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We present a new structural method of sketched symbol recognition, which aims to recognize a hand-drawn symbol before it is
fully completed. It is invariant to scale, stroke number, and order. We also present two novel descriptors to represent the spatial
distribution between two primitives. One is invariant to rotation and the other is not. Then a symbol is represented as a set of
descriptors.The distance between the input symbol and the template one is calculated based on the assignment problem.Moreover,
a fast nearest neighbor (NN) search algorithm is proposed for recognition. The method achieves a satisfactory recognition rate in
real time.

1. Introduction

Sketch recognition is widely used in pen-based interaction,
especially with the increasing popularity of devices with
touch screens. It is a natural and efficient means of captur-
ing information by automatically interpreting hand-drawn
sketches and it can be the import part of the early design pro-
cess, where it helps people explore rough ideas and solutions
in an informal environment. Sketch recognition has been
successfully applied in education [1, 2], engineering [2, 3],
design [4], and so on.

Sketch recognition refers to recognition of predefined
symbols or free-formdrawings (e.g., an unconstrained circuit
drawing); in the latter case, the recognition task is generally
preceded by segmentation in order to locate individual
symbols [5]. This paper focuses on the recognition of hand-
drawn isolated symbols. However, it is a difficult problem
due to the inherent imprecision and ambiguity of a freehand
drawing [6]. Many challenges remain in terms of intraclass
compactness and interclass separation due to the variability
of sketching, because it is likely that different people have
different drawing styles, such as the stroke order, stroke num-
ber, and nonuniform scaling, as well as complex local shifts.

Moreover, the styles of the same individual may differ even at
different times.

A practical application system should place few drawing
constraints on users. So the invariance properties to scale,
stroke number, and stroke order are desirable characteristics.
In many applications, a graphical symbol can be drawn
towards different orientations; hence, the recognition algo-
rithm should also be rotation-free when necessary. A similar
research is handwriting recognition, such as handwritten
digit and Chinese character recognition, which has many
effective algorithms.

The term autocompletion refers to predicting the sket-
ched symbols before the drawing is completed [5]. It can be
advantageous for the users in several applications [7]. Auto-
completion during sketching is desirable since it can be used
to facilitate sketching by offering possible user-intended sym-
bol classes and to reduce user-originated errors by providing
feedback immediately after receiving a new input stroke.

However, autocompletion is amore difficult problem, due
to classifying with the partial information before the drawing
is completed. Firstly, a hand-drawn symbol is ambiguous if
it appears as a subsymbol of more than one symbol class.
Secondly, the partially drawn symbol and the fully completed
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one differ in visual appearance. Finally, the similarity of them
is changed with the process of sketching.

This paper focuses on the recognition of hand-drawn
isolated symbols before they are fully completed and presents
a structural framework to recognize online sketched symbols.
The key contributions of our method are listed as follows:

(1) We present a framework to recognize sketched sym-
bols with autocompletion. It has inherent invariance
to stroke number and order. It can work with a single
(or possibly more) representative template for each
symbol class. So it provides fine extensibility to new
shapes. It obtains high recognition accuracy in real
time even when the hand-drawn symbols are highly
incomplete.

(2) We also present two novel descriptors, to represent
the spatial distribution between two primitives. One
is called DAR (directional adaptive region descrip-
tor), which is not invariant to rotation. The other is
called DZM (directional Zernike moment descrip-
tor), which inherits the rotation invariance from the
traditional Zernike moments (ZM) descriptor. They
are both statistical descriptors rather than topological
relations (e.g., intersections, parallelism, etc.). So
there is no need to recognize primitives.The approach
is independent of the primitive types.

(3) A simple and fastNNsearch algorithm is proposed for
recognition. It can reduce the runtime of structural
matching. And it requires no burdensomemathemat-
ical procedures and complex data structures.

The rest of the paper is organized as follows. Section 2
contains a brief survey on the main approaches for sketched
symbol recognition. In Section 3 we describe the proposed
method for the recognition of partially drawn symbols.
Section 4 evaluates the performance of ourmethod. Lastly, we
conclude the paper with some final remarks and a brief dis-
cussion on future work.

2. Related Work

According to a widely accepted taxonomy, sketched symbol
recognition methods are classified into two main categories:
structural and statistical [6].

