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Based on the performance analysis technique developed in Part I, this paper presents
improvability indicators for assembly lines with unreliable machines. In particular, it
shows that assembly lines are unimprovable with respect to workforce re-distribution if
each buffer is, on the average, close to being half full. These lines are unimprovable with
respect to buffer capacity re-distribution if each machine is starved and blocked with
almost equal frequency. In addition, the paper provides indicators for identification of
bottleneck machines and bottleneck buffers. Finally, the paper reports on an application
of these improvability indicators in a case study at an automotive components plant.
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1 INTRODUCTION

This work is devoted to the study of a system-theoretic property of
assembly systems, referred to as improvability. The structure of the
assembly system under consideration is shown in Fig. 1, where the
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FIGURE 1 Assembly system.

circles represent the machines and the rectangles are the buffers. Such
systems are widely used in large volume manufacturing environment,
e.g., the automotive industry. Often, these systems produce at the level
of 60-70% of their capacity, and therefore improvement of their
performance is an important problem of production management.
This justifies the utility of the problem of improvability from the
practical point of view. From the theoretical perspective, this problem
is also of importance since current literature offers no quantitative
engineering methods for design of continuous improvement projects.
This paper is intended to contribute to this end.

The notion of improvability was introduced in [1] in the context of
serial production lines. Several applications were reported in [2—-4].
Assembly systems have been addressed in [5] but only for three
machines lines. The current work is devoted to the general case.

This work is being published in two parts, of which the current
paper is the second. The first one, [6], has been devoted to the problem
formulation and performance analysis. In the current paper, we use
the results of [6] to derive improvability indicators, which are simple
rules that can be used to design a continuous improvement project,
and to report on their applications at an automotive component plant.

For the sake of completeness, we cite below the assumptions on
the assembly system introduced in [6] and considered throughout this
work:

(i) The system consists of component machines, my, i=1,2,
j=1,...,M; an assembly machine, myg;, additional processing
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(ii)
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machines, mg;, j=2, ..., My, and buffers, b, i=1,2,j=1,...,M,,
and by, j=1,...,My—1, storing the parts produced by my,
respectively.

All the machines have an identical cycle time, T the time axis is
slotted with the slot duration 7.

Each machine is characterized by the probability, p;, i=0,1,2,

j=1,...,M;, to produce a part during a time slot; these prob-

abilities are referred to as machines’ isolation production rate.
Each buffer is characterized by its capacity, Ny, i=1,2, j=
1,...,M; and Ny, j=1,...,My—1; the buffers capacity is
assumed to be finite.

Machine m;; (except my;) is starved during a time slot if buffer
b; ;1 is empty at the beginning of this time slot. The assembly
machine my,; is starved for parts, if at least one of the buffers
bim;, i = 1,2, is empty at the beginning of this time slot. The first
two component machines m;;, i = 1, 2, are never starved.

Machine m;; (except mjy;, i = 1,2) is blocked during a time slot
if buffer b; has Nj; parts at the beginning of this time slot and
machine m; ;,; fails to take a part during this time slot. Machine
muum,, 1 = 1,2, 1s blocked during a time slot if buffer b;yy, is full and
the assembly machine, my;, fails to take parts from the buffers at
the beginning of this time slot. Machine my,, is never blocked.

Given this assembly system its performance measures of interest are:

— Production rate, PR = ﬁ{(pl,pz,po, N1, N2, Ny), ie., the average
number of parts produced by the last machine, mjyy,, per cycle time.
Here p;and N,, i=0, 1,2, are vectors with components [pi1, . . ., pin;],
and [Ny, ..., Niy,] (for i=0, No = [Noi, ..., No m,—1]), respectively.

— Average steady state buffer occupancy, E[l;,-j], Vij # OM).

— Probabilities of manufacturing starvations and blockages of the
machines,

1;177,-1- = Prob({m;; is up during a time slot}

N {b; is full at the beginning of this slot}
N {the immediate downstream machine of m;; fails to take
a part from b;; at the beginning of this slot}),
Vij # 0M,, (L.1)
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ms;; = Prob({my; is up during a time slot}
N {b;;-1 is empty at the beginning of this slot}),
Vij # 11,21,01,
mso1, = Prob({my, is up during a time slot}
N {biu, is empty at the beginning of this slot}),
i=1,2. (1.2)

These performance measures have been evaluated in [6], using the
following recursive procedure:

B+ (s + 1) = por[1 — Xarz (0, 5)],
pe(s+1) = p(s+ 1)[1 — Qb (s + 1),Mif(s +1),Ty)],
1<i<Mi+My—1,
/(s +1) = pls + D1 = Q(uly (s + 1), (s + 1), Ti-1)],
2 < l_<_ Ml +M0a
Xp (0,54 1) = Q(hy, (5 + 1), g1 (5 + 1), Tagy),
Urmy1(s+ 1) = poi[l — XMII(O,S-F 1)],
vPs+1) =v(s+ D1 - QL (s + 1),/ (s + 1,49, (13)
1<i<My+My—1,
v/ (s+1) = vi(s + D1 = QL (s + 1), (s + 1), A1),
2 < IS M2 + MOa
Xap (0,5 + 1) = QWhy, (s + 1), v (s + 1), Aws),
/J,i(S—{—l):_p/i, i=1,..., M\, My+2,...,My + M,,
vils+1)=wv, i=1,..., M), Ma+2,..., M+ M,
s=0,1,2,3,...,
with the initial conditions

Xuz(0,0) =0,

where
1-x(-0a) x(1 =)
H 74)’» a = .
0(x.y.N) = 11——(-’;/J’)aN y(1—x)

N+l—x’ *=J
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and

Plis i=1’~-',M1a
PO,i-—Mp i=Ml+2s'--7M]+M0’

{Nli’ i= a'“aMl,

NO,i—M[, i:M1+19"'3M1+M0_1>

_ P2is i=19"'5M2;
Do,i—M,» i=My+2,...,M + My,
A {NZia i=ls~~'aM25
" A\ Nojimy, i=Ma+1,...,My+ My—1.

