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In this paper, we would consider the dynamical behaviors of the chemical model represented by Satnoianu et al. (2001). Using
the Kuratowski measure of noncompactness method, we prove the existence of global attractor for the weak solution semiflow of
system. Finally, several numerical experiments confirm the theoretical results.

1. Introduction

Satnoianu et al. [1] considered a chemical model which
assumed that a precursor 𝑃+ is present in excess. They
required further species 𝑄− to be present in the reactor at
a concentration similar to that of 𝑃+ though this species
does not take part in the reaction. Assume that 𝑃+ decays
at a constant rate to form the substrate 𝐴+ via 𝑃+ →

𝐴
+, rate = 𝑘

0
𝑝
0
, where 𝑝

0
is the initial concentration of

the reservoir species 𝑃+. The substrate 𝐴+ and autocatalyst
𝐵
+ subsequently react by following a linear combination of

quadratic and cubic steps according to the scheme

𝐴
+

+ 𝐵
+

󳨀→ 2𝐵
+

, rate = 𝑘
𝑞
𝑎𝑏,

𝐴
+

+ 2𝐵
+

󳨀→ 3𝐵
+

, rate = 𝑘
𝑐
𝑎𝑏
2

,

𝐵
+

+ 𝐶
+

󳨀→ 2𝐵
+

, rate = 𝑘
1
𝑏,

(1)

where 𝑘
𝑞
, 𝑘
𝑐
, 𝑘
1
are the constants and 𝑎, 𝑏 are the concentra-

tions of 𝐴+ and 𝐵+.
This leads to the dimensionless reactor model

𝑢
𝑡
= 𝛿𝑢
𝑥𝑥
− 𝛿𝜙𝑢

𝑥
+ 𝜇 − 𝑝𝑢V − (1 − 𝑝) 𝑢V2,

V
𝑡
= V
𝑥𝑥
− 𝜙V
𝑥
+ 𝑝𝑢V + (1 − 𝑝) 𝑢V2 − V,

(2)

where 𝑢, V, 𝑡, 𝑥 are the dimensionless concentrations and
time and distance along the reactor, respectively. With the
Dirichlet boundary condition

𝑢 (𝑡, 𝑥) = V (𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω (3)

and an initial condition
𝑢 (0, 𝑥) = 𝑢

0
(𝑥) ,

V (0, 𝑥) = V
0
(𝑥) ,

𝑥 ∈ Ω,

(4)

whereΩ is the bounded set [0, 1].
Here, 𝛿 = 𝐷

𝐴
/𝐷
𝐵
is the radio of diffusion coefficients of

substrate 𝐴+ and autocatalyst 𝐵+. 𝜙 is a parameter denoting
the intensity of the applied electric field. The parameter 𝑝 ∈
[0, 1] measures the strength of the quadratic step against the
cubic step. For 𝑝 = 1, the nonlinearity in the kinetics is purely
quadratic, while for 𝑝 = 0, it is purely cubic.

Satnoianu et al. discussed that diffusion-distributed
structures (FDS) are predicted in a wider domain and are
more robust than the classical Turing instability patterns.
FDS also represent a natural extension of flow-distributed
oscillations. Nonlinear bifurcation analysis and numerical
simulations in one-dimensional spatial domains show that
FDS have much richer solution behavior than Turing struc-
tures. Tang and Wang [2] showed a rigorous bifurcation
analysis for the model with combination of quadratic and
cubic steps by the parameters 𝑝 ∈ [0, 1] and 𝜙 = 0.
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For the infinite-dimensional dynamical systems about
the chemical model You [3] considered the Brusselator
equations; he explored a decomposition technique to show
the 𝜅-contraction of the solution semiflow and proved the
existence of a global attractor for the solution semiflow of
the Brusselator equation and the Hausdorff dimension and
the fractal dimension of the global attractors are finite. You
[4] studied the reversible Selkov equations with Dirichlet
boundary condition on a bounded domain which is a rep-
resentative cubic-autocatalytic reaction-diffusion system. He
obtained the existence of (𝐿2, 𝐻1) global attractor and the
upper semicontinuity of the global attractors in 𝐻1 product
space when the reverse reaction rate tends to zero. For more
details about the infinite-dimension dynamics systems about
reaction-diffusion models, we can refer to [5–11].

In this paper we will discuss the long-time behavior of the
solutions to (2)–(4) for 𝜙 = 0; that is,

𝑢
𝑡
= 𝛿𝑢
𝑥𝑥
+ 𝜇 − 𝑝𝑢V − (1 − 𝑝) 𝑢V2,

V
𝑡
= V
𝑥𝑥
+ 𝑝𝑢V + (1 − 𝑝) 𝑢V2 − V,

𝑢 (𝑡, 𝑥) = V (𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , V (0, 𝑥) = V

0
(𝑥) , 𝑥 ∈ Ω.

(5)

We prove the existence of the global attractor by Kuratowski
measure. The paper is organized as follows. In Section 2,
we prove the existence the weak solution of the system and
absorbing property. In Section 3, we give asymptotic com-
pactness of the semiflow by Kuratowski measure and prove
the existence of the global attractor. Finally, in Section 4, we
give the simulation of the system.

2. Absorbing Property

Define the product Hilbert spaces as follows:

𝐻 = [𝐿
2

(Ω)]
2

,

𝐸 = [𝐻
1

0
(Ω)]
2

,

𝑉 = [𝐻
1

0
(Ω) ∩ 𝐻

2

(Ω)]
2

.

(6)

The norm and inner-product of 𝐻 or the component space
𝐿
2
(Ω) will be denoted by ‖ ⋅ ‖ and ⟨⋅⟩, respectively. The norm

of 𝐿𝑝(Ω) will be represented by ‖ ⋅ ‖
𝐿
𝑝 if 𝑝 ̸= 2.

By the poincaré inequality and the homogenous Dirichlet
boundary condition there is a constant 𝛾 > 0 such that

󵄩󵄩󵄩󵄩∇𝜙
󵄩󵄩󵄩󵄩

2

≥ 𝛾
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

2

; for 𝜙 ∈ 𝐻1
0
(Ω) or 𝐸. (7)

We will take ‖∇𝜙‖ to the norm ‖𝜙‖
𝐸
of the space 𝐸.