Structural methods focus on building structural shape
descriptions. The basic step is stroke segmentation using
temporal and spatial features.Then a sketched symbol can be
represented as a tree or graph, and the similarity between two
sketched symbols can be calculated by structural matching.
Hammond and Davis [8] developed a hierarchical language
to describe how diagrams are drawn, displayed, and edited.
Then they used the language to perform automatic symbol
recognition. Attributed relational graph (ARG) is an excellent
structural model to describe both geometry and topology
of a symbol [9], and it is insensitive to orientation, scaling,
and stroke order. The advantage of structural methods is
distinguishing similar shapes. But the disadvantage is their
sensitivity to the results of stroke segmentation. Furthermore,
many approaches require the identification of the primitive

type (e.g., line, arc, ellipse, etc.) and the spatial (topological)
relations between two primitives (e.g., intersections, paral-
lelism, etc.). And due to the high computational complexity,
approximate algorithms for structural matching are often
used, such as the approximate graph matching algorithms
presented in [9].

Statistical approaches look at the visual appearance of
symbols, without stroke segmentation and primitive recog-
nition. Mostly, a number of features are extracted from the
pixels of the unknown symbol, followed by a statistical classi-
fier. Some shape descriptors, such as Zernike moment [10, 11]
and shape context [12], can be used to represent a sketched
symbol. Kara and Stahovich [13] proposed an image-based
recognizer, using four template classifiers. In their method,
polar coordinates were used to achieve rotation invariance.
Ouyang and Davis [14] proposed a visual approach to
sketched symbol recognition. It used a set of visual features
that captured online stroke properties like orientation and
endpoint location. Almazán et al. [15] described a framework
to learn a model of shape variability based on the Active
Appearance Model (AAM) and proposed two types of BSM
(Blurred Shape Model [16]) descriptors. Willems et al. [17]
explored a large number of online features, whichwere sorted
in three feature sets due to different levels of details. Delaye
andAnquetil [18] presented a set of 49 features, calledHBF49,
for the representation of hand-drawn symbols. And HBF49
can be used as a reference to evaluate a symbol recognition
system.The advantage of statistical methods is the high robu-
stness to noise and different drawing styles, such as stroke
order and direction. It avoids the complex phase of primitive
extraction.

Furthermore, most of current researches, such as the
above cited methods in [8–18], concern the fully completed
symbols. To date, only a few systems have been introduced
supporting autocompletion [5, 7, 19–21]. In these works, a
symbol is usually represented as a spatial relation graph
(SRG) [20] or a spatial division tree (SDT) [19], and then the
similarity or distance between the input symbol (probably
incomplete) and the template can be calculated based on
these representations. In [20] a syntactic approach is pre-
sented. Costagliola et al. proposed a graph-based method [6,
7]. It uses the ARG to represent a symbol, and the recognition
is based on subgraph isomorphism. But it is not invariant
to rotation. Unlike these structural methods, Tirkaz et al.
[5] proposed an image-based method, whose framework was
fully probabilistic. And it also has no inherent invariance to
rotation. But the approach relies on the observation that peo-
ple do tend to prefer certain stroke drawing orderings over
others. Hence, it is not completely invariant to stroke order
but relies on user’s preferred order in the training data.

3. Our Approach

We designed our approach primarily using the primitive-
based matching. An overview of the recognition process is
shown in Figure 1. In particular, we mainly show how to rep-
resent the symbols and how to calculate the distance between
the hand-drawn symbol and a template.
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Figure 1: The flowchart of our approach.

This method is organized as follows. Firstly, all strokes of
a symbol are preprocessed (Section 3.1) and segmented into
primitives (Section 3.2). Then the descriptor is extracted for
every biprimitive (Section 3.3) (a biprimitive means a pair of
primitives). In this step, we propose two novel descriptors.
Next, the distance (equivalently, dissimilarity) between the
unknown symbol and a template is calculated by a bipartite
graph matching (equivalently, optimal assignment) proce-
dure (Section 3.4). Finally, a fast NN search algorithm is pro-
posed for symbol recognition (Section 3.5).

3.1. Preprocessing. The preprocessing of the input sketch
directly facilitates pattern description and affects the quality
of description. Its tasks include noise elimination, shape scal-
ing, and resampling. These operations are simple to perform
and guarantee a better stability of extracted features, for any
type of input sketch.

The noise in input trajectories is due to erratic hand
motions and the inaccuracy of digitization. The noise reduc-
tion techniques include smoothing, filtering, and wild point
correction. As the quality of input devices steadily advances,
trajectory noise becomes less influential and simple smooth-
ing operations will suffice.

