] proposes the following
equation to estimate 𝑝

𝑖
at censoring time 𝑠

𝑖
:

𝑝
𝑖
=

0.5

𝑠
𝑖
+ 1

(𝑖 = 1, 2, . . . , 𝑘) . (7)

Equation (7) is designed to calculate themean value of the
upper limit 1/ (𝑠

𝑖
+ 1) and lower limit 0, which is too simple

and arbitrary, and often results in inaccurate estimation.
Bayesian theory is the most popular method to estimate

𝑝
𝑖
as it combines prior information with test data, making

the estimation more accurate than if only prior information
or test data was used alone. In Bayesian theory, distribution
parameter 𝜃 is regarded as a random variable, and the prior
distribution is determined by using historical data, experts’
judgments, or data from similar products to obtain the
posterior distribution of 𝜃 by

𝜋 (𝜃 | 𝑥) =
𝜋 (𝜃) 𝑓 (𝑥 | 𝜃)

∫
𝜃
𝜋 (𝜃) 𝑓 (𝑥 | 𝜃) 𝑑𝜃

, (8)

where 𝑓 (𝑥 | 𝜃) is the PDF of the population 𝑋, or it can
be replaced by likelihood function 𝐿(𝜃), and 𝜋 (𝜃) is the
prior distribution of 𝜃. The point estimate of 𝜃 is 𝜃 =

∫
𝜃
𝜃𝜋 (𝜃 | 𝑥) 𝑑𝜃, which is the expectation of the posterior

distribution under the square loss.
In the case of zero-failure data, to estimate 𝑝

𝑖
, the

likelihood function is usually defined as 𝐿 = (1 − 𝑝
𝑖
)
𝑠𝑖 .

Therefore, in terms of Bayes’ theorem, the key to estimating
𝑝
𝑖
is to choose the prior distribution of𝑝

𝑖
. To achieve this, two

important answers should be sought here: the right choice of
the prior distribution and the determination of the interval of
𝑝
𝑖
in the prior distribution.

(1) The Right Choice of the Prior Distribution of 𝑝
𝑖
. For the

choice of the prior distribution of 𝑝
𝑖
, one may simply assume

that 𝑝
𝑖
follows the uniform distribution. However, since the

data exhibits zero failure, the value of failure probability 𝑝
𝑖
is

more likely to be small.Therefore, Han and Li [14] present the
idea of utilizing the decreasing function to construct the prior
distribution. We also adopt this idea and use it to construct
the prior distribution in the next section.

(2) The Interval of 𝑝
𝑖
. To determine the interval of 𝑝

𝑖
for a

normal distribution, Zhang [15] proves that the CDF of 𝐹 (𝑡)
is a concave function in 𝑡, when 𝑡 < 𝜇. Then, based on the
properties of the concave function, Zhang concludes that the
following inequalities stand:

0 <
𝑝
1

𝑡
1

<
𝑝
2

𝑡
2

< ⋅ ⋅ ⋅ <
𝑝
𝑘

𝑡
𝑘

<
𝑝
𝑢

𝑡
𝑘

. (9)

Then the interval of 𝑝
𝑖
is [0, (𝑡

𝑖
/𝑡
𝑘
) 𝑝
𝑢
], where 𝑝

𝑢
is the upper

limit preset by expert or engineering experience.

Inspired by this theory, and given the distribution type,
researchers tried to use the properties of the distribution
to determine the interval of 𝑝

𝑖
if there is no other prior

information: in the case of an exponential distribution, Ning
[10] obtains the interval of 𝑝

𝑖
as [𝑝
𝑖−1
, (𝑡
𝑖
/𝑡
𝑖−1
) 𝑝
𝑖−1
], and

in the case of an extreme distribution, Li [11] obtains the
interval of 𝑝

𝑖
as [𝑝
𝑖−1
, (𝑡
𝑖
/𝑡
𝑘
) 𝑝
𝑢
]. However, in the case of

a Weibull distribution, there is no reference to determine
the interval of 𝑝

𝑖
, which is why we choose to study this

problem according to the convex and concave properties of
the Weibull distribution.

3.2. Weibull Failure Probability Estimation. Based on the
accumulated test data from Weibull-distributed products in
worldwide practice, Han [16] states that the shape parameter,
𝑚, for Weibull-distributed products is usually within the
interval of [1, 10]. So, the interval for𝑚 is set to be [1, 10].