It has been shown in [6] that this procedure is convergent and, in
terms of its steady states, the above performance measures can be
evaluated as follows:

PR = u{ll-}—Mo = V{lz-f-Mo’ (14)
% o L (- )\
E[hlj] = kQ(H,# laNlj) < ] K ) 5
=0 7 1— Nj')-i-l /‘JI')+1(1 - p’jf)
J= 19 O] M17
% L (a=-vi)\
E[h2j] = kQ 9 I’NZI) s
G 1— Vji Viy (11— V; )
.] = l, * M2,
Noj f 5 1
E[h()]] = ZkQ(iquf-j’ MM|+j+1’N0j) 1 _
k=0 Hpt 41 (1.5)
k
y (“{IIH(I — “?\41+j+1)>
MI;VI|+j+1(1 - l‘l’{'fl-#j)
o f 1
= Z kQ(Wit,1p» Vaty 4415 Noj) T
k=0 My+j+1

f b k
x (VM2+j(1 - VM2+j+1)>
b 7 ’
Vaty 41 (1 = Vigyay)

j=1,...,My—1,
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msyj = ujQ(uf_l,uj’?,Pj_l), j=2,..., M,
msy; = v/ vl i), j=2,..., M,
msor, = porQ(Khy,» hy, 11: Tary)s
msot, = po1 QViy,, v o1, Aasy),

mo; = ity Qg i1 Moty o Tat4-1)

S b . (1.6)
= VM2+jQ(VM2+j._1s VMZ'H" AM2+j—1), J= 2, ..., My,

mb ;= PJ‘Q(NJI'JH,ny Ty, j=1,...,M,
mby; = ujQ(ujil,ujf,Aj), j=1,..., My,
mbo; = piat, 5O (Mg, 415 M{ll +s Tay17)
= ”M2+J'Q(’/Ab42+j+1a V]lf'12+j’ Amyy), J=1,...,Mo—1.

The accuracy of these estimates has been shown to be O(6) — close
to the exact values of these quantities, i.e.,

PR=PR+0(8), Elhs) = Elhy] + O(8), Vij # 0M,
misy = msy + O(6), Vij # 01, mby = mb; + O(6), Vi,
MSo1,y = Moy, +O(8), k=1,2,

where § is a parameter, which characterizes couplings between the
machines. In [6], it has been shown numerically that § < 1.

Using these results, the current paper develops methods for deter-
mining whether the production rate can be increased by re-allocating
buffers capacities, N;s, and workforce, p;’s (constrained improvabil-
ity) and for identifying a machine and a buffer, which are most detri-
mental for the system performance (unconstrained improvability).
These two problems are addressed, respectively, in Sections 2 and 3
below. The application is reported in Section 4, and the conclusions
are formulated in Section 5. The proofs are included in the Appendix.

Concluding this introduction, it should be pointed out that current
literature offers several results on structural properties of assembly
systems, related to the improvability properties addressed in this work.

Specifically, papers [7] and [8] analyze the question of work distri-
bution between the assembly machine and the components machines
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and show that less work should be assigned to the former. This could
be viewed as, perhaps, the first system-theoretic property of assembly
systems described in the literature. Improvability theory provides
additional results in this direction. In particular, the following
improvability rules have been derived in this paper:

— An assembly system is unimprovable with respect to workforce
(WF) re-allocation if each of its buffers is, on the average, close to
being half full (Subsection 2.1).

— An assembly system is unimprovable with respect to workforce and
work-in-process (WIP) re-allocation simultaneously, if all of its
buffers are of equal capacity and, on the average, close to being half
full (Subsection 2.2).

— An assembly system is unimprovable with respect to WIP re-alloca-
tion, if each machine is blocked and starved with almost equal
frequency (Subsection 2.3).

— If the system is unimprovable with respect to WF, the worst machine
is the bottleneck machine (BN-M); otherwise, any machine, includ-
ing the best one, may be the BN-M (Subsection 3.1). The “worst”
and the “best” are understood here in terms of machine’s produc-
tion rate in isolation.

— If the frequency of the manufacturing blockage of a machine is
larger than the frequency of manufacturing starvation of the
immediate down-stream machine, the BN-M is downstream; other-
wise, it is upstream (Subsection 3.2). For each component line,
machines in the other component lines are considered down-stream.

— The bottleneck buffer (BN-B) is one of the buffers surrounding the
BN-M (Subsection 3.5).

”

Although these rules contain fuzzy terms “almost”, “close to” etc.,
given the “fuzziness” of the performance data available on the factory
floor, they still provide useful information for design and implementa-
tion of continuous improvement projects (Section 4).

2 CONSTRAINED IMPROVABILITY

In terms of the production rate estimate (1.4), the notion of con-
strained improvability, introduced in [6], can be re-formulated as
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follows:

— Assembly system (i)—(vi) is improvable with respect to WIP if
there exist Ny, N and N; such that "M N* 4+ 22 nx 4
S Ny = N* and

PR(p1,p2,p0, Ny, N3, N§) > PR(p1,p2,P0, N1, N2, No).

— Assembly system (i)—(vi) is improvable with respect to WF if there
exist vectors pj, pi, 3 such that [ pi, T4 p3 T piy = p* and

=
PR(p},P5,p5, N1, N2y, No) > PR(p1, p2,Po, N1, Na, Np).

— Assembly system (i)—(vi) is improvable with respect to WF and WIP
simultaneously if there exist vectors pg,pj,p; and N{,Nj,Ng,
My« TTM2 % TTMo % * M * M: *
Suf&l tPat [L= P ILS po T2 Py = p* and 30005 Ny + 3005 N3+
>l Ng=N*and

PR(pT’p;’pB’N;’N;’N();) > PR(plapZ’pOaNl’NZ’NO)'

Below, conditions when each of these properties take place are
given.

2.1 Improvability with RespecttoWorkforce
2.1.1 Improvability Conditions

THEOREM 2.1 Assembly system (i)—(vi) is unimprovable with respect
to WF re-allocation if and only if

Nif::u’?+1’ i=1,..., My +M,—1, @.1)
v =vt, i=1,...,My+My—1,
where li,f 7 l/if and v} are the steady states of the recursive proce-

dure (1.3).
Proof See the Appendix.
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To reformulate this result in terms of the performance measures
available on the factory floor, consider the quantities

o~

By="1, V0L,

i

~ _ mso1,
CcSo1, =

k=1,2, (2.2)

pij
These quantities characterize the so-called communication blockage
and communication starvation of the machines. They differ from the
manufacturing blockage (1.1) and starvation (1.2) by the fact that the
machine status (up or down) is not taken into account. In terms of
these quantities and in terms of the average buffer occupancy,
improvability with respect to WF can be characterized as follows:

COROLLARY 2.1 Under condition (2.1),

(a)
chyj = G5; 11 + O(6), i # 0My, 1My,2M, 23)
ching, = Gor, + O(8),  i=1,2; '
(b)
Ny Nyj+1 Ny;
hl ——E[hl]_ J ! +0(6)~—_19 .]= > ,M],
J J. 2 Nlj+ 1 '—/szf 2
~ Nyi+1 Ny,
Eh-— ] +000)~—=, j=1,...,M,,
[h2)] ) 2j+1_yjf (6) 7 J 2
= - Ny Noj+1
hoy = Ellig)) = Nt 4 o(s) (2.4)

2 Noj + 1- MMH—J

or=Nu_Morl_ | o
: NOJ +1- VM2+1

j=1,...,Mo— 1.