Using the analytic semigroup generation theorem and
Lumer-Phillips theorem, it is easy to check that the densely
sectorial operator

𝐴 = (

𝛿Δ 0

0 Δ
) : 𝐷 (𝐴) 󳨀→ 𝐻 (8)

is the generator of an analytic 𝐶
0
-semigroup on the Hilbert

space.
By the fact that 𝐻1

0
(Ω) 󳨅→ 𝐿

6
(Ω) 󳨅→ 𝐿

4
(Ω) is a

continuous embedding, we can verify that the nonlinear
mapping

𝐹 (𝑢, V) = (
𝜇 − 𝑝𝑢V − (1 − 𝑝) 𝑢V2

𝑝𝑢V + (1 − 𝑝) 𝑢V2 − V
) : 𝐸 󳨀→ 𝐻 (9)

is well defined on 𝐸 and the mapping 𝐹 is locally Lipschitz
continuous. Let 𝑔(𝑡) = (𝑢, V), and then the initial-boundary
value problem (5) is formulated into an initial value problem
of the abstract evolutionary equation:

𝑑𝑔

𝑑𝑡
= 𝐴𝑔 + 𝐹 (𝑔) ,

𝑔 (0) = 𝑔
0
= Col (𝑢

0
, V
0
) .

(10)

A function 𝑔(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝜏] × Ω is called a
weak solution to the problem of the parabolic evolutionary
equation (10), if the following two conditions are satisfied:

(1) (𝑑/𝑑𝑡)(𝑔, 𝜙) = (𝐴𝑔, 𝜙) + (𝐹(𝑔), 𝜙) is satisfied for a.e.
𝑡 ∈ [0, 𝜏] and for any 𝜙 ∈ 𝐸.

(2) 𝑔 ∈ 𝐿
2
(0, 𝜏; 𝐸) ∩ 𝐶

𝑤
([0, 𝜏];𝐻), where 𝐶

𝑤
([0, 𝜏];𝐻)

denote the space of weakly continuous functions on
[0, 𝜏] valued in𝐻 such that 𝑔(0) = 𝑔

0
.

By the Galerkin method, analogous to the arguments in
[3, 4], we can show the following conclusion about existence
of solution.

Lemma 1. For any initial 𝑔
0
∈ 𝐻, there exists a unique local

weak solution (𝑢(𝑡), V(𝑡)), 𝑡 ∈ [0, 𝜏] for some 𝜏 > 0 of the
evolutionary equation (10) such that 𝑔 satisfies

𝑔 ∈ 𝐶 ([0, 𝜏] ;𝐻) ∩ 𝐶
1

((0, 𝜏) ;𝐻) ∩ 𝐿
2

([0, 𝜏] ; 𝐸) . (11)

In order to prove the existence of global attractor, we will
investigate the absorbing property of the solution semiflow of
problem (5).

Lemma 2. Assume 𝛿𝛾 > 2/27, and then, for any initial data
𝑔
0
∈ 𝐻
+
, there exists an absorbing set 𝐵

0
∈ 𝐻 for the solution

semiflow {𝑆(𝑡)}
𝑡>0

of the Cauchy problem of (5):

𝐵
0
= {𝑔 ∈ 𝐻 :

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

< 𝜌
0
} , (12)

where 𝜌
0
is a positive constant independent of initial data.
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Proof. Taking the inner-product of the first equation of (5)
with 𝑢(𝑡) overΩ, we obtain

1

2

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2

+ 𝛿 ‖∇𝑢 (𝑡)‖
2

= 𝜇∫𝑢𝑑𝑥 − 𝑝∫𝑢
2V 𝑑𝑥 − (1 − 𝑝)∫𝑢2V2 𝑑𝑥

= 𝜇∫𝑢𝑑𝑥 −
1

1 − 𝑝
∫(𝑢V +

𝑝 (1 − 𝑝)

2
𝑢)

2

𝑑𝑥

+
𝑝
2
(1 − 𝑝)

4
∫𝑢
2

𝑑𝑥

≤ 𝜇∫𝑢𝑑𝑥 +
𝑝
2
(1 − 𝑝)

4
∫ 𝑢
2

𝑑𝑥.

(13)

Let 𝑓(𝑝) = 𝑝2(1 − 𝑝), and since max
0≤𝑝≤1

𝑓(𝑝) = 𝑓(2/3) =

4/27, we have

1

2

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2

+ 𝛿 ‖∇𝑢 (𝑡)‖
2

≤
𝜇
2

|Ω|

2𝛿𝛾
+
𝛿𝛾

2
‖𝑢‖
2

+
1

27
‖𝑢‖
2

≤
𝜇
2

|Ω|

2𝛿𝛾
+
𝛿

2
‖∇𝑢‖
2

+
1

27𝛾
‖∇𝑢‖
2

;

(14)

that is,

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2

+ (𝛿 −
2

27𝛾
) ‖∇𝑢 (𝑡)‖

2

≤
𝜇
2

|Ω|

𝛿𝛾
. (15)

Poincáre inequality and Gronwall’s inequality yield

‖𝑢 (𝑡)‖
2

≤ 𝑒
−(𝛿𝛾−2/27)𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

+
𝜇
2

|Ω|

𝛿𝛾 (𝛿𝛾 − 2/27)
. (16)

Let 𝜌
1
= 𝜇
2
|Ω|/𝛿𝛾(𝛿𝛾 − 2/27), and since 𝛿 > 2/27𝛾, we have

lim sup
𝑡→∞

‖𝑢 (𝑡)‖
2

≤ 𝜌
1
. (17)

Adding two equations in (5) to get an equation for the sum
𝑧(𝑡) = 𝑢(𝑡) + V(𝑡), one has

𝑧
𝑡
= 𝑧
𝑥𝑥
+ (𝛿 − 1) 𝑢

𝑥𝑥
+ 𝜇 − 𝑧 + 𝑢. (18)

Taking the inner-product (18) with 𝑧(𝑡) and integrating by
parts, we obtain

1

2

𝑑

𝑑𝑡
‖𝑧‖
2

+ ‖∇𝑧‖
2

+ ‖𝑧‖
2

= (𝛿 − 1) ∫ 𝑢
𝑥𝑥
𝑧 𝑑𝑥 + ∫𝑢𝑧 𝑑𝑥 + ∫𝜇𝑧 𝑑𝑥

≤
1

2
‖∇𝑧‖
2

+
|𝛿 − 1|

2

2
‖∇𝑢‖
2

+
1

4
‖𝑧‖
2

+ ‖𝑢‖
2

+
1

4
‖𝑧‖
2

+ 𝜇
2

|Ω| .