To obtain the convex and concave properties of the
Weibull distribution, by taking the second derivative of (2),
we have

𝑑
2
𝐹

𝑑𝑡2
=

𝑚𝑡
𝑚−2 exp (− (𝑡/𝜂)𝑚)

𝜂𝑚
(𝑚 − 1 −

𝑚𝑡
𝑚

𝜂𝑚
) . (10)

From (10), it is easy to find that 𝑑2𝐹/𝑑𝑡2 < 0, when
0 < 𝑚 ≤ 1, and when 𝑚 > 1, let the inflexion point 𝑡turn =
𝜂 ((𝑚 − 1) /𝑚)

1/𝑚; then 𝑑2𝐹/𝑑𝑡2 > 0, when 𝑡 ∈ [0, 𝑡turn);
𝑑
2
𝐹/𝑑𝑡
2
< 0, when 𝑡 ∈ (𝑡turn, +∞). So, according to the

convex and concave criteria, we have the following: 𝐹 (𝑡) is
convex, when 0 < 𝑚 ≤ 1, and 𝐹 (𝑡) is concave, when 𝑚 > 1

and 𝑡 ∈ [0, 𝑡turn).This conclusion provides us with the criteria
for determining the interval of 𝑝

𝑖
.

(1)When 0 < 𝑚 ≤ 1, 𝐹 (𝑡) is convex, so we have

𝑝
1

𝑡
1

>
𝑝
2

𝑡
2

> ⋅ ⋅ ⋅ >
𝑝
𝑖−1

𝑡
𝑖−1

>
𝑝
𝑖

𝑡
𝑖

> ⋅ ⋅ ⋅ >
𝑝
𝑘

𝑡
𝑘

. (11)

As we have assumed that 𝑝
𝑖−1

< 𝑝
𝑖
, the following

inequality stands:

𝑝
𝑖−1
< 𝑝
𝑖
<

𝑡
𝑖

𝑡
𝑖−1

𝑝
𝑖−1 (𝑖 ≥ 2) . (12)

Therefore, the interval of 𝑝
𝑖
is (𝑝
𝑖−1
, (𝑡
𝑖
/𝑡
𝑖−1
) 𝑝
𝑖−1
), which

could be calculated by an iterativemethod beginning from 𝑝
1

(𝑖 = 1).
The calculation begins with 𝑝

1
, which can be estimated

by the Bayesian method. Let the interval of 𝑝
1
be (0, 𝑝upper),

where 𝑝upper is the upper limit set by experts. In practice,
𝑝upper = 0.5 is often used. However, this value of 𝑝upper is
conservative here, as no failure occurs; we can assume that
𝑝
1
< 𝑝
𝑖
≤ 0.5 (𝑖 ≥ 2), so 𝑝upper could be set at less than 0.5.

(2)When 𝑚 > 1, 𝐹 (𝑡) is not strictly convex or concave,
which makes it difficult to analyze. Therefore, we present our
solution as follows.

We can acquire the median time 𝑡mid = 𝜂 exp (ln ln 2/𝑚)
by referring to (1), when 𝐹 (𝑡mid) = 0.5. The inflexion point
(time) is obtained in a similar manner, which is denoted by
𝑡turn = 𝜂 ((𝑚 − 1)/𝑚)

1/𝑚.
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As the data reveals no failure, we assume that 𝑡
1
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< 𝑡mid. Therefore, to find the interval, within which 𝐹 (𝑡)

exhibits convexity or concavity, wewill determine the interval
that satisfies 𝑡mid ≤ 𝑡turn.

Let 𝑔(𝑥) = exp (ln ln 2/𝑥) and ℎ (𝑥) = ((𝑥 − 1)/𝑥)
1/𝑥,

where 𝑥 ∈ (1, 10]. Then it is easy to prove that both 𝑔 (𝑥)
and ℎ (𝑥) are strictly increasing in (1, 10] and 𝑔 (𝑥) = ℎ (𝑥),
when 𝑥 ≈ 3.3, as shown in Figure 1.Therefore, when𝑚 ≥ 3.3,
we have 𝑡mid ≤ 𝑡turn, and 𝐹 (𝑡) is concave.

