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Increase of energy efficiency and level of information system development of rotor machines in general requires improvement of
theoretical approaches to research. In the present paper the problem of high-precision and high-performance computing programs
development has been considered to simulate rotor vibrations. Based on two-layer feed-forward neural networks, numericalmodels
have been developed to calculate oil film reaction forces to solve the rotor dynamics problems. Comparison has been done of linear
and nonlinear approaches to solution of rotor dynamics problems, and a qualitative evaluation has been presented of accuracy and
performance of a neural network approach compared to conventional approaches to rotor dynamics.

1. Introduction

Dynamic behavior of a rotating shaft on journal bearings
is defined by the resonance vibration at critical speeds,
self-excited vibrations due to the internal damping of the
shaft’s material, self-excited vibrations due to the oil film of
journal bearings, oil whip, and flow-induced vibrations [1–4].
Since the authors are closely connected with hydrodynamic
lubrication, this paper is dedicated to oil whirl and oil
whip problems. Oil film forces are obtained by means of
solving the hydrodynamics equations and depend on many
design and operational parameters of a bearing as well as
on various specific physical effects that may occur, such as
vibration, cavitation, and turbulence [2, 4, 5]. The number
of input parameters can reach several dozen [6]. At the
same time, development of technology in the direction of
informatization requires simultaneous increase of accuracy
and performance of the numerical models. One of the
possibleways to provide both accuracy and high performance
is using deterministic and stochastic approaches tomodeling.
Nowadays the methods and resources of implementation of

neural network algorithms are developing quite intensively,
which, based on the known data about the subject of study,
allows building multifactor models of input and output
parameters relations. Three basic levels of developed models
could be distinguished.

Models of the first level have no direct interaction with
the rotating machine; their training is based on the given
numerical or experimental data. In [7] the results of study
of an elastic rotor’s dynamics on rigid bearings have been
presented. Neural networks that have been applied are feed-
forward with two hidden layers. High accuracy has been
demonstrated formodels of rotor systemswith roller-element
bearings based on neural networks: accuracy from 82% up
to 100% has been presented. Dynamics has been studied
in a certain range of speed and for every case of speed
separately, so the neural network had to be retrained. Some
works are known, where neural network models are used to
calculate the distributed characteristics, for example, pressure
distribution in the oil film of the journal bearings [8, 9].
It should be noted that application of stochastic methods
of rotor dynamics modeling allows skipping the stage of
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distributed values calculation. Instead, one could instantly
determine the components of a resulting oil film force. In [10]
dynamics of an imbalanced rigid rotor on fluid-film bearings
has been studied. Authors determined the relation between
three kinematic characteristics and two components of the
resulting oil film force using a model of a neural network.
The numerical tests were carried out for various angular
speed and allowed determination of rotor trajectories. The
synchronous, periodic, quasiperiodic, and chaotic motions
for rotation speed within the range from 1000 to 10000 rpm
were presented as the results of calculation. The authors
suggest that there is a limitation to using linearized models
in solving the problems of dynamics; however, they do not
present a quantitative comparison of the numerical results
obtained using linear and nonlinear models. Moreover, the
reduction of the number of input variables has been done
according to Poincare transformation of Reynolds equation,
but possible outcomes of such substitutionwere not discussed
in the paper. It is also not quite clear how one introduced
kinematic variable allowed accounting for three given vari-
ables (two projections of rotor’s lateral vibration speed and
its rotating speed). It could be that the neural network had to
be retrained for every particular case of the rotating speed.
So, the results of this indeed interesting and important work
remain in need of additional verification. A number of quite
perspective papers should also be highlighted where neural
network algorithms are used to account for complex specific
phenomena [5, 11] and to optimize the operational conditions
of fluid-film bearings [12]. Models of higher level can learn
in real time using the processed measurement data. One of
the most popular applications of such models is using neural
networks to flaw detection of bearings in rotor machines
[13–16]. In [17] authors investigate the inverse model of
the squeeze-film damper bearing (force input/displacement
output) from empirical data and its application to a nonlinear
inverse rotor-bearing problem. Comparison of experimental
and numerical data showed high accuracy of themodel based
on recurrent neural networks. Models of highest level of
complexity are able to generate some control impact [18, 19].
Today such approach is used to solve the problems of control
in magnetic bearings [20–22]. It should be, however, noted
that the values of clearance in such bearings are an order of
magnitude more than the same value in fluid-film bearings.