To achieve invariance under scaling and translation, the
coordinates of stroke points are simply shifted and linear
scaled such that all points are enclosed in a standard box. In
our experiments we set 𝑥, 𝑦 ∈ [0, 100]. It means translating
maximal dimension of a symbol to 100 with aspect ratio
preserved [22].

Since online strokes are typically sampled at a constant
temporal frequency, the distance between neighboring points
varies based on the pen speed. This produces more sampled
points where the pen is typically slower. In order to make
feature extraction more reliable, we resample each stroke at a
constant spatial distance. In our experiments the resampling
interval is set to 1.0.

3.2. Corner Finding. Our method works with primitives and
not directly with strokes, so corner finding is an essential step
in order to extract the primitives, as well as most structural
methods.

Primitives are regarded as simple graphical components,
such as lines, arcs, and ellipse.The objective of corner finding
is decomposing a stroke into primitives. There are many
existingmethods for corner finding, for example, IStraw [23],
MergeCF [24], ClassSeg [25], SpeedSeg [26], QPBDP [27],
DPFrag [28], and RankFrag [6, 7]. In fact, it is another well-
studied problem in sketch-based interfaces. However, our
main work is to represent the symbols and calculate the
distance between two symbols after corner finding. We use
the existing corner finding algorithm in [7]. It is the revisited

version of Ouyang and Davis’s work in [29]. It has been
reported with satisfactory performance. Instead of immedi-
ately trying to decide which points are corners, it repeatedly
removes the point that is least likely to be a corner. The
details of the method are available in [7]. In a brief review,
the method works as follows.

(1) Initially, a number of equally spaced points are extra-
cted from the stroke and are all added to a list of possible
corners.

(2)Then the points which are least likely to be corners are
iteratively removed from the list. The likelihood is evaluated
through a cost function. For each point 𝑝

𝑖
in the list, a cost

value is computed as

Cost (𝑝
𝑖
) = √mse (𝑆

𝑖
; 𝑝
𝑖−1

, 𝑝
𝑖+1

) × dist (𝑝
𝑖
; 𝑝
𝑖−1

, 𝑝
𝑖+1

) , (1)

where 𝑆
𝑖
is the subset of points in the resampled stroke

between point𝑝
𝑖−1

and point𝑝
𝑖+1

andmse(𝑆
𝑖
;𝑝
𝑖−1

,𝑝
𝑖+1

) is the
mean squared error between the set 𝑆

𝑖
and the line segment

formed by (𝑝
𝑖−1

, 𝑝
𝑖+1

). The term dist(𝑝
𝑖
; 𝑝
𝑖−1

, 𝑝
𝑖+1

) is the
minimum distance between 𝑝

𝑖
and the line segment formed

by (𝑝
𝑖−1

, 𝑝
𝑖+1

).
For the point 𝑝 with the smallest cost, it is iteratively

removed from the list, and the cost in (1) is updated. At
each iteration, the decision to remove a point is taken on a
binary classifier, which is previously trained with data. The
data include ten features, extracted from the strokes, points,
or stroke fitting errors. Six of the features are described in
[29], while the rest are advanced in [7].The features are shown
in Table 1.

(3) During classification, if the classifier decides that 𝑝
is not a corner, it removes the vertex and continues to the
next elimination candidate. Otherwise, if it decides that it
is a corner, the process stops and all remaining vertices are
returned as corners.

3.3. Feature Extraction. After corner finding, a sketched
symbol is represented by a set of biprimitives. The main task
of this step is to calculate the biprimitive descriptor. It is used
to describe how two primitives are spatially related within a
symbol.

We propose two descriptors. One is called DAR (direc-
tional adaptive region descriptor). It is inspired by the direc-
tional features, whose effectiveness in representing a charac-
ter or symbol has been demonstrated in both handwritten
character and sketch recognition [30]. But it is not invariant
to rotation. The other is called DZM (directional Zernike
moment descriptor), which incorporates local direction info-
rmation into the ZMs. It inherits the rotation invariance from
the traditional ZMs.

After feature extraction, each symbol is represented
through a set of proposed descriptors where each element is
associated with a pair of primitives.