(19)

Thanks to (16), we have

𝑑

𝑑𝑡
‖𝑧‖
2

+ ‖∇𝑧‖
2

+ ‖𝑧‖
2

≤ (𝛿 − 1)
2

‖∇𝑢‖
2

+ 2 ‖𝑢‖
2

+ 2𝜇
2

|Ω|

≤ (𝛿 − 1)
2

‖∇𝑢‖
2

+ 2𝑒
−(𝛿𝛾−1/27)𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

+ 2(1 +
1

𝛿𝛾 (𝛿𝛾 − 2/27)
) 𝜇
2

|Ω| .

(20)

Let 𝐶
0
(𝑡) = 2𝑒

−(𝛿𝛾−2/27)𝑡
‖𝑢
0
‖
2
+ 2(1 + 1/𝛿𝛾(𝛿𝛾 − 2/27))𝜇

2
|Ω|,

and then we have

𝑑

𝑑𝑡
‖𝑧‖
2

+ ‖∇𝑧‖
2

+ ‖𝑧‖
2

≤ (𝛿 − 1)
2

‖∇𝑢‖
2

+ 𝐶
0
(𝑡) ; (21)

that is,

𝑑

𝑑𝑡
(𝑒
𝑡

‖𝑧‖
2

) ≤ (𝛿 − 1)
2

𝑒
𝑡

‖∇𝑢‖
2

+ 𝐶
0
(𝑡) 𝑒
𝑡

, (22)

integrating (22) from 0 to 𝑡, and then

‖𝑧‖
2

≤ 𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑧0

󵄩󵄩󵄩󵄩

2

+ (𝛿 − 1)
2

∫

𝑡

0

𝑒
−(𝑡−𝜏)

‖∇𝑢‖
2

𝑑𝜏

+ 𝐶
1
(𝑡) ,

(23)

where

𝐶
1
(𝑡)

= 2𝑒
−𝑡

∫

𝑡

0

𝑒
[1−(𝛿𝛾−2/27)]𝜏 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝑑𝜏

+ (2 +
2

𝛿𝛾 (𝛿𝛾 − 2/27)
) 𝜇
2

|Ω| ,

2𝑒
−𝑡

∫

𝑡

0

𝑒
[1−(𝛿𝛾−2/27)]𝜏 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤

{{{{{{{

{{{{{{{

{

2

1 − (𝛿𝛾 − 2/27)
𝑒
−(𝛿𝛾−2/27)𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) > 0

2𝑒
−𝑡
𝑡
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) = 0

2

󵄨󵄨󵄨󵄨1 − (𝛿𝛾 − 2/27)
󵄨󵄨󵄨󵄨

𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) < 0.

(24)

Now we treat the term ∫
𝑡

0
𝑒
−(𝑡−𝜏)

‖∇𝑢‖
2
𝑑𝜏 in (23); multiplying

(15) by 𝑒𝑡 and integrating from 0 to 𝑡, we get

∫

𝑡

0

(𝑒
𝜏 𝑑

𝑑𝜏
‖𝑢‖
2

)𝑑𝜏 + (𝛿 −
2

27𝛾
)∫

𝑡

0

𝑒
𝜏

‖∇𝑢‖
2

𝑑𝜏

≤
𝜇
2

|Ω|

𝛿𝛾
𝑒
𝑡

,

(25)
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and, by (16), we have

(𝛿 −
2

27𝛾
)∫

𝑡

0

𝑒
𝜏

‖∇𝑢‖
2

𝑑𝜏

≤
𝜇
2

|Ω|

𝛿𝛾
𝑒
𝑡

− ∫

𝑡

0

(𝑒
𝜏 𝑑

𝑑𝜏
‖𝑢‖
2

)𝑑𝜏

≤
𝜇
2

|Ω|

𝛿𝛾
𝑒
𝑡

− (𝑒
𝑡

‖𝑢‖
2

−
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

) + ∫

𝑡

0

𝑒
𝜏

‖𝑢‖
2

𝑑𝜏

≤
𝜇
2

|Ω|

𝛿𝛾
𝑒
𝑡

+
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

+ ∫

𝑡

0

𝑒
𝜏

(𝑒
−(𝛿𝛾−2/27)𝜏

+
𝜇
2

|Ω|

𝛿𝛾 (𝛿𝛾 − 2/27)
) 𝑑𝜏

≤
𝜇
2

|Ω|

𝛿𝛾
𝑒
𝑡

+
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

+
𝜇
2

|Ω|

𝛿𝛾 (𝛿𝛾 − 2/27)
𝑒
𝑡

+ 𝐶
2
(𝑡) ,

(26)

where

𝐶
2
(𝑡) = ∫

𝑡

0

𝑒
[1−(𝛿𝛾−2/27)]𝜏 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝑑𝜏

≤

{{{{{{{

{{{{{{{

{

1

1 − (𝛿𝛾 − 2/27)
𝑒
[1−(𝛿𝛾−2/27)]𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) > 0

𝑡
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) = 0

1

󵄨󵄨󵄨󵄨1 − (𝛿𝛾 − 2/27)
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2

, 1 − (𝛿𝛾 −
2

27
) < 0.

(27)

Substituting (26) into (23), we obtain

‖𝑧‖
2

≤ 𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑢0 + V

0

󵄩󵄩󵄩󵄩

2

+
𝜇
2

(𝛿 − 1)
2

|Ω|

𝛿 (𝛿𝛾 − 2/27)

+
(𝛿 − 1)

2

𝛿 − 2/27𝛾
𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

+
𝜇
2

(𝛿 − 1)
2

|Ω|

𝛿 (𝛿𝛾 − 2/27)
2

+
(𝛿 − 1)

2

𝛿 − 2/27𝛾
𝑒
−𝑡

𝐶
2
(𝑡) + 𝐶

1
(𝑡) .