Proof See the Appendix.
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Since in most industrial situations, the multiplier of Ny/2 in (2.4) is
close to 1, Corollary 2.1 can be re-formulated as the following practical
rule:

IMPROVABILITY INDICATOR 2.1 An assembly system is unimprovable
with respect to WF re-distribution if each of its buffers is, on the average,
close to being half full.

Remark 2.1 Improvability Indicator 2.1 can be rationalized as
follows: Consider a part of the line consisting of two machines
separated by the buffer. This buffer serves to protect the upstream
machine from blockages and the downstream machine from starva-
tions. From the point of view of the upstream machine, the buffer
should always be empty. From the point of view of the downstream
machine, the buffer should always be full. The compromise is buffer
half full: Under this condition the performance of the machines is
“aligned” appropriately, and the disturbance rejection capability of the
buffer is utilized to its fullest. This leads to the largest production rate.

2.1.2 Unimprovable Distribution of p*

Improvability Indicator 2.1 characterizes whether the system can be
improved even if the parameters of the machines and buffers are
unknown. If N;’s are known, the value of p;’s that render the system
WF- ummprovable can be calculated as follows:

Let PR* denote the system production rate under the best possible
distribution of p*, i.e.,

PR* = max PR(p1,p2,p0, N1, N2, Np).  (2.5)
13! ,pzmoyH 1 Pl H,_, P2 H,_, poi=p*

Introduce the recursive procedure
x(s+1)

= (p*)l/(M1+M2+M0) Ny + x(s 2/(My+Ma+Mo)
Nll + l

X ﬁ M 2/(Mi+Ma+Mo) AiO_I No,+x(s) 2/(M1+Ma+Mo)

i Ny +1 No B ‘

(2.6)
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THEOREM 2.2 Assume YN '+ M N + M Ny <
(M1 + M, + My)/2. Then the recursive procedure (2.6) is a contraction
on [0, 1]. Moreover,

lim x(s) = PR", (2.7

§—00

where PR* is defined by (2.5). In addition, the values of py, i=0,1,2,
j=1,..., M;, that result in PR* are

Nu+1 R*
N11 + PR*

Ny +1
PR*,
Ny + PR*)

( him1 11 )( Nij+ 1 )pR*, Vij # 11,21,01,0M,,

H

Ph =
Py i1+ PR ) \; + PR*

Nim, +1 )( Nom, +1 Nop +1 PR*
NlMl + PR* N2M2+PR* Ny + PR* ’

Noo-1+1 ) .
PR*.
No,m,—1 + PR*

pOMo

(2.8)

Proof See the Appendix.

Remark 2.2 1f all buffers are of identical capacity, it follows from the
above expressions that the following “bow]” phenomenon takes place:
Component machines m;,, my;, and moy, should have the smallest
production rate in isolation; assembly machine my; should have the
largest production rate in isolation; all other machines should have the
isolation production rate between the above two. This conclusion is in
agreement with that of [8].

2.2 Improvability with Respect toWorkforce and
Work-in-Process Simultaneously

2.2.1 Improvability Conditions

THEOREM 2.3 Assembly system (i)—(vi) is unimprovable with respect
to WF and WIP re-allocation simultaneously if and only if (2.1) takes
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place and, in addition,
lezlj,f” i:2,,M]+M()_13 (29)
I/ilejib’ i:2,...,M2+M0—1, ‘

where /,a{ e, z/if andvy are the steady states of the recursive procedure (1.3).
Proof See the Appendix.

COROLLARY 2.2 Under conditions (2.1) and (2.9),

(@)
chyj = ¢sij+ O(6), Vij # 11,21,01,0M,, (2.10)
Czol = 6"3'01, + 0(5) = C"‘.'S‘(n2 + 0(5), .
where ci),'j, sy, i #01, and 51, i=1, 2, are given in (2.2);
(b)
;ﬁ=ﬁlx + O(6), Vij# 0M,, (2.11)

where E,y, Vij#0M,, are the average steady state occupancy of
buffer by;.

Proof See the Appendix.

Although relationship (2.11) may be used to formulate an improva-
bility indicator, we postpone this until the next subsubsection, which
provides for a more convenient formulation.

2.2.2 Unimprovable Distribution of p* and N*

The vectors p}, i=0,1,2, and N, j=0, 1,2, which render the system
unimprovable with respect to WF and WIP can be calculated as
follows:

THEOREM 2.4 Assume that N* is an integer multiple of M|+ M,+
M, — 1 and denote

PR* = N mal‘)l(2 " PR(p1,P2,P0, N1, N2, Np).
1 * * *
p"pz’po;l |i=|plil li=1p2i i=1 707

M) My Mo-1 .
N"Nz‘No;Zi=| N‘i+Zi=l Mit) iy Noi=N

(2.12)
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Then conditions (2.1) and (2.9) are satisfied if and only if,

ko ok ok N*/(M1+M2+M0—l)+1 PR*
Pru=Po=Pomy = \N+J (M, + My + My — 1) + PR™)"
- N*/(M1+M2+M()—1)+l
U\N*/(My + My + My — 1) + PR
. [ NY/(Mi+My+My—1)+1 3PR**
Por = \N+/(M, + M + My — 1) + PR ’
N = N

P M+ My+My—1°

2
) PR™, Vij # 11,21,0M,, 01,

i=0,1,2, Vij#0Mp,
(2.13)

where PR** is calculated according to (2.6) with Nj’s defined by the last
equation in (2.13).

Thus, in an assembly system unimprovable with respect to both WF
and WIP, all buffers are of equal capacity and p11 = pa1 = pom, < Py,
Vij#11,21,0M,,01, and p; < po1, Vij# 01, as indicated in (2.13).

From Corollary 2.1 and Theorem 2.4, we derive the following:

IMPROVABILITY INDICATOR 2.2 An assembly system is unimprovable
with respect to WF and WIP re-distribution simultaneously if all buffers
are of equal capacity and are, on the average, almost half full.

2.3 Improvability with Respect toWork-in-Process

Unfortunately, no simple and convenient criterion of improvability
for this problem was found. Therefore, we resort to a heuristic formu-
lation and then justify it numerically.

The heuristics are based on expressions (2.10): As it follows from
Corollary 2.2, these expressions are due to the WIP constraint. They
imply that each machine is starved and blocked (in the communication
sense) with almost equal frequency. The rationale behind these con-
ditions can be described as follows: Consider a part of the system consist-
ing of two buffers and a machine between them. The first buffer protects
the machine from the starvations and the second from blockages.
Thus, if the machine is starved more often than it is blocked, the
second buffer is relatively too large, and a unit capacity of the second
buffer may be re-allocated to the first one. Only when blockages and
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starvations are the same, the re-allocation would not increase the
production rate. This is the situation insured by unimprovable
distribution of p* and N* simultaneously.