3.3.1. DAR Descriptor. Firstly, for each resampled point 𝑝
𝑖
,

there is a local line defined by two consecutive points (𝑝
𝑖
,

𝑝
𝑖+1

). Each local line is decomposed into components in
standard directions. We employ four chain code directions.
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Table 1: List of features for corner finding.

Feature Description Reference

Cost The cost of removing the vertex, from (1).

[29]

Diagonal The diagonal length of the stroke’s bounding box.
Ink density The length of the stroke divided by the diagonal length.

Max distance The distance to the farther of its two neighbors (𝑝
𝑖−1

or 𝑝
𝑖+1
) normalized by the distance between the

two neighbors.
Min distance The distance to the nearer of its two neighbors normalized by the distance between the two.
Sum distance The sum of the distances to the two neighbors normalized by the distance between the two.

EllipseFit A function calculated on the whole stroke, returning a real value between 0 and 1. The higher this
value is, the more the stroke resembles an ellipse (or a circle).

[7]PolyFit
A function calculated for the candidate corner point 𝑐

𝑖
on the substroke whose endpoints are the

previous and the next candidate corner (𝑐
𝑖−1

and 𝑐
𝑖+1
, resp.), returning a real value between 0 and 1.

The higher this value is, the more the stroke resembles a polyline composed of the two segments
𝑐
𝑖−1

𝑐
𝑖
and 𝑐
𝑖
𝑐
𝑖+1
.

Angle The magnitude of the angle with vertex in the candidate corner point, calculated with respect to the
previous and the next sampled points of the stroke.

SeqNumber The sequence number of the iteration of the removal process.
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Figure 2: Directional decomposition of a local line segment.

The major advantage is the independence of local stroke
direction; for example, the decomposition of (𝑝

𝑖
, 𝑝
𝑖+1

) is the
same as that of (𝑝

𝑖+1
, 𝑝
𝑖
). If a local line lies between two

neighboring standard directions, it is decomposed into two
components in the two standard directions, as shown in Fig-
ure 2.Thus the local line is assigned to four directional planes,
corresponding to four chain code directions.The length of the
local line component is assigned to the corresponding pixel
in the plane. An example of the whole process is shown in
Figure 3.

Secondly, each directional plane is partitioned into sev-
eral uniform zones. In our method, there are two kinds of
partition for the high accuracy, such as Figure 3. In partition
1, the biprimitive region is partitioned into four subregions
by two dashed lines, which both pass through the centroid
(marked as a red point in the figure) of the two primitives.
And the directions of the dashed lines are 0 and 90 degrees.
Meanwhile in partition 2, the directions of the two dashed
lines are 45 and 135 degrees, respectively.

Lastly, in each subregion, we accumulate the pixels. So
for a biprimitive, we get two 4 × 4 = 16 dimensional vectors,
named V

1
and V
2
, corresponding to the two kinds of partition,

respectively.

Given two biprimitives, 𝑎 and 𝑏, denote their DARs as
(V
1
(𝑎), V
2
(𝑎)) and (V

1
(𝑏), V
2
(𝑏)), respectively. Then we define

the DAR distance distDAR(𝑎, 𝑏) as follows:
distDAR (𝑎, 𝑏)

= min (
󵄩
󵄩
󵄩
󵄩
V
1 (

𝑎) − V
1 (

𝑏)
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
V
2 (

𝑎) − V
2 (

𝑏)
󵄩
󵄩
󵄩
󵄩
) ,

(2)

where ‖ ⋅ ‖means Euclidean distance.

3.3.2. DZM Descriptor. DZM incorporates local direction
information into the ZMs which represent only the spatial
distribution of sample points. A shape is decomposed into
several component channels and theDZMdescriptor consists
of the ZMs from all channels. Figure 4 shows an example.

Firstly, similar to DAR, for each resampled point 𝑝
𝑖
, there

is a local line defined by two consecutive points (𝑝
𝑖−1

, 𝑝
𝑖+1

).
The local directional angle 𝜃

𝑖
for 𝑝
𝑖
is defined as the angle

between lines (𝑝
𝑖
, 𝑜) and (𝑝

𝑖−1
, 𝑝
𝑖+1

), where 𝑜 is centroid
(marked as a red point in Figure 4). Obviously, invariance to
rotation is intrinsic to the angle 𝜃

𝑖
.