(28)

Noticing that 𝑒−𝑡𝐶
2
(𝑡) → 0, 𝐶

1
(𝑡) → 0, as 𝑡 → +∞,

therefore we conclude that

lim sup
𝑡→+∞

‖𝑧‖
2

≤
𝜇
2

(𝛿 − 1)
2

|Ω|

𝛿 (𝛿𝛾 − 2/27)
+
𝜇
2

(𝛿 − 1)
2

|Ω|

𝛿 (𝛿𝛾 − 2/27)
2
. (29)

Let 𝜌
2
= 𝜇
2
(𝛿 − 1)

2

|Ω|/𝛿(𝛿𝛾 − 2/27) + 𝜇
2
(𝛿 − 1)

2

|Ω|/𝛿(𝛿𝛾 −

2/27)
2, which is independent of any initial data, and then we

get

lim sup
𝑡→+∞

‖𝑧‖
2

≤ 𝜌
2
. (30)

Combining (17) and (30), we can deduce that for any initial
data 𝑔

0
= (𝑢
0
, V
0
) ∈ 𝐻 the solution satisfies

lim sup
𝑡→+∞

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

= lim sup
𝑡→+∞

(‖𝑢‖
2

+ ‖V‖2)

= lim sup
𝑡→+∞

(‖𝑧 − 𝑢‖
2

+ ‖𝑢‖
2

)

≤ lim sup
𝑡→+∞

(3 ‖𝑢‖
2

+ 2 ‖𝑧‖
2

) ≤ 3𝜌
1
+ 2𝜌
2

:= 𝜌
0
.

(31)

So set 𝐵
0
in (12) is the absorbing set for the solution semiflow

to problem (5). Then proof is completed.

3. The Existence of Global Attractor

In this section we will prove that the solution semiflow
{𝑆(𝑡)}
𝑡>0

of (5) has a global attractor. According the existence
of criterion in [6, 12], we just need to prove that the semiflow
{𝑆(𝑡)}
𝑡>0

is asymptotic compactness. Firstly, the following
proposition is about the uniformGronwall’s inequality which
is a basic tool in the analysis of asymptotics.

Lemma 3. Let 𝛽, 𝜁 and ℎ be nonnegative function in
𝐿
1

𝐿𝑜𝑐
(0,∞, 𝑅). Assume that 𝛽 is absolutely continuous on

[0, +∞) and the following differential inequality is satisfied:

𝑑𝛽

𝑑𝑡
≤ 𝜁𝛽 + ℎ. (32)

If there is a finite time 𝑡
1
> 0 and some 𝑟 > 0, such that

∫

𝑡+𝑟

𝑡

𝜁 (𝜏) 𝑑𝜏 ≤ 𝐴,

∫

𝑡+𝑟

𝑡

𝛽 (𝜏) 𝑑𝜏 ≤ 𝐵,

∫

𝑡+𝑟

𝑡

ℎ (𝜏) 𝑑𝜏 ≤ 𝐶,

(33)

for any 𝑡 > 𝑡
1
, where 𝐴, 𝐵, and 𝐶 are positive constants then

𝛽 (𝑡) ≤ (
𝐵

𝑟
+ 𝐶) 𝑒

𝐴

, (34)

for any 𝑡 > 𝑡
1
+ 𝑟.

Lemma 4. There is a constant𝑀
0
> 0, such that

∫

𝑡+1

𝑡

(‖∇𝑢 (𝜏)‖
2

+ ‖∇V (𝜏)‖2) 𝑑𝜏 ≤ 𝑀
0
, (35)

for any 𝑡 > 𝑇
0
, 𝑔
0
∈ 𝐵
0
, where 𝑇

0
= 𝑇
0
(𝐵
0
) is a positive

constant depending only on the absorbing set 𝐵
0
.

Proof. From (15) we have

(𝛿 −
2

27𝛾
)∫

𝑡+1

𝑡

‖∇𝑢 (𝜏)‖
2

𝑑𝜏 ≤ ‖𝑢 (𝑡)‖
2

+
𝜇
2

|Ω|

𝛿𝛾
. (36)
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Since the absorbing set 𝐵
0
absorbs itself, there exists 𝑇

0
> 0

such that 𝑆(𝑡)𝐵
0
⊂ 𝐵
0
for any 𝑡 > 𝑇

0
, so we obtain

∫

𝑡+1

𝑡

‖∇𝑢 (𝜏)‖
2

𝑑𝜏 ≤
1

𝛿 − 2/27𝛾
(𝜌
0
+
𝜇
2

|Ω|

𝛿𝛾
)

:= 𝑀
1
.

(37)

From (21) and (37), we get

∫

𝑡+1

𝑡

‖∇𝑧 (𝜏)‖
2

𝑑𝜏

≤ (𝛿 − 1)
2

∫

𝑡+1

𝑡

‖∇𝑢 (𝜏)‖
2

𝑑𝜏 + ∫

𝑡+1

𝑡

𝐶
0
(𝜏) 𝑑𝜏

+ ‖𝑧 (𝑡)‖
2

≤ (𝛿 − 1)
2

𝑀
1
+ 2(1 +

1

𝛿𝛾 (𝛿𝛾 − 2/27)
) 𝜇
2

|Ω|

+ 𝜌
0
:= 𝑀
2
.

(38)

Since V(𝑡) = 𝑧(𝑡)−𝑢(𝑡), it follows from (37) and (38); we obtain
for any 𝑡 > 𝑇

0

∫

𝑡+1

𝑡

(‖∇𝑢 (𝜏)‖
2

+ ‖∇V (𝜏)‖2) 𝑑𝜏

= ∫

𝑡+1

𝑡

(‖∇𝑢 (𝜏)‖
2

+ ‖∇ (𝑧 (𝜏) − 𝑢 (𝜏))‖
2

) 𝑑𝜏

≤ 3𝑀
1
+ 2𝑀
2
:= 𝑀
0
.

(39)

The proof is completed.

Recall the definition of the Kuratowski measure of non-
compactness for bounded sets in a Banach space𝑋 [13, 14]:

𝐾 (𝐵) = inf {𝛿 :

𝐵 has a finite cover by open sets in 𝑋 of diameters

< 𝛿} .

(40)

A semiflow {𝑆(𝑡)}
𝑡≥0

on a complete metric space 𝑋 is
called 𝜅-contracting if, for every bounded subset 𝐵 in𝑋, one
has

lim
𝑡→∞

𝐾 (𝑆 (𝑡) 𝐵) = 0. (41)

Lemma 5. Let {𝑆(𝑡)}
𝑡≥0

be a semiflow on a Banach space𝑋, if
the following conditions are satisfied:

(1) {𝑆(𝑡)}
𝑡≥0

has a bounded absorbing set in 𝑋.
(2) {𝑆(𝑡)}

𝑡≥0
is 𝜅-contracting.