When only N* is being distributed, due to the discrete nature of N;/’s
and due to the fixed values of p;’s, no exact equality of blockages and
starvations can be achieved. The only thing possible is the minimiza-
tion of the largest difference between the blockages and starvations.
It turns out that this minimization results in a larger PR when the
differences are normalized by the machine production rate in isolation,
i.e., when less productive machines are closer to having blockages
equal starvations. Moreover, since the assembly machine may be
starved by either of the immediately preceding buffers, it should be
“balanced” twice: from the point of view of cso;, and cspy, (see formula
(2.14) below). This leads to

IMPROVABILITY INDICATOR 2.3 An assembly system is unimprovable
with respect to WIP re-distribution if the quantity
|cbor — ¢So1, ),

A= max( |cbor — &on, |»

po1(1 — éso1,) poi(1 — éson,)

1
— — 2.1
L2101 OMo pjj by cs,,|) (2.14)

is minimized over all vectors Ny, N,, and Ny such that Z 1Ny +
Z N21+ZM0 1]\,01 N*.

Numerical Justification The performance of this indicator was
analyzed using a large number of examples. In each example, the direct
Markov chain analysis approach has been utilized, i.e., transition
matrices have been constructed, stationary probabilities of all states
have been calculated, and the communication blockage and starvation
of each machine and two isolation production rates of the assembly
machine have been evaluated. A typical example is shown in Table 1.
Obviously, max PR takes place if A is minimized. Similar results have
been obtained in the majority cases analyzed. Several counter-
examples, however, have been found. One of them is shown in
Table II. Although in this example min A does not result in the max PR,
the difference between max PR and the PR corresponding to min A is
quite small. A similar situation was observed in every case where the
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TABLE I Illustration of Improvability Indicator 2.3 (p;;=0.8,
p12=0.8, p21=0.75, p22=0.8, po]=0.8, p02=0.8, p03=0.8, and
Ni1+ Ni2+ Noy+ Nop + Noy+ Nox=T7)

Nn N Ny Ny Noy Noz A PR
2 1 1 1 1 1 0.3938 0.4661
1 2 1 1 1 1 0.2018 0.482
1 1 2 1 1 1 0.3623 0.4728
1 1 1 2 1 1 0.1935 0.4865
1 1 1 1 2 1 0.2018 0.482
1 1 1 1 1 2 0.3938 0.4661

TABLE II Counterexample for Improvability Indicator 2.3
(P11=038, p12=0.8, pn=0.63, pn=08, pp1=0.9, pp>=0.38,
Po3=0.8, and Nyj + Nyz+ Noy + Naz + Noi + Nop=17)

Nu Niz Ny N2 Noi Noz A PR

2 1 1 1 1 1 0.5072 0.4574
1 2 1 1 1 1 0.2799 0.4691
1 1 2 1 1 1 0.2666 0.4834
1 1 1 2 1 1 0.252 0.4816
1 1 1 1 2 1 0.2799 0.4691
1 1 1 1 1 2 0.5072 0.4574

above rule failed. Therefore, we conclude that Improvability Indicator
2.3 results in either the best or “almost” the best WIP distribution.

Remark 2.3 The unimprovable distribution of Ny, N; and Nj can be
reached not only through the complete search as in Tables I and II but
also using the following algorithm:

ALGORITHM 2.1
(1) Consider the assembly system defined by (i)—(vi). Calculate

Aoy, = |cbor — ¢So1,

po1(1 — ¢so1,)
1

Ag, = —
o por(1 = éor,)

|ebor — ESon, (2.15)
Ay =£—|cZ,~,~ — &yl, i # 11,21,01,0M,.
ij

Let machine i*j* be the machine with the largest value of the quantities
(2.15) and the quantity corresponding to i*j*, i*j*#01, be A,
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i.e., Amax = A;++. If the assembly machine has the largest value, then
Dmax = maX(th , A012)-

(2) If machine m; is blocked in the communication sense with
larger probability than it is starved in the communication sense and
the capacity of buffer b« j«_, is greater than 1, re-allocate a unit of the
buffer capacity from buffer b;- ;«_; to buffer b;-;». If machine m;.- is
starved in the communication sense with larger probability than it is
blocked in the communication sense and the capacity of buffer b;-;-
is greater than 1, transfer a unit of the buffer capacity from buffer b;-;-
to buffer b;« ;-_;. In the case of i*j* =01, if the assembly machine my,
is blocked in the communication sense with larger probability than it is
starved in the communication sense due to the lack of parts produced
by my+ ., and the capacity of buffer by.yy,. is greater than 1, move a
unit of the buffer capacity from b, to buffer by;. The opposite
action is taken when the assembly machine is starved due to the lack
of parts produced by my- . more often than blocked. If the capacity
of the buffer from which a unit of the capacity must be transferred is
greater than 1, go to Step (3); else let machine i*j* be the machine with
the second largest value of A, and repeat this step.

(3) Go to Step (1) and continue this process until a periodic cycle of
length k, k> 1, is reached; choose vectors N;, N, and N, from the
values on the cycle that give the largest PR; stop.

The performance of this algorithm in comparison with the complete
search procedure is illustrated in Table III. The parameters of cases in
Table III are given in Table IV. In all cases analyzed, it resulted in the
same distribution of N;/’s as the complete search.

TABLE III Implementation of Improvability Indicator 2.3 based on the complete
search and the algorithm

Cases Algorithm Complete search

Niw Niag Ny Nn Nog Nz Ny Nizo Ny Ny Nop Npz

Case I 1
Case II 1
Case 111 1
Case IV 1
Case V 1
Case VI 1
Case VII 1

NN —
—_ e R e e
NN~
——
— e e
— e e
[ S R
—_ e R e
NN~
[S U
— e
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TABLE IV Parameters of cases in Table III

Cases N* pn P12 P2 D22 Por  Po2  Po3

I 7 0.8 0.8 0.8 065 08 08 08
II 7 0.8 0.8 0.75 0.8 08 08 038
III 7 0.8 0.8 0.7 0.8 09 08 038
v 7 0.8 0.8 0.63 0.8 09 08 08
v 7 0.8 0.77  0.75 0.8 08 08 08
VI 8 0.8 0.77  0.75 0.8 08 08 038
Vil 8 0.7 0.9 0.9 0.7 07 09 07

To illustrate the efficacy of Improvability Indicator 2.3 in compar-
ison with the popular in industrial circles Theory of Constraints [9,10],
consider the following example. Assume the assembly system shown in
Fig. 1 is given with M1 =2, M, =2, My=3, p;=0.8, ij#12, p1=0.6
(i.e. my, is the worst machine) and the total capacity of the buffers
N*=12. The problem is to distribute N* among the buffer by,
Vij # 0M, so the system production rate is maximized. Following the
ideology of the Theory of Constraints, all available inventory should
be allocated for the protection of the “bottleneck”, i.e., N1y = Ny, =4,
N;i=1, Vij#11,12 (since at least one part is needed at each machine).
This distribution of buffer capacity results in PR = 0.4946. On the
other hand, if N* is distributed according to Improvability Indicator
2.3, using the above algorithm, we arrive at the following buffer
structure: N]] = N01 = 2, N12 = N22 = 3, N21 = N02 =1. The resulting
PR is 0.547, i.e., over 10% improvement in comparison with the
Theory of Constraints.