Secondly, each local angle is decomposed into compo-
nents in 𝐷 uniformly spaced standard angles, such as {0,

(1/𝐷)𝜋, (2/𝐷)𝜋, . . . , 𝜋}; each of them would also be referred
to as a channel later. If a local angle value lies between two
standard angles, it is decomposed into two components in
the two standard angles. It is similar to the process of direc-
tional decomposition in DAR, while the standard directions
(angles) are different. Thus the biprimitive is decomposed
into 𝐷 directional planes (subimages), corresponding to 𝐷

standard angles.Themembership degree (component length)
of 𝜃
𝑖
is assigned to the corresponding pixel in the plane. And

the planes are invariant to rotation.
Finally, extract a set of 𝐾 ZMs on each plane (𝐾 is the

order of ZMs). Eventually, the DZM descriptor consists of
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Figure 4: An example of DZM descriptor for a biprimitive (two
channels).

the 𝐷 × 𝐾 ZMs from all channels. In experiments we find
that the recognition accuracy is well when 𝐷 is set to 2 and
𝐾 is set to 8. The DZM descriptor has better performance in
symbol recognition than traditional ZM [11].

Given two biprimitives, 𝑎 and 𝑏, denote their DZMs as
𝑧(𝑎) and 𝑧(𝑏), respectively.Then we define the DZM distance
distDZM(𝑎, 𝑏) as follows:

distDZM (𝑎, 𝑏) = ‖𝑧 (𝑎) − 𝑧 (𝑏)‖ . (3)

3.4. Symbol Matching. To facilitate the presentation, the
input sketched symbol is recorded as 𝑈 (meaning unknown,
probably incomplete), and the template symbol is denoted as

𝑇.Thepurpose of symbolmatching is to compute the distance
between 𝑈 and 𝑇.

After feature extraction, a symbol is represented as a
set of descriptors where each element is associated with a
biprimitive. So 𝑈 and 𝑇 can be denoted as

𝑈 = {𝑏
𝑈

𝑖
} , 𝑖 = 1, 2, . . . ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑈󵄨󵄨
󵄨
󵄨
󵄨
;

𝑇 = {𝑏
𝑇

𝑗
} , 𝑗 = 1, 2, . . . ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑇󵄨󵄨
󵄨
󵄨
󵄨
,

(4)

where 𝑏𝑈
𝑖
is the 𝑖th biprimitive of𝑈 and |𝑏

𝑈
| is the biprimitive

number, and 𝑏
𝑇

𝑗
is the 𝑗th biprimitive of𝑇 and |𝑏

𝑇
| is the bipri-

mitive number of 𝑇.
Let C denote the matching cost matrix between 𝑈 and 𝑇.

Each element 𝐶
𝑖,𝑗
means the matching cost between 𝑏

𝑈

𝑖
and

𝑏
𝑇

𝑗
. Consider

C = [𝐶
𝑖,𝑗
] = [𝐶 (𝑏

𝑈

𝑖
, 𝑏
𝑇

𝑗
)] . (5)

If the biprimitive numbers of 𝑈 and 𝑇 are not equal, the
cost matrix can be made square by adding “dummy” biprimi-
tives to the smaller set. If |𝑏𝑈| < |𝑏

𝑇
|, add dummybiprimitives

to 𝑈 (denoted as 𝑏𝑈
0
). Else, if |𝑏𝑈| > |𝑏

𝑇
|, add another kind of
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dummy biprimitives to 𝑇 (denoted as 𝑏
𝑇

0
). In order to rec-

ognize the incompletely hand-drawn symbols, the matching
cost is defined as

𝐶 (𝑏
𝑈

𝑖
, 𝑏
𝑇

𝑗
) =

{
{
{
{

{
{
{
{

{

0, 𝑖 = 0

𝜆 ⋅ length (𝑏
𝑈

𝑖
) , 𝑗 = 0

dist (𝑏𝑈
𝑖
, 𝑏
𝑇

𝑗
) , else,

(6)

where the term length( ) is the total length of the biprimitive
and the variable 𝜆 is an empirical parameter. And dist( ) is
DAR distance in (2) or DZM distance in (3). It depends on
whether rotation invariance is required by the user or not.
In our experiments 𝜆 can be set to 0.7. The matching cost of
𝐶(𝑏
𝑈

𝑖
, 𝑏
𝑇

0
) is set to 𝜆 length(𝑏𝑈

𝑖
) for “penalty,” because if |𝑏𝑈| >

|𝑏
𝑇
|, it is likely that𝑈 and𝑇 belong to different symbol classes.