Then {𝑆(𝑡)}
𝑡≥0

is asymptotically compact and there exists a
global attractorA in𝑋.

Lemma6 (see [4]). Let {𝑆(𝑡)}
𝑡≥0

be a semiflow on𝐻, and there
exists a global attractorA in𝐻 for this semiflow, if and only if
the following conditions are satisfied:

(1) There exists a bounded absorbing set 𝐵
0
in 𝐻 for this

semiflow.
(2) For any 𝜀 > 0, there are positive constants𝑀 = 𝑀(𝜀)

and 𝑇 = 𝑇(𝜀) such that

∫
Ω(|𝑆(𝑡)𝑔0|≥𝑀)

󵄨󵄨󵄨󵄨𝑆 (𝑡) 𝑔0
󵄨󵄨󵄨󵄨

2

𝑑𝑥 < 𝜀, ∀𝑡 ≥ 𝑇, 𝑔
0
∈ 𝐵
0
,

𝐾 ((𝑆 (𝑡) 𝑔
0
)
Ω(|𝑆(𝑡)𝑔0|≤𝑀)

) 󳨀→ 0, as 𝑡 󳨀→ ∞,

(42)

where (𝑆(𝑡)𝑔
0
)
Ω(|𝑆(𝑡)𝑔0|≤𝑀)

= {(𝑆(𝑡)𝑔
0
)(⋅)𝜃
𝑀
(⋅; 𝑡, 𝑔

0
), for 𝑔

0
∈

𝐵
0
}, and 𝜃

𝑀
(⋅; 𝑡, 𝑔

0
) is the characteristic function of the subset

Ω(|𝑆(𝑡)𝑔
0
| ≤ 𝑀).

Lemma 7. For any 𝜀 > 0, there exist positive constants𝑀
3
(𝜀)

and𝑇
3
(𝜀), such that the 𝑢-component of the solution to problem

(5) satisfies

∫
Ω(|𝑢(𝑡)|≥𝑀3)

|𝑢 (𝑡)|
2

𝑑𝑥 < 𝜀, ∀𝑡 ≥ 𝑇
3
, 𝑔
0
∈ 𝐵
0
. (43)

Proof. Since 𝐵
0
is a bounded absorbing set, there exist

𝑇
0
(𝐵
0
) > 0 and𝐾

0
> 0 such that

‖𝑢 (𝑡)‖
2

≤ 𝜌
0
, for 𝑡 ≥ 𝑇

0
, 𝑔
0
∈ 𝐵
0
. (44)

Hence we have

𝑀
2

𝑚(Ω (|𝑢 (𝑡)| > 𝑀)) ≤ ∫
Ω(|𝑢(𝑡)|>𝑀)

|𝑢 (𝑡)|
2

𝑑𝑥 ≤ 𝜌
0
, (45)

and hence there exist𝑀(𝜀) such that

𝑚(Ω (|𝑢 (𝑡)| > 𝑀)) ≤
𝐾
0

𝑀2
<
𝜀

2
. (46)

Taking the inner-product (5) with (𝑢(𝑡) − 𝑀)
+
where 𝑀 is

given in (46) and

(𝑢 (𝑡) − 𝑀)
+
=

{

{

{

𝑢 (𝑡) − 𝑀, 𝑢 (𝑡) ≥ 𝑀

0, 𝑢 (𝑡) < 𝑀

(47)

we obtain

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩(𝑢 −𝑀)+
󵄩󵄩󵄩󵄩

2

+ 𝛿∫
Ω(𝑢(𝑡)>𝑀)

󵄨󵄨󵄨󵄨∇ (𝑢 −𝑀)+
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝜇∫
Ω(𝑢(𝑡)>𝑀)

(𝑢 −𝑀)
+
𝑑𝑥

≤
𝛿𝛾

2
∫
Ω(𝑢(𝑡)>𝑀)

(𝑢 −𝑀)
2

+
𝑑𝑥

+
𝜇
2

2𝛿𝛾
𝑚 (Ω (𝑢 (𝑡) > 𝑀))

≤
𝛿

2
∫
Ω(𝑢(𝑡)>𝑀)

󵄨󵄨󵄨󵄨∇ (𝑢 −𝑀)+
󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
𝜇
2

2𝛿𝛾
𝜀.

(48)
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It follows that
𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩(𝑢 −𝑀)+
󵄩󵄩󵄩󵄩

2

+ 𝛿∫
Ω(𝑢(𝑡)>𝑀)

󵄨󵄨󵄨󵄨∇ (𝑢 −𝑀)+
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜇
2

𝛿𝛾
𝜀.

(49)

By Poincáre inequality, we have

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩(𝑢 −𝑀)+
󵄩󵄩󵄩󵄩

2

+ 𝛿𝛾∫
Ω(𝑢(𝑡)>𝑀)

󵄨󵄨󵄨󵄨(𝑢 −𝑀)+
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜇
2

𝛿𝛾
𝜀.

(50)

By Gronwall’s lemma, we obtain

󵄩󵄩󵄩󵄩(𝑢 −𝑀)+
󵄩󵄩󵄩󵄩

2

≤ 𝑒
−𝛿𝛾𝑡 󵄩󵄩󵄩󵄩(𝑢0 −𝑀)+

󵄩󵄩󵄩󵄩

2

+
𝜇
2

(𝛿𝛾)
2
𝜀. (51)

Thus there exist 𝑇
1
(𝜀,𝑀) > 𝑇

0
, such that, for any 𝑡 > 𝑇

1
and

any 𝑔
0
∈ 𝐵
0
, one has

󵄩󵄩󵄩󵄩(𝑢 −𝑀)+
󵄩󵄩󵄩󵄩

2

≤
2𝜇
2

(𝛿𝛾)
2
𝜀. (52)

Symmetrically, we can prove that there exists 𝑇
2
(𝜀,𝑀) > 𝑇

0

such that for any 𝑡 < −𝑇
2
and any 𝑔

0
∈ 𝐵
0
one has

󵄩󵄩󵄩󵄩(𝑢 +𝑀)−
󵄩󵄩󵄩󵄩

2

≤
2𝜇
2

(𝛿𝛾)
2
𝜀, (53)

where

(𝑢 (𝑡) + 𝑀)
−
=

{

{

{

𝑢 (𝑡) + 𝑀, 𝑢 (𝑡) ≤ −𝑀

0, 𝑢 (𝑡) > −𝑀.