The present paper considers development of neural
network algorithms of first level, that is, models with no
direct contact to the rotor machine. Matters of quantitative
evaluation of accuracy of application of neural network in
comparison to known methods of oil film forces calculation
and applicability of neural networks during simulation of
nonlinear self-excited oscillations—oil whip—and during
simulation of transient regimes of rotor’s operation have been
considered.

2. Mathematical Model

A rigid symmetrical imbalanced rotor is considered. Both
ends of the rotor are supported by journal bearings of the
same specification (see Figure 1). Given the chosen direction
of coordinate axes, the pressure distribution and the resulting
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Figure 1: Calculation diagram of a journal bearing.

oil film force can be determined by means of numerically
solving the Reynolds equation for a case of an isothermal flow
of a viscous incompressible fluid [6]:

𝜕𝜕𝑥1 [
ℎ3𝜇 𝜕𝑝𝜕𝑥1] +

𝜕𝜕𝑥3 [
ℎ3𝜇 𝜕𝑝𝜕𝑥3] = 6

𝜕𝜕𝑥1 (𝑢1ℎ) + 12𝑢2, (1)

where ℎ = ℎ(𝑥1) is the oil film thickness (radial gap)
function, 𝜇 is the dynamic viscosity coefficient (assumed to
be constant), 𝑝 = 𝑝(𝑥1, 𝑥3) is the pressure function, and 𝑢𝑖 =𝑢𝑖(𝑥1) is accordingly the tangential and normal components
of the journal’s surface velocity, 𝑖 = 1, 2.

Radial gap function ℎ(𝑥1) could be determined geo-
metrically (see Figure 1) (coordinates and velocities of the
center of the rotor are indicated with the capital letters, while
the coordinates and the velocities of the fluid medium are
indicated with the lower case letters):

ℎ (𝑥1) = ℎ0 − 𝑋1 sin (𝛼) − 𝑋2 cos (𝛼) , (2)

where ℎ0 is the mean oil film thickness, (𝑋1, 𝑋2) are coordi-
nates of the center of the journal, 𝛼 = 2𝑥1/𝐷 is the angular
coordinate, and𝐷 is the bearing’s diameter.

The values of 𝑢𝑖 over the surface of the journal could be
determined using the following kinematic relations:

𝑢1 = 𝜔𝐷2 + 𝑉1 cos (𝛼) − 𝑉2 sin (𝛼) ,
𝑢2 = 𝑉1 sin (𝛼) + 𝑉2 cos (𝛼) ,

(3)

where 𝜔 is angular speed of the rotor and (𝑉1, 𝑉2) are
projections of the velocity vector of the center of the rotor.

Calculation of pressure distribution 𝑝(𝑥1, 𝑥3) at some
specific point in time is a boundary problem of solution
of Reynolds equation (1) considering (2) and (3) with the
following boundary conditions: the pressure on each side of
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the bearing is known to be 𝑝(𝑥1, 0) = 𝑝0 and 𝑝(𝑥1, 𝐿3) =𝑝1; along the 𝑥1 direction the following condition has to be
met: 𝑝(0, 𝑥3) = 𝑝(𝜋𝐷, 𝑥3); 𝜕𝑝/𝜕𝑥1|𝑥1=0 = 𝜕𝑝/𝜕𝑥1|𝑥1=𝜋𝐷.
Additionally, Gumbel’s boundary condition for film rupture
is used [6, 23].