When 3.3 ≤ 𝑚 ≤ 10, 𝐹 (𝑡) is concave. According to
the property of the concave function (as shown in (9)), we
have (𝑡

𝑖
/𝑡
𝑖−1
) 𝑝
𝑖−1

< 𝑝
𝑖
. Thus, the upper limit of 𝑝

𝑖
needs

to be determined. Li [11] and Zhang [15] suggest setting a
universal value of the upper limit, 𝑝upper, for all 𝑝𝑖, which, in
fact, extends the interval of 𝑝

𝑖
and makes analysis inaccurate.

In this paper, we introduce the parameter𝑝con, which satisfies
𝑝
𝑖
< 𝑝
𝑖−1

+ 𝑝con, where 𝑝con is the possible difference of
𝑝
𝑖
and 𝑝

𝑖−1
, that is, 𝑝con ≜ Δ𝑝 = 𝑝

𝑖
− 𝑝
𝑖−1

. As there are
𝑘 censored tests with zero-failure data, we can assume that
the value of 𝑝con is around 0.5/𝑘. So, its value is limited
to a much smaller range and can be preset by expert or
engineering experience. So we have when 𝑚 ∈ [3.3, 10],
𝑝
𝑖
∈ ((𝑡
𝑖
/𝑡
𝑖−1
) 𝑝
𝑖−1
, 𝑝
𝑖−1
+ 𝑝con).

(3) When 1 ≤ 𝑚 ≤ 3.3, there is no similar method
to find the concave or convex properties of 𝐹 (𝑡). We can
transform (2) into the following equations, given 𝑝

𝑖−1
and 𝑝

𝑖
,

respectively:

ln ln 1

1 − 𝑝
𝑖−1

= 𝑚 ln 𝑡
𝑖−1
− 𝑚 ln 𝜂,

ln ln 1

1 − 𝑝
𝑖

= 𝑚 ln 𝑡
𝑖
− 𝑚 ln 𝜂.

(13)

We can combine these two equations to obtain

ln
ln (1 − 𝑝

𝑖−1
)

ln (1 − 𝑝
𝑖
)
= 𝑚 ln

𝑡
𝑖−1

𝑡
𝑖

< ln
𝑡
𝑖−1

𝑡
𝑖

, (14)

which is equivalent to

ln (1 − 𝑝
𝑖−1
)

𝑡
𝑖−1

>
ln (1 − 𝑝

𝑖
)

𝑡
𝑖

. (15)

Then we can obtain the lower limit of 𝑝
𝑖
as 1 −

(1 − 𝑝
𝑖−1
)
𝑡𝑖/𝑡𝑖−1 . For the upper limit of 𝑝

𝑖
, in a similar manner,

let it be 𝑝
𝑖−1

+ 𝑝con. So here we have, when 1 < 𝑚 < 3.3,
1 − (1 − 𝑝

𝑖−1
)
𝑡𝑖/𝑡𝑖−1

< 𝑝
𝑖
< 𝑝
𝑖−1
+ 𝑝con.

Now, we can determine the intervals of 𝑝
𝑖
, the failure

probability in prior distribution, with respect to the values
of 𝑚. Denote the interval by (𝑝

𝑙
, 𝑝
𝑢
). Let (1 − 𝑝

𝑖
)
2 denote

the core of the prior distribution. To meet the requirement
of the distribution (i.e., ∫

𝑝
𝐴 (1 − 𝑝

𝑖
)
2
𝑑𝑝 = 1) the PDF

of the prior distribution of 𝑝
𝑖
is defined by 𝜋 (𝑝

𝑖
) =

3 (1 − 𝑝
𝑖
)
2
/ ((1 − 𝑝

𝑙
)
3
− (1 − 𝑝

𝑢
)
3
).Then, by referring to (8),

we can obtain the PDF of the posterior distribution for 𝑝
𝑖
as

𝜋 (𝑝
𝑖
| 𝑠) = (𝑠

𝑖
+ 3) (1 − 𝑝

𝑖
)
𝑠𝑖+2

/ ((1 − 𝑝
𝑙
)
𝑠𝑖+3

− (1 − 𝑝
𝑢
)
𝑠𝑖+3
).
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Figure 1: Comparison between abscissas of inflection point and
time when failure probability is 0.5.