(54)

Therefore, let 𝑇
3
= max{𝑇

1
, 𝑇
2
}, for any 𝑡 > 𝑇

3
and 𝑔

0
∈ 𝐵
0
,

and there hold

∫
Ω(|𝑢(𝑡)|>𝑀)

(|𝑢| − 𝑀)
2

𝑑𝑥 ≤
2𝜇
2

(𝛿𝛾)
2
𝜀. (55)

Next we can deduce that there exists a positive integer 𝑘, such
that

∫
Ω(|𝑢(𝑡)|>𝑘𝑀)

|𝑢|
2

𝑑𝑥 ≤
8𝜇
2

(𝛿𝛾)
2
𝜀. (56)

Indeed it follows that

∫
Ω(|𝑢(𝑡)|>𝑘𝑀)

|𝑢|
2

𝑑𝑥 ≤ 2∫
Ω(|𝑢(𝑡)|>𝑀)

(|𝑢| − 𝑀)
2

𝑑𝑥

+ 2𝑀
2

𝑚(Ω (|𝑢 (𝑡)| ≥ 𝑘𝑀))

≤
4𝜇
2

(𝛿𝛾)
2
𝜀 + 2𝑀

2
𝐾
0

𝑘2𝑀2

=
4𝜇
2

(𝛿𝛾)
2
𝜀 +

2𝐾
0

𝑘2
≤
8𝜇
2

(𝛿𝛾)
2
𝜀.

(57)

Since 𝑚(Ω(|𝑢(𝑡)| ≥ 𝑘𝑀)) ≤ 𝐾
0
/𝑘
2
𝑀
2, where 𝐾

0
/𝑀
2
< 𝜀/2

for a sufficiently large integer 𝑘, (43) holds, with𝑀
3
= 𝑘𝑀,

𝑇
3
= max{𝑇

1
, 𝑇
2
} for any 𝑔

0
∈ 𝐵
0
. The proof is completed.

Lemma 8. Let 𝐵
0
be the bounded absorbing set of solution

semiflow {𝑆(𝑡)}
𝑡≥0

to problem (5), and then, for any given𝑀
4
>

0, it hold that

𝐾(𝑃
𝑢
(𝑆 (𝑡) 𝐵

0
)
Ω(|𝑢(𝑡)|<𝑀4)

) 󳨀→ 0, as 𝑡 󳨀→ ∞, (58)

where 𝑃
𝑢
: 𝐻 → 𝐿

2
(Ω) is the orthogonal projection from

the product Hilbert space 𝐻 onto the first component space
associated with the 𝑢-component.

Proof. Taking the inner-product (5) with −Δ𝑢(𝑡) over the set
Ω
1
= Ω(|𝑢(𝑡)| < 𝑀

4
),

1

2

𝑑

𝑑𝑡
‖∇𝑢‖
2

Ω1
+ 𝛿 ‖Δ𝑢‖

2

Ω1
= −𝜇∫

Ω1

Δ𝑢𝑑𝑥

+ 𝑝∫
Ω1

𝑢VΔ𝑢𝑑𝑥 + (1 − 𝑝)∫
Ω1

𝑢V2Δ𝑢𝑑𝑥

≤
𝜇
2

|Ω|

2𝛿
+
𝛿

2
‖Δ𝑢‖
2

Ω1
− 𝑝∫
Ω1

∇ (𝑢V) ∇𝑢 𝑑𝑥 − (1

− 𝑝)∫
Ω1

∇ (𝑢V2) ∇𝑢 𝑑𝑥 ≤
𝜇
2

|Ω|

2𝛿
+
𝛿

2
‖Δ𝑢‖
2

Ω1

− 𝑝∫
Ω1

V |∇𝑢|2 𝑑𝑥 − 𝑝∫
Ω1

𝑢∇𝑢∇V 𝑑𝑥 − (1 − 𝑝)

⋅ [∫
Ω1

V2 |∇𝑢|2 𝑑𝑥

+ 2∫
Ω1

𝑢V∇𝑢∇V 𝑑𝑥 + ∫
Ω1

|∇V|2 𝑢2𝑑𝑥] + (1 − 𝑝)

⋅ ∫
Ω1

|∇V|2 𝑢2𝑑𝑥 ≤
𝜇
2

|Ω|

2𝛿
+
𝛿

2
‖Δ𝑢‖
2

Ω1

− 𝑝∫
Ω1

𝑢∇𝑢∇V 𝑑𝑥 + (1 − 𝑝)∫
Ω1

|∇V|2 𝑢2𝑑𝑥

≤
𝜇
2

|Ω|

2𝛿
+
𝛿

2
‖Δ𝑢‖
2

Ω1
+
𝛿𝛾

4
∫
Ω1

|∇𝑢|
2

𝑑𝑥 + (
𝑝
2

𝛿𝛾

+ 1 − 𝑝)∫
Ω1

|∇V|2 𝑢2𝑑𝑥,

(59)

so we obtain

𝑑

𝑑𝑡
‖∇𝑢‖
2

Ω1
+
𝛿𝛾

2
‖∇𝑢‖
2

Ω1

≤ (
𝑝
2

𝛿𝛾
+ 1 − 𝑝)∫

Ω1

|∇V|2 𝑢2𝑑𝑥 +
𝜇
2

|Ω|

𝛿
,

(60)
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and since |𝑢(𝑡)| < 𝑀
4
, we have

𝑑

𝑑𝑡
‖∇𝑢‖
2

Ω1
+
𝛿𝛾

2
‖∇𝑢‖
2

Ω1

≤ (
𝑝
2

𝛿𝛾
+ 1 − 𝑝)𝑀

2

4
∫
Ω1

|∇V|2 𝑑𝑥 +
𝜇
2 󵄨󵄨󵄨󵄨Ω1

󵄨󵄨󵄨󵄨

𝛿
.