3 UNCONSTRAINED IMPROVABILITY

In terms of the production rate estimate (1.4), the notion of bottleneck,

introduced in [6], can be formulated as follows:

— Machine my is the bottleneck machine (BN-M) of the assembly
system (i)—(vi) if

OPR > OPR
8Pij OPmn”

Vmn # ij. (3.1)
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— Buffer by is the bottleneck buffer (BN-B) of the assembly system
(i)—(vi) if

PR(p1,p2,p0, [N11, N1z, ..., Nijj+1,..., Nopy—1])
> PR(p1,p2,P0, [N11,N12, ..., Nown + 1, ..., Noago—1]),
Vmn # ij. (3.2)

A method for identifying these bottlenecks is given below.

3.1 Bottieneck MachineinWorkforce Unimprovable Systems

THEOREM 3.1 If assembly system (1)—(vi) is unimprovable with respect
to WF, then

pijﬁzconst, i=0,1,2,j=1,..., M, (3.3)
opij

Proof See the Appendix.

Therefore, the machine with the smallest p; has the largest O9PR/0p;;.
Thus, we arrive at

IMPROVABILITY INDICATOR 3.1 To expose the BN-M, first ensure that
the assembly line is WF-unimprovable; then the machine with the
smallest production rate in isolation is the bottleneck.

In WF-improvable systems, the above indicator does not take place,
i.e., any machine, including the one with the largest production rate in
isolation, may be the bottleneck. An example of this situation is given
in Fig. 2, the sensitivities, indicated under each machine, have been
evaluated numerically, using the Markov chain analysis. A method for
identifying the bottleneck in this case is described in two subsections
that follow.

3.2 Bottleneck Machine Identification: Single BN Case

Direct identification of BN-M using definition (3.1) is practically
impossible since the partial derivatives involved cannot be either
measured on the factory floor or conveniently calculated using the
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0.202 0.1268

APR .
25, 0.1268 0.202

FIGURE 2 Bottleneck machine example.

machine and buffer parameters. Therefore, an indirect approach is
necessary. The approach described below is based on probabilities of
manufacturing blockages and starvations defined in (1.1) and (1.2)
and evaluated in (1.6).

This approach is based on the results of [3], where BNs in serial pro-
duction lines have been investigated. In the framework of these lines,
it was shown, both analytically and numerically, that BN machines
could be identified by analyzing relationships between probabilities of
manufacturing blockage and starvation for each pair of consecutive
machines. It is shown below that an extension of this approach leads
to BN-M identification in assembly lines. Although we do not have an
analytical proof of this result (due to technical difficulties in extending
the proofs of [3] to model (i)—(vi)), we justify it numerically and show
that, with a few exceptions, it leads to correct BN-M identification.

Consider the assembly system shown in Fig. 3 and assume that
probabilities of manufacturing blockage and starvation are known,
either from real time measurements or from calculations. Place these
data under each machine as shown in Fig. 3. In addition, place arrows,
directed from one machine to another, according to the following rule:
If mby > ms; jy1, Vij # 1My, 2M,,0M,, the arrow is directed from the
upstream to the downstream machine; if ms; > mb; ;_1, Vij #11,21,01,
the direction of the arrow is reversed. If mb;y, > mso;,, the arrow
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msy;
mbyj ¢
bo2

________ O O~

msgj(l) 1 0.1575 0.2844 0.3369

mboj : 0.1488 0.0926 0

msoy, ¢ 0.1488

msgj: 0 0.0926

mbg; : 0.3369 0.2844

FIGURE 3 Assembly system with the probabilities of manufacturing starvation and
blockage.

is_directed from the upstream to the downstream machine; If
mbiy, < msoy,, the direction of the arrow is reversed.

IMPROVABILITY INDICATOR 3.2  Assume that there is only one machine
with no arrows emanating from it. Then this machine is the bottleneck.

Numerical Justification The transition matrix for the Markovian
chain defined by assumptions (i)—(vi) has been constructed and
iterated upon to obtain stationary probability distributions for p; and
pi+ Apy, with the step Ap;=0.01. Then, the difference between the
resulting production rates, APR has been calculated and APR/ Apji
has been evaluated. Two typical examples are shown in Fig. 4. The
system in Fig. 4(a) is the same as the ones in Figs. 2 and 3. According
to Improvability Indicator 3.2, the bottleneck is the machine without
arrows emanating from it. Hence, the bottlenecks in Fig. 4(a) and (b)
are assembly machine my,; and component machine my,, respectively.
This conclusion is supported by the values of APR /Apj.

For most systems considered, the bottleneck identified using Impro-
vability Indicator 3.2 and AFIE/Apii coincides. An example in which
the two results differ is shown in Fig. 5. According to Improvability
Indicator 3.2, the bottleneck is mg;, whereas according to AI;R/ Apji
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mey;j

mbyj: 0.3169

msy; - bo2

5o 01004 N\ jeieees mos mos
mbyj: 0.335 e 0.2011 @ @
APR .
AR 01447 0.2091

msojyy ¢ 0.1575 0.2844 0.3369

mboj : 0.1488 0.0926 0
mso1, : 0.1488

ms0j(yy : 01567 0.2993 0.355
mboj : 0.1483 \/ 0.089 / 0

—_ msor, ¢ 0.1483
meg; 0 0.0926 12

mby, : 0.3369 7 o
ms25 i 0 0.089
mby; i 0.355 7 0.2993

ﬁl’;ﬂ : 0.1268 0.202 0.2576 0.202 0.1268
A

(b)

mey;:
mbyj :
msy;

mby; :

QPR .
Dy

msoj,, : 0.1259 0.3366 0.378
) /
mboj : 0.1259 0.0844 0
roooeees msoy, : 0.2335
ms0jy) ¢ 01263 0.3503 0.3958

mbo; : 0.1263 l/ 0.0808 \/ o

msoy, 1 0.23

™ms2; ¢ 0 0.0686
mbyj i 0.378 7 o
™S2i ¢ 0 0.0657

mby; : 0.3958 /l 0.2003 ‘/

ﬁ-‘;—’-‘? : 0.1284 0.3085 0.2321 0.1498 0.084

FIGURE 4 Illustration of Improvability Indicator 3.2.