Given the pressure distribution, the components of the
resulting oil film reaction force can be obtained as projections
on the𝑋𝑖 (see Figure 1):

𝑅1 = −∫𝐿3
0
∫𝜋𝐷
0

𝑝 (𝑥1, 𝑥3) cos (𝛼) 𝑑𝑥1𝑑𝑥3,
𝑅2 = −∫𝐿3

0
∫𝜋𝐷
0

𝑝 (𝑥1, 𝑥3) sin (𝛼) 𝑑𝑥1𝑑𝑥3,
(4)

where 𝐿3 is the length of the bearing.
The equation for lateral vibrations of the rotor’s center can

be presented in simple form [1–4, 6]:

𝑚𝑑𝑉⃗𝑑𝑡 = 𝑅⃗ + 𝐹⃗, (5)

where 𝑚 is the mass of the rotor per one bearing, 𝑡 is time,𝐹⃗ = 𝑚Δ𝜔2 [ cos𝜔𝑡sin𝜔𝑡 ] + 𝑚 [ 0−𝑔 ] is the bearing load (centrifugal
and inertia forces), 𝑚Δ is the rotor’s imbalance, and 𝑔 is free
fall acceleration.

Oscillations’ velocity 𝑉⃗ of the rotor is significantly less
than tangential velocity of journal’s surface 𝜔𝐷/2, so the
solution of (5) is linked to solution of the steady-state
fluid’s flow problem solution. So, time as variable could
be neglected during calculation of oil film force (4). This
significantly simplifies the procedure of numerical solution of
rotor dynamics problems [1, 6]. Three basic approaches have
been considered and are characterized by different methods
of oil film forces determination.

The first approach, called trajectory method [1–4, 6], is
based on solution of Reynolds equation (1) followed by inte-
gration of pressure distribution and determination of 𝑅𝑖 (4).
Such approach is considered referential due to high precision
and however has low performance in computational terms,
since the Reynolds equation has to be solved at each time step.

The second approach, called the method of linearization,
of the oil film force determination [1–4, 6] is based on the
decomposition of reaction force components 𝑅𝑖 into the
Taylor series in the proximity of the equilibrium position𝑋𝐸𝑖 .
The matrices of stiffness 𝐾 and damping 𝐵, calculated in the
equilibrium position, shall be introduced as follows:

𝐾𝑖𝑗 = − 𝜕𝑅𝑖𝜕𝑋𝑗 ,
𝐵𝑖𝑗 = −𝜕𝑅𝑖𝜕𝑉𝑗 .

(6)

Then the motion equation of the rotor (5) with given
operational conditions of the rotor system and given the

linearization of the film’s reaction forces will be as follows [1–
4, 6, 24]:

𝑚[[[
[

𝑑𝑉1𝑑𝑡𝑑𝑉2𝑑𝑡
]]]
]
= [𝑅𝐸1𝑅𝐸2] − [

𝐾11 𝐾12𝐾21 𝐾22] ⋅ [
𝑋1 − 𝑋𝐸1𝑋2 − 𝑋𝐸2]

− [𝐵11 𝐵12𝐵21 𝐵22] ⋅ [
𝑉1𝑉2] + 𝑚Δ𝜔2 [

cos𝜔𝑡
sin𝜔𝑡]

+ 𝑚[ 0
−𝑔] .

(7)

The equilibrium point 𝑋𝐸𝑖 can be determined using the
trajectory approach. In many practical applications the equi-
librium locus curve is calculated to solve problems of rotor
dynamics [1–4, 6].The points on this curve correspond to the
equilibrium positions at various rotational speeds. Necessity
to determine the equilibrium position or the equilibrium
locus curve complicates the method of linearization.