(61)

It follows that ‖∇V‖2 ≤ ‖∇𝑧‖2 + ‖∇𝑢‖2. By Lemma 4, we get
that there exits 𝑇

0
= 𝑇
0
(𝐵
0
) > 0 such that for all 𝑡 > 𝑇

0

∫

𝑡+1

𝑡

‖∇V‖2 𝑑𝜏 ≤ ∫
𝑡+1

𝑡

(‖∇𝑧‖
2

+ ‖∇𝑢‖
2

) 𝑑𝜏 ≤ 𝑀
0
. (62)

Combining results in Lemma 3, (61), and (62), we conclude
that there exist 𝜌

3
> 0, 𝑇

4
> 𝑇
3
such that

‖∇𝑢‖
2

Ω1
≤ 𝜌
3
∀𝑡 > 𝑇

4
, 𝑔
0
∈ 𝐵
0
. (63)

Inequality (63) is uniform constant depending on the
absorbing set 𝐵

0
and the given 𝑀

4
and shows that, for any

fixed 𝑡 > 𝑇
4
, 𝑃
𝑢
(𝑆(𝑡)𝐵

0
)
Ω(|𝑢|≤𝑀4)

is bounded in𝐻1
0
(Ω). Due to

the compact embedding 𝐻1
0
(Ω) 󳨅→ 𝐿

2
(Ω), it turns out that,

for any fixed 𝑡 > 𝑇
4
, 𝑃
𝑢
(𝑆(𝑡)𝐵

0
)
Ω(|𝑢|≤𝑀4)

is a precompact set in
𝐿
2
(Ω), so we have 𝐾(𝑃

𝑢
(𝑆(𝑡)𝐵

0
)
Ω(|𝑢(𝑡)|<𝑀4)

) = 0, for 𝑡 ≥ 𝑇
4
in

the space 𝐿2(Ω). The proof is completed.

Lemma 9. For any 𝜀 > 0, there exist positive constants𝑀
5
(𝜀)

and 𝑇
5
(𝜀), such that the V-component of the solution semiflow

of problem (5) satisfies

∫
Ω(|𝑢(𝑡)|≥𝑀5)

|V (𝑡)|2 𝑑𝑥 < 𝜀, for any 𝑡 ≥ 𝑇
5
, 𝑔
0
∈ 𝐵
0
. (64)

Proof. Taking the inner-product (18) with 𝑧(𝑡) over Ω
2
=

{|𝑢(𝑡)| > 𝑀
3
}, we get

1

2

𝑑

𝑑𝑡
‖𝑧‖
2

Ω2
+ ‖∇𝑧‖

2

Ω2
+ ‖𝑧‖
2

Ω2

= (𝛿 − 1) ∫
Ω2

Δ𝑢𝑧 𝑑𝑥 + ∫
Ω2

(𝜇 + 𝑢) 𝑧 𝑑𝑥

≤
1

2
‖∇𝑧‖
2

Ω2
+
(𝛿 − 1)

2

2
‖∇𝑢‖
2

Ω2
+
1

2
‖𝑧‖
2

Ω2

+
1

2

󵄩󵄩󵄩󵄩𝜇 + 𝑢
󵄩󵄩󵄩󵄩

2

Ω2

.

(65)

We obtain
𝑑

𝑑𝑡
‖𝑧‖
2

Ω2
+ ‖∇𝑧‖

2

Ω2
+ ‖𝑧‖
2

Ω2

≤ (𝛿 − 1)
2

‖∇𝑢‖
2

Ω2
+ 2 ‖𝑢‖

2

Ω2
+ 2𝜇
2

|Ω| .

(66)

Integrating both sides of the above inequality from 0 to 𝑡, we
have

‖𝑧‖
2

Ω2
≤ 𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑧0

󵄩󵄩󵄩󵄩

2

Ω2

+ (𝛿 − 1)
2

𝑒
−𝑡

∫

𝑡

0

𝑒
𝜏

‖∇𝑢‖
2

Ω2
𝑑𝜏

+ 𝑒
−𝑡

∫

𝑡

0

𝑒
𝜏

(2 ‖𝑢‖
2

Ω2
+ 2𝜇
2

|Ω|) 𝑑𝜏.

(67)

Using inequality (26), the right hand of (67) can be estimated
as follows:

𝑒
−𝑡 󵄩󵄩󵄩󵄩𝑧0

󵄩󵄩󵄩󵄩

2

Ω2

+ 𝑒
−𝑡

∫

𝑡

0

𝑒
𝜏

(2 ‖𝑢‖
2

Ω2
+ 2𝜇
2 󵄨󵄨󵄨󵄨Ω2

󵄨󵄨󵄨󵄨) 𝑑𝜏 <
𝜀

2
,

(𝛿 − 1)
2

𝑒
−𝑡

∫

𝑡

0

𝑒
𝜏

‖∇𝑢‖
2

Ω2
𝑑𝜏

< (𝛿 − 1)
2 󵄨󵄨󵄨󵄨Ω2

󵄨󵄨󵄨󵄨 + (𝛿 − 1)
2

𝐶
1
(𝑡)
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩Ω2

<
𝜀

2
,

(68)

for all 𝑀 > 𝑀
3
, 𝑡 > 𝑇

3
, we find that there exist 𝑇

2
=

max{𝑇
0
, 𝑇
1
},𝑀
2
such that

‖𝑧‖
2

Ω2
< 𝜀, for 𝑡 > 𝑇

3
, 𝑀 > 𝑀

3
. (69)

Combining (43) and (69), we have that there exist positive
𝑀
5
> 𝑀
3
, 𝑇
5
> 𝑇
3
such that

∫
Ω(|𝑢(𝑡)|≥𝑀5)

|V (𝑡)|2 𝑑𝑥 < 2 (‖𝑢‖2
Ω1
+ ‖𝑧‖
2

Ω2
) < 𝜀,

for any 𝑡 ≥ 𝑇
5
, 𝑔
0
∈ 𝐵
0
.

(70)

The proof is completed.

Lemma 10. Let 𝐵
0
be the bounded absorbing set of solution

semiflow {𝑆(𝑡)}
𝑡≥0

to problem (2)–(4), and then, for any given
𝑀
4
> 0, it holds that

𝐾(𝑃V (𝑆 (𝑡) 𝐵0)Ω(|𝑢(𝑡)|<𝑀4)
) 󳨀→ 0, as 𝑡 󳨀→ ∞, (71)

where 𝑃V : 𝐻 → 𝐿
2
(Ω) is the orthogonal projection from

the product Hilbert space 𝐻 onto the first component space
associated with the V-component.