the bottleneck is m,,. However, as it can be seen in Fig. 5, the
difference between Aﬁ(/Apo1 and Aﬁ{/Apzz is quite small. The
same situation has been observed in all counterexamples discovered.
Therefore, we conclude that Improvability Indicator 3.2 identifies
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msy;: 0
mby;: 0.3955
b
msy; 000772 N remmemea 02
mo2 mo3
mbyj: 0.4139 @ N @
%;’Eﬂ : 0,073
iy
0.3584 0.3955
mbg; : 0.1076 ooses 0
mso1, : 0.1715
mseoj(yy ¢ 0.1081 0.3727 0.4139

mby; : 0.1081 Ve 0.0772 v 0

—_~ msoy, : 0.1981

msg;: 0 0.0657

mbyj 03955 7 s

™ms2; 0 0.0627

mbaj ¢ 0.414 / 0.2227 /

ﬁf—f :0.1113 0.2852 0.2624 0.1391 0.073

FIGURE 5 Counterexample for Improvability Indicator 3.2.

either the machine with the largest 8137{/ Op; or a machine with
OPR/0p;; being close to the largest one.

3.3 Bottleneck Machine Identification: Multiple BNs Case

In some systems there may be multiple machines with no arrows
emanating from them. Which one then is the BN-M? To answer this
question, introduce the measure of bottleneck severity, S;;, defined as
follows:

j = (mbij—1 + msi 1) — (mby + msy),
Vij # 11,21, 1My, 2M>, 01,0Mo.

For the first and the last machine in each line, the severity is defined as

Sy =msp —mby, i=1,2,
Simt, = (mbjp,—1 + msor,) — (mbipg, + msipg,), i=1,2,
So1 = (mb1Ml + msz2 + msoz) — (mbm + msoy, + ms012),

Soat, = mbo py—1 — MSop,-
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In terms of measured probabilities of manufacturing blockages and
starvations, S;; are defined analogously.

IMPROVABILITY INDICATOR 3.3  If there are multiple machines with no
arrows emanating from them, the one with the largest severity is the
primary bottleneck (PBN-M).

Numerical Justification Improvability Indicator 3.3 has also been
justified using the numerical Markov chain analysis. Two typical
examples are shown in Fig. 6, where the last row of numbers is the
bottleneck severity. In most cases analyzed, Improvability Indicator 3.3
resulted in the correct identification of the primary bottleneck. A
number of counterexamples have also been found. One of them is
shown in Fig. 7. Nevertheless, since in the majority of cases analyzed
Improvability Indicator 3.3 identified the machine with the best
possible effect on the production rate, we conclude that it can be
employed as a tool for the primary bottleneck identification.

(a) biy  PBN.-M by

msyj :
mby;
msy;:

mby; ¢

APR .

Api; °

Ms0j(y + 02467
;bo] : 0.266 0.0604 0
msoy, : 0.0855

m30j(y)  0.2427 0.2065 0.4253
mboj : 0.2256 sossr ¢ o

—_ mso1, i 0.0877

magj : O 0.0779
mbyj : 0.4106 / 0.377 /7
msa; i o 0.0749

mbg; i 0.4253 7 0.3865 /
%ES' : 0.052 0.1011 0.1545 0.2591 0.0921

ER - - - 0.4209 -

FIGURE 6(a)
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ER msg,, .\ :0.2888 0.3745 0.4091
(1) /
mbo; : 0.1268 0.0782 [
msoy, : 0.2549
™20,y ¢ 0.2876 0.3804 0.4202
mbo; : 0.1303 0.076 v 0
~ msoy, : 0.2474
mag;: 0 0.2264 012
mbyj: 0.1891 7 omer
LPTRIN] 0.22
mby; © 0.2003 v 0.2763 7
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FIGURE 6 Illustration of Improvability Indicator 3.3.

b1y BN-M b2

msyj
mbyj :
msi;: 0 0.0643  NU  pem pecema

mbyj :

%Eﬂ :

5. ﬁojm :0.1604 0.1742 0.3626
mboj : 0.2688 0.0722 0
;1,:012 :0.1523
msoj(yy ¢ 0-1629 0.1801 0.3715
mboj : 0.2687 0.0707 0

’":Qj 0 0.0875 msoy, : 0.1542

mby; i 0.3626 7 e

ms2; i 0 0.0857

mbz; : 0.3716 / 0.3202 /

%55 : 0.0791 0.1282 0.1444 0.261 0.1215

5. - - - 0.385 -

FIGURE 7 Counterexample for Improvability Indicator 3.3.
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3.4 Identification of Potency of the Material Handling System
According to [6],

— Material handling system (MHS) is weakly potent if the machine
with the smallest p;; is the BN-M; otherwise it is not potent.

— MHS is potent if it is weakly potent and, in addition, PR is suf-
ficiently close to the smallest p;;.

Improvability Indicators 3.2 and 3.3 provide a possibility to eval-
uate the potency of a MHS. Indeed, if the BN-M, identified using these
rules, is the machine with the smallest production rate in isolation, the
MHS is weakly potent. Otherwise, the MHS causes a better machine
to be most detrimental for the overall system performance, which
testifies to the lack of MHS potency. Even if the machine with the
smallest p;; is the BN-M but the PR is sufficiently far from this p;;, the
lack of the performance again is attributed to the MHS, and the most
beneficial continuous improvement project might be directed towards
modifying the MHS. In more than a dozen industrial applications that
we have carried out in the automotive industry, the identification of
potency of MHS proved to be the most efficient tool for designing
continuous improvement projects.

3.5 Bottleneck Buffer Identification

A buffer is the bottleneck (BN-B) if a unit increase of its capacity
results in the largest increase of the PR, as compared with the similar
increase of any other buffer capacity [6]. The smallest capacity buffer
is not necessarily the BN-B (see an example in Fig. 8). The identifica-
tion of the BN-B can be carried out using the following:

IMPROVABILITY INDICATOR 3.4 BN-B is one of the buffers surrounding
the BN-M. It is the buffer in front of the BN-M if the probability of
manufacturing starvation of this machine is larger than its probability of
manufacturing blockage; otherwise, it is the buffer after the BN-M.

Numerical Justification Improvability Indicator 3.4 has also been
justified using the direct numerical Markov chain analysis. Two typical
examples are given in Fig. 9, where the last row of numbers is
(APR/ ANj;) with the step AN;=1. With a very few exception, in all
systems considered the BN-B identified using the indicator and
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AI;TQ/ANg were the same. A few counterexamples have also been
found. One of them are shown in Fig. 10. In each counterexample,
however, the difference between the sensitivity of the production rate
to the buffer size and the one identified by the indicator is very small.