Under the square loss assumption, we can acquire the
expectation of 𝑝

𝑖
as the estimate as follows:

𝑝
𝑖
=

𝑠
𝑖
+ 3

(1 − 𝑝
𝑙
)
𝑠𝑖+3

− (1 − 𝑝
𝑢
)
𝑠𝑖+3

[𝑞 (𝑝
𝑢
) − 𝑞 (𝑝

𝑙
)] , (16)

where

𝑞 (𝑥) =
(1 − 𝑥)

𝑠𝑖+4

𝑠
𝑖
+ 4

−
(1 − 𝑥)

𝑠𝑖+3

𝑠
𝑖
+ 3

. (17)

According to this, the interval of 𝑝
𝑖
depends on the value

of𝑚. But it is not necessary to find the exact value of𝑚; only
the interval of𝑚 is to be determined to calculate the estimate
of failure probability.

In our early paper [17], we presented the above estimate
without discussing the estimate of𝑚. There is a large amount
of engineering experience in practice to help us estimate the
interval of𝑚 [18]. If there is little knowledge that we can refer
to, we propose using the following method [19] to determine
𝑚, which is based on hypothesis testing.

(1) Propose the hypothesis:𝐻
0
: 𝑚 = 𝑚

0
𝐻
1
: 𝑚 ̸= 𝑚

0
.

(2) Construct the statistic

𝐺
𝑘
=

∑
𝑘−1

𝑖=1
𝑖𝑊
𝑖+1

(𝑘 − 1)∑
𝑘

𝑖=1
𝑊
𝑖

, (18)

where 𝑊
𝑖
= (𝑘 − 𝑖 + 1) (𝑡

𝑚

𝑖
− 𝑡
𝑚

𝑖−1
) (𝑖 = 1, . . . , 𝑘) and

𝑡
0
= 0.
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Table 1: Sample data.

Subgroup number 1 2 3 4 5 6
Parameters 𝑚 = 0.8, 𝜂 = 2800
Censoring time (h) 33.329 34.388 141.569 417.819 657.716 778.398
𝑠 12 11 10 8 7 6
Parameters 𝑚 = 1.8, 𝜂 = 2800
Censoring time (h) 531.821 634.651 826.586 1029.37 1360.66 1768.31
𝑠 12 11 9 7 5 3
Parameters 𝑚 = 3.8, 𝜂 = 2800
Censoring time (h) 2.38799 785.303 1428.62 1706.08 1724.18 2237.69
𝑠 12 10 9 8 7 5

(3) When 3 ≤ 𝑘 ≤ 20, the rejection interval for 𝐻
0
is

{𝐺
𝑘
> 𝜁
1−𝛼/2

, 𝐺
𝑘
< 𝜁
𝛼/2
}, where 𝜁

𝛼/2
is the 100 (𝛼/2)%

quantile, and the CDF of 𝐺
𝑘
is defined by

𝑃 (𝐺
𝑘
≤ 𝑥) = 𝑥

𝑘−1
{

𝑘−1

∏

𝑖=1

𝑐
𝑖
}

−1

−

𝑘−1

∑

𝑗=𝑙+1

(𝑥 − 𝑐
𝑗
)
𝑘−1{

{

{

𝑐
𝑗

𝑘−1

∏

𝑟 ̸=𝑗

(𝑐
𝑟
− 𝑐
𝑗
)

}

}

}

−1

,

(19)

where 𝑐
𝑗
= (𝑘 − 𝑗) / (𝑘 − 1) and 𝑙 = max (arg 𝑡 ≤ 𝑐

𝑙
).

(4) Let 𝑝 value = 𝑃 {𝐺
𝑘
> 𝑔
𝑟
| 𝑚 = 𝑚

0
}, which is maxi-

mized, if𝑚 = 𝑚
0
, 𝑔
𝑟
is the sample result of 𝐺

𝑘
. When

𝑝 value is maximized, the estimate of𝑚 is the best.

From the above introduction to our proposed method,
one may find that to estimate the failure probability of a
Weibull distribution with zero-failure data, it requires only
roughly determining the interval of parameter 𝑚 (instead of
obtaining its exact value). Besides, there is no need to match
the exact value of 𝑚 by the above hypothesis testing method
as it greatly increases the complexity of the calculation.
Therefore, in practice, if the 𝑝 value in the hypothesis testing
is comparatively large, we can conclude that parameter 𝑚 is
determined.

3.3. Summary of the Method. The proposed method is sum-
marized as follows.

(1) Roughly determine the interval of parameter𝑚 in the
Weibull distribution. If engineering experience is not
available, roughly estimate 𝑚 by referring to the 𝑝
value in the hypothesis testing.