Proof. Taking the inner-product (5) with −ΔV(𝑡) over the set
Ω
1
, we have

1

2

𝑑

𝑑𝑡
‖∇V‖2
Ω1
+ ‖ΔV‖2

Ω1

= −𝑝∫
Ω1

𝑢VΔV 𝑑𝑥 − (1 − 𝑝)∫
Ω1

𝑢V2ΔV 𝑑𝑥

+ ∫
Ω1

VΔV 𝑑𝑥

≤ (𝑝𝑀
4
+ 1)∫

Ω1

V |ΔV| 𝑑𝑥

+ (1 − 𝑝)𝑀
4
∫
Ω1

V2∇V 𝑑𝑥
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Figure 1: Numerical simulation for (5) with 𝑢
0
= cos(𝑥/10), V

0
= cos(𝑥).

≤
1

2
‖ΔV‖2
Ω1
+
(𝑝𝑀
4
+ 1)
2

2
‖V‖2
Ω1
+
1

2
‖ΔV‖2
Ω1

+
(1 − 𝑝)

2

𝑀
2

4

2
∫
Ω1

V4𝑑𝑥

≤ ‖ΔV‖2
Ω1
+
(𝑝𝑀
4
+ 1)
2

2
𝜌
0

+
(1 − 𝑝)

2

𝑀
2

4

2
‖V‖4
𝐿
4
(Ω1)

≤ ‖ΔV‖2
Ω1
+
(𝑝𝑀
4
+ 1)
2

2
𝜌
0

+
(1 − 𝑝)

2

𝑀
2

4

2𝛾2
‖∇V‖4
Ω1
,

(72)

and, thus, it follows that

𝑑

𝑑𝑡
‖∇V‖2
Ω1
≤
(𝑝𝑀
4
+ 1)
2

2
𝜌
0

+
(1 − 𝑝)

2

𝑀
2

4

2𝛾2
‖∇V‖2
Ω1
‖∇V‖2
Ω1
,

(73)

for 𝑡 > 𝑇
0
. In view of (62)

(1 − 𝑝)
2

𝑀
2

4

2𝛾2
∫

𝑡+1

𝑡

‖∇V‖2
Ω1
𝑑𝜏 ≤ 𝑀

4

(1 − 𝑝)
2

𝑀
2

4

2𝛾2
, (74)

and, applying Lemma 3, there exist 𝜌
4
> 0, 𝑇

6
> 𝑇
4
such that

‖∇V‖2
Ω1
≤ 𝜌
3
∀𝑡 > 𝑇

6
, (75)

it shows that𝑃V(𝑆(𝑡)𝐵0)Ω(|𝑢(𝑡)|<𝑀4) is bounded set in𝐻
1

0
(Ω) for

any 𝑡 > 𝑇
6
, so that 𝑃V(𝑆(𝑡)𝐵0)Ω(|𝑢(𝑡)|<𝑀4) is a precompact set in

𝐿
2
(Ω). It is 𝐾(𝑃V(𝑆(𝑡)𝐵0)Ω(|𝑢(𝑡)|<𝑀4)) = 0 in 𝐿

2
(Ω) for 𝑡 > 𝑇

6
.

The proof is completed.

Theorem 11. If 𝛿 > 2/27𝛾, 0 ≤ 𝑝 ≤ 1, there exists a global
attractor A in 𝐻 for the solution semiflow {𝑆(𝑡)}

𝑡≥0
generated

by problem (5).

Proof. By Lemma 2, we have {𝑆(𝑡)}
𝑡≥0

that has a bounded
absorbing set 𝐵

0
in 𝐻 and by Lemmas 8 and 10 we have

that the conditions in Lemma 4 are satisfied. So by Lemma 4
there exists a global attractor A in 𝐻 for the solution
semiflow {𝑆(𝑡)}

𝑡≥0
generated by problem (5). The proof is

completed.

4. Simulation

In this section, using the finite difference method to (5), the
discrete equation of (5) was obtained as follows:

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

Δ𝑡
=
𝛿 (𝑢
𝑛

𝑖−1
+ 𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
)

ℎ2
+ 𝜇 − 𝑝𝑢

𝑛

𝑖
V𝑛
𝑖

− (1 − 𝑝) 𝑢
𝑛

𝑖
(V𝑛
𝑖
)
2

,

V𝑛+1
𝑖
− V𝑛
𝑖

Δ𝑡
=
𝛿 (V𝑛
𝑖−1
+ V𝑛
𝑖+1
− 2V𝑛
𝑖
)

ℎ2
+ 𝑝𝑢
𝑛

𝑖
V𝑛
𝑖

+ (1 − 𝑝) 𝑢
𝑛

𝑖
(V𝑛
𝑖
)
2

− V𝑛
𝑖
.

(76)

Here ℎ is space stepsize, Δ𝑡 is time stepsize, and 𝑢𝑛
𝑖
is a

numerical approximation to 𝑢(𝑥
𝑗
, 𝑡
𝑛
) at (𝑥

𝑗
, 𝑡
𝑛
) = (𝑗ℎ, 𝑛Δ𝑡).

Then we apply Euler’s Method with the Dirichlet boundary
condition to solve the discrete equation (5). In what follows,
we always set space stepsize ℎ = 1 and time stepsize Δ𝑡 = 0.5
to simulate the problem under different conditions.

Nowwe set the parameters 𝛿 = 1, 𝜇 = 0.5, 𝑝 = 0.1, and let
initial data 𝑢

0
(𝑥) = cos(𝑥/10), V

0
(𝑥) = cos(𝑥). The numerical

results are shown in Figure 1. These plots indicate that the
global attractor in Section 3 is complicated and consist of
many period trajectories. In the meanwhile, when we let
initial data 𝑢

0
(𝑥) = cos(𝑥/10)V

0
(𝑥) = cos(𝑥/10), the plots
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Figure 2: Numerical simulation for (5) with 𝑢
0
= cos(𝑥/10), V

0
= cos(𝑥/10).

can be shown in Figure 2, and it indicates that the solution is
convergent to a stationary solution.

5. Conclusion

In this paper, it can be seen from the numerical results that
the global attractor A of problem (5) exists for certain 𝛿
and 𝑃. It includes several types of periodic solutions and
quasiperiodic solutions. Besides, the solutions also reduce
to stationary solution in some parameter value. All these
numerical simulations are consistent with our theoretical
conclusions.
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