And the longer the biprimitive 𝑏𝑈
𝑖
is, the more the penalty is.

Given the matching cost matrix C between 𝑈 and 𝑇, we
want to minimize the total cost of matching

𝐻(𝜋) = ∑

𝑖

𝐶
𝑖,𝜋(𝑖) (7)

subject to the constraint that the matching is one-to-one;
that is, 𝜋 is a permutation. In this case, a biprimitive will be
matched to a dummy whenever there is no real match. This
is an instance of the square assignment (or weighted bipartite
matching) problem, which can be solved in𝑂(𝑁

3
) time using

Hungarian algorithm. The minimum𝐻 in (7) is the distance
between 𝑈 and 𝑇.

3.5. Fast NN Search Algorithm for Symbol Recognition. By
calculating the distances between 𝑈 and each of the tem-
plates, theNN techniques can be used for symbol recognition.
However, because the pattern is not described as a vector, the
traditional strategies to speed up, such as KD-trees and M-
trees, cannot be used. So the expensive cost of computation
is a key issue which needed to be addressed. Inspired by
the work in [31], we propose a simple and fast NN search
algorithm for our framework of sketch recognition.Themain
idea is to reject a lot of candidates based on the lower bound
of distances efficiently.

Denote𝐷 and 𝑑 as

𝐷 = ∑

𝑖

min
𝑗

(𝐶
𝑖,𝑗
) ,

𝑑 = min (𝐻) .

(8)

It means 𝐷 is the sum of minimums in each row of the
matching cost matrix C and 𝑑 is the real distance between 𝑈

and 𝑇 using Hungarian algorithm. Obviously, the calculation
of 𝐷 is simpler and faster than 𝑑, and 𝐷 ≤ 𝑑 holds. So 𝐷 can
be seen as the lower bound of 𝑑.The fast NN search algorithm
is described below with two steps.

Step 1. Sequentially scanning all the templates, the lower
bound of the distance between 𝑈 and the 𝑖th template (𝑇

𝑖
,

𝑖 = 1, 2, . . .) is calculated (denoted as 𝐷
𝑖
). Meanwhile, the

template with the minimized 𝐷
𝑖
is recorded as 𝑇

𝑘
where

𝑘 is the subscript of the template. 𝑇
𝑘
is regarded as the

initial candidate of nearest neighbour. Then the real distance
between 𝑈 and 𝑇

𝑘
is computed using Hungarian algorithm

in (7) and regarded as the initial probably minimum distance
(denoted as 𝑑min) in all templates.

Step 2. Scan each template again sequentially to compare
its 𝐷
𝑖
with the probably minimum distance 𝑑min. If 𝐷𝑖 >

𝑑min holds, then 𝑑
𝑖

≥ 𝐷
𝑖

> 𝑑min. It means 𝑇
𝑖
is not

the nearest neighbor and could be rejected immediately.
Otherwise, the real distance 𝑑

𝑖
between𝑇

𝑖
and𝑈 is computed

using Hungarian algorithm. Then, if 𝑑
𝑖
< 𝑑min holds, the

candidate of nearest neighbor is updated as 𝑘 = 𝑖 and 𝑑min =
𝑑
𝑖
; otherwise 𝑇

𝑖
would be rejected.

After scanning the templates twice in the above two steps,
the final 𝑇

𝑘
is the nearest neighbor of𝑈. The advantage of the

search algorithm is that it reports the exact nearest neighbor,
not an approximate one, and requires very simple implement-
ing with no sophisticated data structures.

4. Evaluation and Discussion

The proposed method is tested on two datasets which have
already been introduced in literatures.The symbols in COAD
dataset [5] and COAD2 dataset [7] are two different subsets
of the symbols used in domain of Military Course of Action
Diagrams. In total the COAD dataset contains 620 samples
from 20 classes of symbols drawn by eight users. Meanwhile
theCOAD2dataset contains 4520 sketched symbols drawnby
eight users, belonging to 113 classes. Some sketched samples
of COAD are shown in Figure 5, and the template symbols of
COAD2 are shown in Figure 6.

4.1. Accuracy of Recognition with Autocompletion. The accu-
racy in corner finding has been recorded in [7] as 99.65% for
correct corners accuracy and 99.20% for all-or-nothing accu-
racy. Thus we mainly test the accuracy of sketch recognition
with autocompletion.