(a)

0.0123 0.0109 0.000037 0.000019

FIGURE 8 Bottleneck buffer example.
BN-B
b1y 5 bya E
! !
i
mey . Looennd
mby; ¢
mSIJ S0 01004 N mmmmmmaa
mby;
ABE
mbo; : 0.1488
Moo, i 0.1488
m30j(y) ¢ 0:1567 0.2993 0.355
mbo; : 0.1483 / 0.089 / 0
—_ :0.1483
Tan;: 0 0.0926 meots
mby; : 0.3369 7/ 0.2844 /
msaj i o 0.089
mbz; i 0.355 / 0.2993 /
/bt 0.0143 0.0306 0.0306 0.0143

)

FIGURE 9(a)
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FIGURE 9 Illustration for Improvability Indicator 3.4.

0.3515

0.0068 0.017

msgj,, :0.1354 0.2115 0.2898
(1) /

------ - mbo; : 0.2589 0.123 0

mso1, 1 0.2538

m3oj,y ¢ 0.1372 0.2256 0.3057

mbg; : 0.2551 \/ 0.1183 '/ 0

msoy, : 0.2508

o 0.0667 “-=-----
0.3898 0.2001 ‘/
0 0.0641
0.4057 0.2126 \/
0.0122 0.0335 0.0337 0.0223

FIGURE 10 Counterexample for Improvability Indicator 3.4.
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Therefore, we conclude that it can be used as a tool for the BN-B
identification in assembly systems.

4 CASE STUDY

4.1 Analysis of MHS Potency

The assembly system of the case study has been described and
identified in [6]. Its structure is shown in Fig. 11 along with the
probabilities of manufacturing blockages and starvations calculated
according to (1.6) (for one month data). Using Improvability Indicator
3.2, we conclude that Operation 10 is the bottleneck. Similar analyses
for five other months of the study lead to the conclusions summarized
in Table V. In addition, Table V includes the machine with the smallest
p;; during the respective month. As it follows from these data, MHS is
consistently not potent and an increase of the system PR may be
obtained by improving MHS.

The extent of the potential PR improvement was evaluated as
follows: PR losses due to the machines can be evaluated as the dif-
ference between the nominal production rate (600 parts/h) and the

ms: o 02593 02656 0.2311 0.2737 0.3501 0.3136 0.2736

mb: 0.1110 0.1538 0.1731 0.1207 0.0814 0.1240 0.1569 0.1772
0.2527 0.3084 0.2735 0.3355 0.2944 0.1975

110 120 130 140

0.1202 0.1353 0.0956 0.1434 0.1801 0
ms: 0 0.1520 0.1444 0.1576 / 0.1064

i

mb: 02208 0.2723 0.2673 0.3356

FIGURE 11 Bottleneck identification for Product A production system (based on
May data).

TABLE V Bottleneck and the slowest machine of the system

Month

May June July August  September October

Bottleneck Op.10 Op.150 Op.150 Op.150 Op.150 Op.10
Machine with the smallest Op.50 Op.50 Op.50 Op.130 Op. 50 Op. 160
isolation production rate
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TABLE VI Losses analysis

Month

May June July August September October

Isolation PR of the slowest 522 534 468 498 540 492
machine (parts/h)

Losses due to machine (parts/h) 78 66 132 102 60 108

PR of the system (parts/h) 337 347 378 340 384 383

Losses due to MHS (parts/h) 185 187 90 158 156 109

isolation production rate of the slowest machine. PR losses due to the
material handling system can be evaluated as the difference between
the isolation production rate of the slowest machine and the actual
production rate obtained in the system. These data for the 6 months of
the study are summarized in Table VI.

Thus, as it follows from these data, roughly speaking, out of
240 parts/h lost, 80 parts/h are attributable to the machines and
160 parts/h to MHS. Interestingly, the 1:2 ratio has been found to be
quite typical in a number of practical applications analyzed. This leads
to a conclusion that improvements in the MHS could result in a
substantial improvement of the overall system performance.

4.2 Design of a Continuous Improvement Project

Three avenues for potential improvement have been investigated:
increasing capacity of all buffers, increasing capacity of the buffer
conveyor only, and elimination of starvation of Operations 10 and 110
and blockage of Operation 200. The results obtained are described
below.

4.2.1 Increasing Capacity of All Buffers

Assuming that the capacity of each buffer is increased from 1 to 5, and
there is no starvation in Operations 10 and 110 and no blockage in
Operation 200, the PR for each month has been calculated using the
recursive procedure (1.3). The results are shown in Table VII. As it
follows from these data, the MHS is potent: BN-M is the slowest
machine and the PR is almost equal to that of the slowest machine.
However, due to practical considerations, all buffers cannot be
increased without substantial capital investments (re-building the
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TABLE VII Estimated production rates of the system with all buffersincreased to S parts

Month

May  June July  August September October

PR (parts/h) 501 518 452 490 527 491

Isolation PR of the slowest 522 534 468 498 540 492
machine (parts/h)

BN machine Op.50 Op.50 Op.50 Op.130 Op.50 Op. 160

Losses due to MHS (parts/h) 21 16 16 8 13 1

TABLE VIII Estimated production rates of the system with no blockages and star-
vations of Op. 10, Op. 110, and Op. 200

Month

May June July August September  October

PR (parts/h) 372 393 325 359 415 374
Improvement (%) 12.7 17 7.6 7.2 9.2 11
BN machine Op.60 Op.60 Op.60 Op. 150 Op. 140 Op. 60

conveyor system). Therefore two other avenues of continuous
improvement have been investigated.

4.2.2 Increasing Capacity of the Buffer Conveyor

The buffering capacity of this conveyor can be increased by using
additional pallets. At the time of the study, this conveyor contained
19 pallets. We have shown that 40 pallets would provide additional
buffering capacity without creating congestion due to accumulation of
empty pallets. With 40 pallets utilized, the capacity of the buffer b;s,
i.e. the buffer in front of the bottleneck, becomes 29 parts. This results
in the PR =368 parts/h, which is 9.2% improvement in comparison
with the average production rate over the months of May—October.

4.2.3 Eliminating Starvation of Operations 10 and 110 and
Blockage of Operation 200

This can be accomplished by either manual or robotic material
handling. For instance, if Operation 90 is blocked, a part can be
removed from the pallet, manually or by a robot, making this pallet
available to Operation 10. If these modification are put in place, the
system performance is improved as shown in Table VIII, i.e. the
production rate increase by 7-17% is possible.
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The plant management has accepted the above two recommenda-
tions, and they have been put in place.