The third approach is based on a neural network program
module to approximate the oil film force’s components𝑅𝑖 and
to solve (5). A two-layer feed-forward neural network with
inputs 𝑈𝑘 (𝑘 = 1, . . . , 𝑁inp) and outputs 𝑌𝑖 (𝑖 = 1, . . . , 𝑁out)
is used (see Figure 2). The functionality of the network is
determined by specifying the strengths of the connections,
calledweights𝑤, and the neuron transfer function𝑓 [25].The
mathematical model of the used neural network is

𝑌𝑖 = 𝑓out(𝑁hid∑
𝑗=1

𝑤out
𝑖,𝑗 𝑧𝑗 + 𝑏out) ,

𝑧𝑗 = 𝑓hid(𝑁inp∑
𝑘=1

𝑤hid
𝑗,𝑘𝑈𝑘 + 𝑏hid) ,

(8)

where 𝑓out(𝑥) = 𝑥 is a linear transfer function and 𝑓hid(𝑥) =−1 + 2/(1 + exp(−2𝑥)) is a sigmoid symmetric transfer func-
tion, 𝑤out

𝑖,𝑗 and 𝑤hid
𝑗,𝑘 are weights, 𝑏out and 𝑏hid are thresholds

of output and hidden layers, respectively, and 𝑧𝑗 are the
intermediate outputs of hidden neurons (𝑗 = 1, . . . , 𝑁hid).

In the present paper the components of the oil film force𝑌𝑖 = 𝑅𝑖 are considered as outputs, and four or five kinematic
values, depending on the problem, are considered inputs:𝑈⃗ = [𝑋1, 𝑋2, 𝑉1, 𝑉2] or 𝑈⃗ = [𝑛, 𝑋1, 𝑋2, 𝑉1, 𝑉2], where 𝑛 is
the rotor’s speed.

Neural network learning is essentially the solution of
optimization problem of a minimum of the mean squared
error function search:

MSE = 1𝑄
𝑁out∑
𝑖=1

( 𝑄∑
𝑞=1

(𝑌𝑞𝑖 − 𝑌̃𝑞𝑖 )2) 󳨐⇒ min, (9)

where𝑄 is a number of samples of inputs and outputs and 𝑌̃𝑞𝑖
is the target value of an 𝑖th output in the 𝑞th sample.

The mean squared error function (9) is the function
of a number of variables 𝑤out

𝑖,𝑗 and 𝑤hid
𝑗,𝑘 . The search for an
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Figure 2: Feed-forward neural network with𝑁inp number of inputs, with𝑁hid neurons in hidden layer and with𝑁out outputs.

extremum of such function is implemented numerically. One
of the criteria of neural network’s quality is the correlation
coefficient between outputs and targets 𝑟𝑌𝑌̃ [26]. Target data𝑌̃𝑖 in the present paper is based on the numerical results,
obtained using the trajectory approach.

Stability analysis of the obtained results could be imple-
mented based on the rotor’s locus analysis using Poincare
maps [10, 27–29]. Moreover, the Routh–Hurwitz criterion
could be applied to the linearization approach [1, 10].

3. Simulation Results

Three basic approaches have been considered and character-
ized by differentmethods of oil film forces determination: the
trajectory method, the linearization method, and the neural
network method. Numerical solution of Reynolds equation
(1) was implemented using the finite difference method. The
obtained set of linear equations was solved using the Gauss
method [30]. The Levenberg-Marquardt backpropagation
algorithm was used in training neural networks [25, 31,
32], which, in its turn, was based on the numerical results,
obtained using the trajectory method. The rotor dynamics
calculation program was based on the numerical solution of
(5) or (7) using the explicit Runge-Kutta method of 4th and
5th order [30]. During the development of the programs the
GNU-Octave software and Octave’s Neural Network Package
[31] have been used. The GNU-Octave products are free
software and use the Matlab compatible language. During
simulations a PC with following characteristics has been
used: Intel� Core� i5-4690K CPU 3.5GHz, RAM 12GB, x64
OS.

The results presented below correspond to various types
of problems solved.

3.1. Rotor Dynamics with Fixed Speed and Low Vibrations.
A rotor system with the following parameters has been
subjected to the study: rotor with 8.21 kg mass rotates at
a constant speed of 4000 rpm under the load 𝑚𝑔 and
centrifugal force 1.8𝑚𝑔 and is supported by two plain journal
fluid-film bearings with 40mm diameter and 20mm length
with amean radial gap of 100𝜇m; lubricant ismineral oil with
dynamic viscosity of 13mPa⋅s; the pressure on each side of the
bearing is 0.1MPa.