Firstly, five perfect samples per class of symbols were
chosen as the templates.Then the strokes of each original test
symbol were reordered randomly in order to guarantee that
the results were independent of stroke order. Additionally,
when we use DZMs as biprimitive descriptors, the test sym-
bols were rotated randomly to guarantee the rotation inv-
ariance. Next, for each symbol composed of 𝑛 primitives, the
recognizer was launched 𝑛 times, each with the first 1, . . . , 𝑛
primitives, representing the symbol at different completion
status. Furthermore, the top 𝑁 recognition rate reports the
percentage of times that the correctly matching template is in
the top𝑁 positions of the candidate list.The results are shown
in Figure 7.The recognition rate is calculated as a function of
the number of primitives which have already been drawn.

4.2. Evaluation of the Proposed Descriptors. In the proposed
method, a symbol is represented as a set of descriptors, where
each element is associated with a biprimitive. Figure 8 shows
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Figure 5: A sample symbol from each class in the COAD dataset [5].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113

Figure 6: The 113 template symbols from the COAD2 dataset [7].
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(a) Recognition using DAR in COAD dataset
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(b) Recognition using DAR in COAD2 dataset
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(c) Recognition using DZM in COAD dataset
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(d) Recognition using DZM in COAD2 dataset

Figure 7: Recognition rate by the number of primitives drawn in two datasets.

an example. A sketched symbol is represented as six biprimi-
tives. Obviously each sketched symbol (probably incomplete)
belonging to this symbol class in Figure 8 will share one or
more biprimitives in the figure.This idea is similar to the bag-
of-features representation in the research of image retrieval
[32].

In order to evaluate the proposed two descriptors quanti-
tatively, we compared them with two other descriptors. One
is called PSP (primitive spatial relation) presented in [7]. It is
an adaptation of shape context descriptor defined in [33]. And
PSP has no rotation invariance, as well as the proposed DAR.
The other is the ZM descriptor, which is one of the best shape
descriptors [34]. And ZM is invariant to rotation, as well as
the proposed DZM.

Firstly, because the descriptors are calculated on biprim-
itives, we built two subdatasets. We chose 20 and 100 classes
of biprimitives from COAD and COAD2 datasets randomly,
respectively. They were used to evaluate the descriptors in
different sizes of datasets. Figure 9 shows a set or subset of
biprimitive samples.

Then the recognition rates were calculated based on
5-fold cross validation under the nearest neighbor rule.
Figure 10 shows the results. The proposed descriptors have
better recognition performances.

Besides, the PSP descriptor is an adaptation of shape con-
text. So the PSP will be computed in 𝑂(𝑁

2
) time. Meanwhile

the proposed DAR captures the distribution of every point by
its directional features. It can be solved in 𝑂(𝑁) time.
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A symbol

Biprimitives

Figure 8: A sketched symbol is represented as a bag of biprimitives.

The DZM incorporates local directional information into
theZM.The computational cost ofDZM is𝐷 timesmore than
ZM, where 𝐷 is the number of channels. In particular, ZM
is the special version of DZM when 𝐷 = 1. Although this
leads to additional computational cost, more importantly the
proposed DZM is more expressive and discriminative [11].

4.3. Comparison with Other Methods. Firstly, a summary
about the related methods is briefly described.Then we com-
pared ourmethodwith the state of the art in both recognition
accuracy and response time.

(1) A Summary of the Methods for Autocompletion in Ref-
erences. Our method is free from the identification of the
primitive types, unlike many other structural methods [19–
21]. Table 2 briefly reviews the properties of the existing
methods to recognize partially drawn symbols.This table also
shows the comparison with other methods in the required
knowledge for users. In the proposed method, the symbol
matching just requires low-cost heuristic algorithm, which is
simpler than others.

(2) Comparison with the ARG-BasedMethod in [7].TheARG-
basedmethod presented in [7] employs theNP-complete sub-
graph isomorphism and gives an approximate solution. And
it does not support rotation invariance. So we only compared
it with our method using DAR descriptor. The results are
shown in Figure 11. The performance of our recognizer (the
solid lines) is better than the ARG-basedmethod (the dashed
lines), especially when the symbols are highly incomplete.