5 CONCLUSIONS

This work describes improvability theory for assembly systems with
unreliable (Bernoulli) machines. The main results are the improvability
indicators. They allow factory floor personnel to design continuous
improvement projects. The data necessary to implement these indica-
tors consist of machine and buffer parameters and frequencies
(probabilities) of machine blockages and starvations. The former are
typically measured on the factory floor (often, however, with a very
low accuracy); the latter rarely are. This work shows that the knowl-
edge (through real-time measurements or calculations developed in the
work) of these probabilities is centrally important for production line
management and control: they lead to the determination whether the
system is improvable and to identification of bottlenecks. Case study,
described in this paper, illustrates that these indicators are relatively
easy to apply in industrial environment. At present, application efforts
are centered on including these indicators as a part of standard
operating procedures at an automotive engine plant.

APPENDIX: PROOFS FOR SECTIONS 2 AND 3

The proofs of Theorems 2.1 and 2.2 and Corollary 2.1 are based on
Lemmas A.1-A.5 formulated below. The proofs of these lemmas are
similar to those of Lemmas B.3—B.7 of [1] (see [11] for details).

LEMMA A.1 Letc;= \/uifuf?ﬂ,i:l,...,M,-}—Mo——l,c§’= Vifyiil’
i=1,...,My+My—1.

Then
Ti+1
'>PR———, i=1,...,M;+M,—1,
“=Ry TR ! 1+ Mo
A +1
¢/ > PR i + i=1,...,My+ My, — 1.
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The equality takes place in the upper line if and only if ,u,f = uf’H and in

ine vl = b
the lower line v; = v .

LEMMA A.2 The total workforce, p*, necessary to achieve the produc-
tion rate value PR, is bounded by

My+Mp—1 2 M; 2
P> lho ri+1 ﬂ Ai+1 PRM+Ma+Mo
- e I';+ PR A; + PR

i= i=1

The equality holds if and only if,u,fz pby,i=1,...,M;+M,—1, and
v/ =vhi=1,...,Ma+My—1.

LEMMA A.3 The conditions uf—uf?H, i=1,...,Mi+My—1, and

i =

vl = uiil, i=1,...,My+ My—1, is achieved if and only if the work-

1

force is distributed as

Nip+1
= (1T ) pR
pu (N“ +PR) ,
Ny +1
= (=2 _)PR,
P2 (NZI +PR)
N,'j_1+1)( N;i+1 )
M a PR,
Pi (Ni,j—1+PR N+ PR (A1)
i=0,1,2, j=2,...,M; (except pom,),
Nim, +1 Nop, +1 Noi +1
Po1 = PR,
Nim, + PR) \Noy, + PR/ \No1 + PR

Ny Mo—1+ 1
= |—"——— | PR,
Poto (NO,MO—I + PR

where PR is the production rate of the assembly system.

LEMMA A4  The minimum workforce p},,. required to achieve produc-
tion rate PR is given by

Mi+My—1 2 M. 2
p* ) Iho I'i+1 l_i Ai +1 PRM|+M2+M0
min pale I';+ PR =1 A;+ PR )

Moreover, this production rate is achieved if and only if p* is distributed

among vectors py, pa, po, | 1oy p1i [10% pai T12S poi = p*,so that pf = 2.,
i=1,... . M+Mo—1,andv{ = v} i=1,...,My+My—1.
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LEMMA A.5 The minimum workforce pj. necessary to achieve the
production rate PR is a monotonically increasing function of PR.

Proof of Theorem 2.1 “Only if”: Suppose the assembly system is
unimprovable, but that there exists an i such that ,u{ #* uﬁ?ﬂ in the
upper line or uif #v2, in the lower line. Then by Lemma A4,
P* > Pl Thus, from Lemma A.S, workforce p* optimally distributed
can achieve a larger production rate, which is a contradiction.

The “if” part follows from Lemma A 4.

Proof of Corollary 2.1 By Lemmas B.3 and B.5 of [6], the distribu-
tion of parts in buffer i in the upper line can be approximated
with error O(6) by the distribution of parts in the buffer of the two
machine line L = {p{ ,Ti, 42,1 }. Applying Lemma A.5 of [1] to line L,
Prob{m/ is starved in the communication sense}= Q(,u,-f N7RRVES
O(6) and Prob{m} is blocked in the communication sense} =
oub.,, uif, T';) +0(6). Since uif = p?.,, using (1.3), the result of part (a)
for the upper line follows. The result of part (b) for the lower line can be
proved analogously. From Eq. (A.3) of Lemma A.S5 in [1], when applied
to line L},

Xi’ . .
Xi,u):l_“;)f, 1<j<Ty izl M+ Mo—1,  (A2)
where
l—pf
Xil(0)=———'7, i=1,..., M+ M, —1. (A3)
i+ 11—y
Thus,

R = 3% (j) + O)

=0
T; f
1 1—
=\l =pi ) \Li+ 1=
Ty(T;+ 1
=__(_+__)T+0(5)
2T+ 1= )
%%, i=1,...,M;+ M,—1. (A4)
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Using (1.3), this proves statement (b) for the upper line of the corollary.
Statement (b) for the lower line can be proved similarly.

Proof of Theorem 2.2 Follows from Lemma A.3, and the proof of
Theorem 3.2 of [12] (see [11] for details).

Proof of Theorem 2.3 Similar to the proof of Theorem 2.7 of [1] (see
[11] for details).

Proof of Corollary 2.2 Similar to that of Corollary 2.1.

Proof of Theorem 2.4 Similar to that of Theorem 2.2.

Proof of Theorem 3.1 Consider an assembly system (i)—(vi) with
(2.1) taking place. Assume that the workforce distribution is pj,
i=0,1,2, j=1,...,M; where pj; are defined by (2.8). Modify the
workforce distribution to p; = gp;‘j, i=0,1,2, j=1,...,M;, and
Pmn = (1/8)D4> m=0,1,2, n=1,..., M, where g#0. Then, we find
that the total workforce p* is preserved and is not depending on g, but
that the line is unimprovable when g= 1. That is, the production rate
achieves its maximum value at g=1. Let PR= PR(g). Consequently,
we have

OPR(g)

5 =0. (A.5)

g=1

By the chain rule,

OPR(g)| _ (0PR(g)9(gpi) . _OPR(g) O((Pym)/8)
0g =1 \Olepy) Og  O(Pn)/e) O -
_ (- 9PR@) _ . (1)26PR(g)
Py opij "\g Opmn _1’
g_..
i=0,1,2,j=1,....,M;, m=0,1,2, n=1,...,M,,. (A.6)
From (A.5),
. OPR(g) . OPR(g)
P} — P =0.
7 Opy g=1 OPmn g=1
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Since i, j, m and n are chosen arbitrarily, we therefore conclude that

OPR@| L OPR@| o
Opij g OPmn |g=1

m=0,1,2, n=1,..., M.

Therefore, Eq. (3.3) follows.
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