First, trajectory approach has been applied. A preliminary
numerical test neglecting the centrifugal force successfully
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Figure 3: Mean squared error.

converged to the equilibrium point 𝑋⃗𝐸 = [ −69.4 31.8 ] 𝜇m.
Next, linearization approach was used.

Then, a neural network has been developed for training
with a number of neurons in the hidden layer 𝑁hid = 15.
As the input data a matrix of 4 × 105 elements was used,
which consisted of numerical values of the coordinates 𝑋𝑖
and the velocities 𝑉𝑖, with 𝑡0 = 1 s calculated time of
rotor’s motion. The target data matrix of 2 × 105 elements
consisted of the numerical values of oil film forces 𝑅𝑖. The
matrices of input and output data were divided into three
groups for training, validation and testing in fractions 0.6, 0.3,
and 0.1, respectively. The procedure of adjustment has been
implemented using application software [31]. Training was
done in 100 iterations, so-called epochs [25], in approximately
10minutes.The convergence graph of amean squared error of
the network during training is presented in Figure 3. Training
quality of a neural network is characterized by the following
values of the mean squared error’s value and correlation
coefficients: MSE = 7.5 ⋅ 10−4N, 𝑟𝑌𝑌̃ = 9.9999 ⋅ 10−1.

The numerical tests for comparative calculation of the
rotor’s trajectories have been carried out for various values of
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the relative centrifugal force 𝐹𝑐 = 𝑚Δ𝜔2/𝑚𝑔 = Δ𝜔2/𝑔. Other
input parameters remained as during the training procedure.

As a result of numerical tests a calculation time of
1 sec of rotor motion was determined given the action of
dimensionless centrifugal force Δ𝜔2/𝑔 = 1.6 (see Figure 4).
It could be seen that the calculation time of rotor dynamics
calculation using the linearization approach is the least in
the whole range. Application of the neural network module
increased the machine time up to 1.5–2 times under given
conditions. Application of trajectory approach increased the
calculation time up to 60–90 times compared to the lineariza-
tion approach. It is indicative that calculation time of rotor
dynamics using linearization approach and neural network
approach is faster than the flow of real time in the whole
range. This fact means that the application of linearization
or neural network approaches in a real rotational machine
control system would make it possible to obtain results of
prognostic modeling [20, 33, 34].

As a result of another series of numerical tests, the tra-
jectories have been calculated for a dimensionless centrifugal
force Δ𝜔2/𝑔 = 0.8, . . . , 2.5 (see Figure 5). Calculated rotor
motion’s time was set to 1 sec. The simulation started at
the equilibrium point 𝑋𝐸𝑖 , the trajectory approach taken as
referential. The relative error of calculation has been chosen
as quantitative criteria of accuracy evaluation:

𝛿𝑋𝑖 = 𝑋Traj
𝑖 − 𝑋Lin(NN)

𝑖ℎ0 ⋅ 100, (10)

where 𝑋Traj
𝑖 are coordinates, obtained using the trajectory

approach, and 𝑋Lin(NN)
𝑖 are coordinates, obtained using the

linearization or neural network approach, 𝑖 = 1, 2.