In addition, we also compared the response time of our
approach with ARG-based method. The programming lan-
guage wasMATLAB and the CPUwas Intel Core at 3.10GHz.
The average running time used in extractingDAR for biprim-
itive was 4.6ms. The procedure of feature extraction can be
proceeding incrementally with sketching. So the main pro-
ceeding time was in the NN search procedure (including
the procedure of symbol matching). The response time in
COAD2 dataset is shown in Figure 12. It is calculated as a
function of the total number of templates. The proposed fast
NN search algorithm makes our method nearly twice faster
than the ARG-based method. And it is efficient to give real-
time response for a dataset consisting of hundreds of symbols.

Table 2: The summary of methods for autocompletion.

Methods Need to recognize
primitive type? Required knowledge

Image-based [5] No Statistical training
and classifying

ARG [7] No Graph isomorphism

SDT [19] Yes Tree-based structural
model

SRG [20] Yes Graph isomorphism
Grammar [21] Yes Syntactic recognition

Our method No Low-cost heuristic
algorithm

Table 3: The comparison with the image-based method in COAD
dataset.

Methods Symbols Top 1 (%) Top 3 (%)
Image-based
[5]∗

Partially drawn symbols 54.94 97.08
Fully completed symbols 79.83 99.27

Proposed Partially drawn symbols 83.57 98.90
Fully completed symbols 75.60 85.53

∗The accuracy of image-based method comes from [5] when confidence
threshold is set to 0.

(3) Comparison with the Image-Based Method in [5]. Refer-
ence [5] proposed an image-based method to recognize sket-
ched symbols with autocompletion. In fact, it adds partially
drawn symbols into the training data and extracts the global
statistical features of symbols. So it does not need to segment
strokes into primitives. The main advantage of the image-
basedmethod is the robustness to the different drawing styles
and noise.

However, there are some problems in the image-based
method. Firstly, it clusters together the partial and full sym-
bols based on their features. And it has two important param-
eters, the cluster number 𝐾 and the confidence threshold 𝐶.
Theoptimal parameters changedwith the number of the sym-
bol classes. So a lot of experiments are needed to train optimal
parameters. Moreover, the accuracy of autocompletion relies
on the number of partially drawn symbols in the training
data. The autocompletion performance would fall when
there are not enough partially drawn symbols. However, the
training data are growing exponentially when the number of
symbol classes grows [5]. So the image-based method is only
tested in two small datasets in [5], which contain 20 and 14
classes of symbols, respectively. And if a new symbol class is
added, the method should be trained again.

The recognition rates of the two methods are shown in
Table 3. Although the accuracy for full completed symbols of
the proposed method is lower than that of [5], our accuracy
for partially drawn ones is better. The main reason is that, in
COAD dataset, there are many symbols which are the sub-
symbols of other symbol classes. For instance, the symbol 𝑎 is
the subsymbol of 𝑏 in Figure 5. So the symbol 𝑎 is easily mis-
recognized as incomplete 𝑏. But in [5] the cluster procedure
is beneficial to the recognition of fully completed symbols.
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(a) A set of biprimitives in COAD dataset

(b) A subset of biprimitives in COAD2 dataset

Figure 9: Examples of biprimitive samples.
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Figure 10: Recognition rate of biprimitives using different descriptors.
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Figure 11: Comparing our method using DAR with the ARG-based
method in COAD2 dataset.
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Figure 12: Response time of NN search in COAD2 dataset.

So the proposedmethod and the image-basedmethod are
suitable for different applications. When the size of symbol
classes is small and the high accuracy for fully completed
symbols is required, the image-based method is better for its
high robustness. But when the recognition algorithm is used
to support immediate feedback when users are sketching, the
proposed method is better for its simple structural matching.

5. Conclusions

Wehave presented a new framework to recognizemultistroke
symbols with autocompletion. Firstly, strokes are segmented
to primitives. Secondly, a symbol is represented as a set of

biprimitives, each of which is represented as a shape descrip-
tor.We propose two new descriptors, named DAR and DZM,
respectively. Finally, the distance between an unknown sym-
bol and a template one is calculated by biprimitive matching.
Moreover, a fast NN search algorithm is also proposed, which
significantly improves the search speed.

Our method is independent of stroke number and order.
And there is no need to recognize primitives. Furthermore,
invariance to rotation is achieved by using DZM descriptor.
And it can work with few templates for each symbol class,
easily extending to new symbols.

However, a limitation of our method is that a primitive
cannot be drawn usingmore than one stroke.The futurework
is to alleviate the shortcomings, inspired by the work in [35].
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