(2) Based on the estimate of𝑚, determine the interval of
failure probability by

𝑝
𝑖

∈

{{{{{{{{{

{{{{{{{{{

{

(𝑝
𝑖−1
,
𝑡
𝑖

𝑡
𝑖−1

𝑝
𝑖−1
) , 0 < 𝑚 ≤ 1

(1 − (1 − 𝑝
𝑖−1
)
𝑡𝑖/𝑡𝑖−1

,

𝑝
𝑖−1
+ 𝑝con) , 1 < 𝑚 < 3.3, 𝑝

1
∈ (0, 𝑝upper)

(
𝑡
𝑖

𝑡
𝑖−1

𝑝
𝑖−1
, 𝑝
𝑖−1
+ 𝑝con) , 3.3 ≤ 𝑚 ≤ 10

𝑖 ≥ 2.

(20)

(3) Estimate 𝑝
𝑖
by (16).

4. A Numerical Example

To illustrate the validity of our proposedmethod, it is applied
to estimate the failure probability and comparedwith the true
value from a given Weibull distribution. Simulation data is
used in this numerical example. There are twelve samples
in the example and they will experience six censored tests.
We use MATLAB software to generate several groups of
random values for twelve variables following a given Weibull
distribution and, for each group, randomly divide them
into six subgroups. The largest variable in each subgroup is
regarded as the censoring time for the subgroup. To ensure
that the random variables generated correspond to no failure,
the failure probability of each variable should be less than 0.5.
This means that only those groups whose failure probability
of the largest variable in each subgroup is less than 0.5 are
chosen as our samples. The samples are listed in Table 1.

After the data is obtained, the failure probability at
censoring time 𝑡

𝑖
is estimated and is then compared with

the true value, calculated by the given Weibull distribution
at censoring time 𝑡

𝑖
. The results are also compared with those

calculated by the classical method in (7). In this example, we
assume that the interval of parameter 𝑚 is predetermined
by engineering experience or by our proposed hypothesis
testing, and we also try to figure out the effects that 𝑝upper and
𝑝con have on the final estimation.

Figure 2 shows the samples generated by the Weibull
distribution with the parameters 𝑚 = 0.8, 𝜂 = 2800. The
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Figure 2: Comparison of failure probability among real value, estimator, and classical estimation value when𝑚 = 0.8.
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Figure 3: Comparison of failure probability among true value, estimator, and classical estimation value when𝑚 = 1.8.
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Figure 4: Comparison of failure probability among real value, estimator, and classical estimation value when𝑚 = 3.8.

values of 𝑝upper are assigned to 0.3 and 0.25 to compare the
effects of 𝑝upper. Figures 3 and 4 are generated by the Weibull
distributions with the parameters 𝑚 = 1.8, 𝜂 = 2800 and
𝑚 = 3.8, 𝜂 = 2800, respectively. In the calculation of Figures
3 and 4, we let 𝑝upper = 0.25, where the values of 𝑝con are
assigned to 0.1 and 0.11, to compare the effects of 𝑝con. In all
these figures, the left graph compares the estimates by our
proposed method with those by the classical method with
the true values; the right graph shows the absolute differences
between the estimates by our proposed method and the true
values, as well as the differences between the estimates by the
classical method with the true values.

From the above comparisons, we find that

(1) 𝑝upper and 𝑝con have limited effects on the failure
probability estimation, which validates the robustness
of our proposed method;

(2) the estimations of our proposed method have less
MSEs than those of the classical method, especially
when the number of tests increases. The comparisons
indicate that our method is more accurate than the
classical method.

5. Conclusion

Reliability analysis based on zero-failure data attracts more
and more attention as products become more reliable and
very few failures are observed during testing. To solve the
failure probability estimation problem in the Weibull distri-
bution with zero-failure data, this paper presents a method
of combining the decreasing function method with Bayesian

theory to estimate the failure probability. The proposed
method applies the concave and convex properties of the
Weibull distribution with respect to the shape parameter, 𝑚,
and provides the corresponding interval of failure probability,
𝑝.Then, the prior distribution of𝑝 is constructed by using the
decreasing function method, based on which the estimate of
𝑝
𝑖
is calculated by applying theBayesianmethod.Anumerical

example is presented to compare the estimations made by
the proposed method and the classical method and the true
values, which illustrates the validity and robustness of the
proposed method.

Notations

CDF: Cumulative distribution function
PDF: Probability density function
MSE: Mean square error.
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