The quality analysis of stability of calculated trajectories
has been implemented based on the Poincare maps [27–
29]. The point were displayed at moments of time that were
multiples of the period of rotation of the rotor 𝑇 = 1/𝑛.
It could be seen from the Poincare maps (see Figure 5)
that in the given range of loads the rotor’s trajectories
are quasiperiodic. This results from the fact that after a
short transient process the trajectory’s mapping becomes
a dense pointed line, which closes if the calculation time
increases by 100 times or more. This shows the presence of
incommensurable frequencies in the oscillations, while the
motion is not chaotic [27]. It could also be seen from the
Figure 5 that all three approaches to calculation of reaction
forces gave the same result. The relative error of the center
of mass location calculation with Δ𝜔2/𝑔 = 0.8 during steady-
state regimewas 0.4% and 0.3% for the linearization approach
and the neural network approach, respectively.WithΔ𝜔2/𝑔 =1.6 the relative error remains small but accuracy differs by
10 times: 0.3% and 3% for the linearization approach and
the neural network approach, respectively. Preservation of
accuracy of the neural network approach could be explained
by the fact that the model of training was carried out with
value of the dimensionless centrifugal force Δ𝜔2/𝑔 = 1.8
close to 1.6. Finally, with Δ𝜔2/𝑔 = 2.5 the error was no more
than 2% for the neural network approach and no more than
6% for the linearization approach. So, the neural network
approach compared to the linearization approach given that
the amplitude of oscillations is more than 0.1ℎ0 has been
proven to be significantly more accurate.

Further increase of the imbalance was not studied as it
usually results in unstable trajectories. Increase of imbalance
leads to increase of vibration’s amplitude. That is why the
linearization method could give inadequate results due to
actual nonlinearity of the reaction forces at large eccentric-
ities. The neural network approach gives good interpolation
results, that is, within the learning sample. During extrapo-
lation, deviation from the learning conditions could lead to
unpredictable results and rapid increase of the error.

3.2. Rotor Dynamics for Various Speed Regimes and Transition
from Low to High Vibrations. The same rotor system as in
Section 3.1 of the present paper has been studied. Imbalance
was constant 𝑚Δ = 10−4 kg⋅m, and tests were run for
various rotation speeds: 1000 rpm, 3000 rpm, 5000 rpm, and
7000 rpm.

The first series of simulations of rotor’s behavior at
various rotation speeds was implemented using the trajectory
approach. Calculated motion time was set to 1 sec. Apart
from trajectories, the location of equilibrium points has been
determined, marked “+” in Figure 6(a). The second series
of simulations has been implemented using the linearization
approach. For that, matrices of stiffness and damping have
been determined at four points on the equilibrium locus
curve.

Then, four neural networks have been developed for
trainingwith𝑁hid = 15neurons in the hidden layer. For every
network, matrices 𝑈⃗ = [𝑋1, 𝑋2, 𝑉1, 𝑉2] and 𝑅⃗ = [𝑅1, 𝑅2] of4 × 104 and 2 × 104 elements were used as input and output
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Figure 6: Comparative results of rotor’s vibrations calculation (a) and frequency responses at various rotation speed in a 1000, . . . , 7000 rpm
range.
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Table 1: Comparative results of rotor’s trajectory calculation at
various rotation speed in 1000, . . . , 7000 rpm range.

𝑛, rpm max 𝛿𝑋𝑖, %
Linearization approach Neural network approach

1000 0.5 0.04
3000 9 0.6
5000 6 0.1
7000 inf. 4

data, respectively.Thematrices of input and output data were
divided into three groups for training, validation and testing
in fractions 0.6, 0.3, and 0.1, respectively. Training of each
network was done in 1000 epochs in approximately 1–3min.
Training quality is characterized by the following values of
mean squared errors and correlation coefficients: MSE =[2.4 3.1 2.7 14] ⋅ 10−4 N, 𝑟𝑌𝑌̃ = [9.99 9.99 9.99 9.99] ⋅10−1.

The calculation results showed that in the range of
speeds from 1000 to 5000 rpm the vibrations of the rotor
have the frequency equal to the rotation frequency (see
Figure 6(b)). In this range of speed the oil whirl does not
appear under given conditions, and the main reason of
the occurrence of vibrations is the imbalance of the rotor.
Additional calculations have shown that the critical speed of
the rotor is 3300 rpm. In the range of speed from 6000 to
7000 rpm some increased vibrations occur that correspond to
approximately twice critical speed (see Figures 6(a) and 6(b)).
The vibrations of the rotor have the frequency close to the
critical frequency (see Figure 6(b)). This is typical of oil whip
[6]. Here, linearization approach becomes unstable, and the
neural network approach, on the other hand, remains stable
with sufficient accuracy (see Table 1).

So, the neural network approach allows modeling of
significantly nonlinear vibrations, such as oil whip. The
necessity of development of a separate neural network for
every rotation speed; however, it is a drawback of the applied
approach. Consequently, in the next paragraph a neural
network is consideredwith an additional input value, rotation
speed of the rotor.

3.3. Rotor Dynamics during Transient Regimes. Modeling of
rotor dynamics during transient start/stop regime is more
complex and costly in terms of calculation resources. The
main advantages of the linearization approach that are
essentially simple implementation and good computational
performance manifest themselves weakly in this case. This
is due to necessity to implement a number of intermediate
calculations of equilibrium position, of stiffness and damping
matrices, and due to interpolation procedures. In case of
the neural network approach, such additional interpolation
procedures are not needed. There is also a possibility of
training a neural network based on one experiment and not
on a series of them.This is why application of the linearization
approach has not been considered in this section.

The transient regime has been studied using the test rig,
shown in the Figure 7. The main parameters of the test rig

Tachometer

Accelerometers Bearing 
housing

Figure 7: Part of the test rig with accelerometers DeltaTron 4507
and the contactless tachometer M0024 [24].

are the same as in the Section 3.2. During the experiment
the rotor was steadily accelerated up to 4000 rpm and then
the electromotor was shut down and disconnected. During
the deceleration the data from tachometer and acceleration
sensors was acquired. Deceleration of the rotor took about
1min. Based on the results of rotation speed measurements,
rotor’s speed was approximated as a linear function of time,
which describes the deceleration of the rotor during hydro-
dynamic lubrication regime (down to 500 rpm) accurately
enough. Additional experiments at constant rotation speed in
the 1000–4000 rpm range showed that in this range the rotor
vibrates at frequencies equal to the rotation frequency. This
result matches the results in the Section 3.2.

In this case, one neural network has been developed for
training with 𝑁hid = 35 neurons in the hidden layer. Addi-
tionally, the rotation speedwas taken as an input, so the 5 × 4⋅104 matrix of inputs was taken as 𝑈⃗ = [𝑛, 𝑋1, 𝑋2, 𝑉1, 𝑉2]. The
combined sample of trajectories of the rotor at eight different
rotation speeds 𝑛 = 1000, . . . , 5000 rpmwas used for training.
In other words, the training function had a step-like form.
Thematrices of input and output data were divided into three
groups for training, validation, and testing in fractions 0.7,
0.15, and 0.15, respectively. Training took no more than 10
minutes. Training quality is characterized by the following
values of mean squared errors and correlation coefficients:
MSE = 4.0 ⋅ 10−4N; 𝑟𝑌𝑌̃ = 9.998 ⋅ 10−1.

It has to be noted that one of the alternative ways to train a
neural network during monotonous smooth change of speed
was not successful.The results obtained based on such neural
networks were unstable. This could be explained by fact
that every value of speed occurs in a monotonous function
only once. In a step-like function, many intermediate values
are absent, but the neural network manages to successfully
interpolate them.

In Figures 8(a) and 8(b) the results of deceleration of
the rotor simulation are shown for trajectory and neural
networks approaches. In Figure 8(c) the comparison of
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Figure 8: Cascade frequency response during deceleration of the rotor from 3900 rpm down to 1000 rpm during 32 sec., calculated using
the trajectory approach (a), neural network approach (b), and comparative results of the housing’s vibration measurement and the rotor’s
vibration calculation (c).

numerical and experimental results is shown. It could be
seen from the graphs that numerical results match well
quantitatively (see Figures 8(a) and 8(b)) and qualitatively the
experimental results (see Figure 8(c)).The calculated value of
the critical speed matches the experimentally obtained value
quite well (see Figure 8(c)).

So, the solution of the rotor dynamics problems during
transition regimes could be successfully implemented using
neural networks.

4. Conclusion

An approach to neural network program module formation
has been presented aimed at calculation of the reaction force’s
components of the fluid film depending on the position and
oscillation velocities of the center of a rotor.Three approaches
used in solving the rotor dynamics problem have been com-
pared: the trajectory approach, the linearization approach,
and the neural network approach to approximation of the
oil film reaction forces. As a result of quantitative analysis,

it has been determined that the use of linear and neural
approximation allows decreasing the calculation time up to
two orders of magnitude. It has also been determined that
if the amplitude of the rotor’s oscillation exceeds 10% of the
mean radial gap, the neural network approach is up to 3 times
more accurate compared to the linearization approach. Also,
neural networks were used to simulate significantly nonlinear
regimes of rotor’s vibration with high vibrodisplacement and
demonstrated good results in simulation of transient regimes.
The considered models of a rotor and the fluid film were
relatively simple, which significantly improved performance
using conventional methods and aided sampling for neural
network’s training. Further complication of the models, as
well as training under condition of interaction with a real
rotor machine, shall not significantly influence the main
characteristics of artificial neural networks.

Conflicts of Interest

The authors declare that they have no conflicts of interest.



10 International Journal of Rotating Machinery

Authors’ Contributions

Alexey Kornaev developed the fluid flow and rotor’s dynamic
mathematical model, scripted the simulation program, and
wrote the manuscript. Nickolay Kornaev developed the arti-
ficial neural network program module and performed the
numerical experiment. Elena Kornaeva and Leonid Savin
analyzed the experiment’s results. Leonid Savin was in charge
of supervising this work.

Acknowledgments

This work was supported by the Russian Science Foundation
under Project no. 16-19-00186 (formulation and solution of
the problem in all sections of the present paper) and by the
Ministry of Education and Science of the Russian Federation
under Project no. 9.2952.2017/4.6 (development andmodern-
ization of the test rig in Section 3.3). The authors gratefully
acknowledge this support. The authors also express gratitude
to Alexander Fetisov for carrying out the experiment and to
Alexander Babin for translation.

References

[1] D. Childs, Turbomachinery Rotordynamics. Phenomena, Model-
ing, and Analysis, John Wiley and Sons, New York, NY, USA,
1993.

[2] M.G.Vance,Rotordynamics of Turbomachinery, JohnWiley and
Sons, New York, NY, USA, 1988.

[3] T. Yamamoto, Linear and Nonlinear Rotordynamics. A Modern
Treatment with Applications, John Wiley and Sons, New York,
NY, USA, 2001.

[4] L. Savin, O. Solomin, and D. Ustinov, “Rotor dynamics on
friction bearings with cryogenic lubrication,” in Proceedings of
the TenthWorld Congress on the Machines andMechanisms, vol.
4, pp. 1716–1721, June 1999.

[5] S. P. Asok, K. Sankaranarayanasamy, T. Sundararajan, K. Rajesh,
and G. Sankar Ganeshan, “Neural network and CFD-based
optimisation of square cavity and curved cavity static labyrinth
seals,”Tribology International, vol. 40, no. 7, pp. 1204–1216, 2007.

[6] Y. Hori, Hydrodynamic lubrication, Yokendo Ltd., Tokyo, 2006.
[7] M. Kalkat, S. Yildirim, and I. Uzmay, “Rotor dynamics analysis

of rotating machine system using artificial neural networks,”
International Journal of Rotating Machinery, p. 9, 2003.

[8] M. Karkoub and A. Elkamel, “Modelling pressure distribution
in a rectangular gas bearing using neural networks,” Tribology
International, vol. 30, no. 2, pp. 139–150, 1997.

[9] A. D. Dongare and A. D. Kachare, “Predictive tool: an artificial
neural network,” International Journal of Engineering and Inno-
vative Technology (IJEIT), vol. 2, pp. 209–2014, 2012.

[10] P. Qin, Y. Shen, J. Zhu, and H. Xu, “Dynamic analysis of
hydrodynamic bearing-rotor system based on neural network,”
International Journal of Engineering Science, vol. 43, no. 5-6, pp.
520–531, 2005.
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