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ABSTRACT. A theorem for expansion of a class of functions into an integral involving

associated Legendre functions is obtained in this paper. This is a soxnewhat general integral

expansion formula for a function f(z) defined in (Zl,Z2) where < x < 2 < l, which is perhaps

useful in solving certain boundary value problems of mathematical physics and of elasticity

involving conical boundaries.
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1. INTRODUCTION.
Integral transforms are often used to solve the problems of mathematical physics involving

linear partial differential equations and also other problems. Integral expansions involving

spherical functions of a class of functions are known as Mehler-Fok type transforms. In these

transform formulae, the subscript of the Legendre functions appear as the integration variable

while its superscript is either zero or a fixed integer (see Sneddon [10]). There is another class of

integral transforms involving associated Legendre functions somewhat related to the Mehler-Fok

transforms, in which the superscript of the associated Legendre. function appears in the

integration formula while the subscript (complex) is kept fixed. Felsen [2] first developed this

type of transform formulae involving P- /2 + ir(cs O) as kernel where 0 < 0 < r from a unique 6-

function representation. Later Mandal ([6], [7]) obtained somewhat similar types of two

transform formulae from the solution of two appropriately designed boundary value problems. In
the first type, the argument z of P- /2 + ir(z) ranges from -1 to while in the second, the

argument z of P_ 1/2 +it(z) ranges from to oo. Recently Mandal and Guha Roy [8] used a

similar technique to establish another Mehler-Fok type integral transform formula involving

P [ /2 + ir(cs O) as kernel (0 < 0 < a).
In the present paper, an integral expansion of a class of functions defined in (Zl,Z2) where

-1 <rl <z2<l, involving associated Legendre functions is obtained. Based on direct

investigation of the properties of spherical functions, sufficient conditions which would establish

the validity of this expansion formula for a wide class of functions are obtained in a manner
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similar to the ideas used in ([3]-[5]). The main result is given in section 2 in the form of a

theorem. Recently, we have used a similar technique to establish another type of integral

representation [9] involving P- /2 + ir(esh ) as kernel where 0 < c, < a0"
2. INTEGRAL EXPANSION OF A FUNCTION IN (Zl,Z2) WHERE < z < z2 < 1.

We present the main result of this paper in the form of the following theorem.

THEOREM. Let f(z) be a given function defined on the interval (Zl,Z2) where

< z < z2 < and satisfies the following conditions:

(1) The function f(z) is piecewise continuous and has a bounded variation in the open

interval (Zl, z2).
(2) The function y(z)(1 z2) len(1 z2) E L(Zl,Z2), < z < 2 < 1.

Then we have

where

k (OlOak)M(z2,zl;ia) F(a.)

z2

F(a) ] f(z)
M(z,,l;ia da,

z2

< z < z2 < 1, M(z,y;ia) pia_ 1/2 + ir()P/-a 1/2 + it(- Y)- pia_l/2+ ir z)Pia-1/2+ ir(y)

(2.2)

and ak’s,a,r are real. The equation (2.2) may be regarded as an integral transform of the

function l(z) defined in (Zl,r2) and (2.1) is its inverse. (2.1) and (2.2) together give the integral

expansion of the function l(r).
PROOF OF THE EXPANSION THEOREM. To prove this expansion theorem, we first

note that the representation (cf. Erd61yi [1])

F(1/2+,.r, 1/2-,,-; ,-,,,.;

< z < t < z2 < 1, where F(a,b;c;z) denotes the hypergeometric series, implies pia_ 1/2 + ir(z) is

continuous in the region defined by < Zl < z < z2 < 1, -c < a < o and satisfies the inequality

[pi 1/2 + ir(z)[_< vtsh.a/ra p

where the Legendre function P_ 1/2 + ir(z) is positive.

Using (2.3) it follows from (2.2) that

_l/2+ir(Z), (2.3)

z2

Ii_z2 l/2+ir(z) -l/2+ir(-Zl)- -l/2+ir(-z) -l/2+ir(Zl
z

z2

<_vfsha/ra / [/(z:J_ {p_l/2+ir(z) p_l/2+ir(_Zl)_P_l/2+ir(_z)p_l/2+ir(Zl)}dz,

and this shows that the conditions imposed on l(z) imply that the integral F(a) is absolutely and

uniformly convergent for a e[-T,T] where T is a positive large number. Hence F(a) is

continuous on [-T, T] and the repeated integral
T M(z, z2;ia)

z2
J(.,T)= / r[(1/2+i._ia) (1/2_i._i,,) M(r.,;.l;i,r)

a,. I .f(u)
M(y,:tl;ia) dy

2-T Zl
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is meaningful. Also, uniforln convergence allows us to change the order of integration and write

J(z,T) as
z2

J(z,T) / f(u)
K(z,y,T) dy, (2.4)y2

z
where

T

M(2,7;-C d.. (2.5)
-T

Now we shM1 show that the kernel K(z,u,T) is symmetric in the variables and u. By definition,
we have

T

Ih’(z,y,T)- K(V,z,T) (r

-T

[M(z,2;io.)M(v,:l;io. M(v, z2;io.)M(a:,arl;io.)] do’.

It follows from the properties of associated Legendre functions (cf. Erd61yi [1]) that the integrand
in the above integral is an odd function of o’, hence the integral vanishes. Thus

(2.6)K(V,z,T)=K(z,v,T).

To investigate the behavior of K(,v,T) as T.--.oo, by writing # -ir, we write (2.5) as

iT

i [(1/2+ir+ )r( it+#) M(z’z2;-#)M(v’zl;-#)
K(z,v,T) - # # (-U7 d#. (2.7)

iT

Expression under the integral sign in (2.7) is analytic function fo the complex variable # and it

has no singularity in the semi-plane Re# >_ O, except for simple poles at # -io"k (k is positive

integer) (cf. Felsen [2]), where

M(z2, zl;io’k) 0, o’k > 0. (2.8)

Completing the contour of integration on (2.7) with the arc IT of radius T situated in the

semi-plane Re# > 0 and applying the residue theorem, we obtain

e(z, z2; io’k)m(v, z 1; io"k)
K(z’!#’T)=KI("r’!#’T)- E (2.9)

k
where

Suppose that v < . By virtue of the definition

(2.10)

={1+z]-#/2 [l+o(iui-1))P r(l+u)

[1 + o( I,. l.)]P- f/z + i,,- =) (]---) (2.11)

Using (2.11) and asymptotic properties of the gamma function for large #, we conclude that
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1- l+r2 1+ 1- 1- 1+1 1+ 1-1

1-z2 1+ 1+z2 1-

Now introduce the new variables

1/2 l+z 1/2 l+y 21_ +Zl and/3 1/2 en= en]--Z-, 7= en]-, a= n 1-z
+x2

Then, for large u, from (2.10) (2.12) we obtain for u <

Kl(r,y,T)= /
-rp{ u( + 7- 2)} -rp{ u(2#- 7)}] du

/2
+O(1) / ezp{-1(-7)cos o} + ezp{ p(2/3- 2a- + 7)cos o}]

O

rp{- u( + 7-2o,)co,, ,,,,}-,,,rv{-u(2#--7)co, }]

for a<q<.
Using the identity x/2

2 [ezp{ aTcos } d<I-ezP(-AT)AT AO,

we obtn for u 5 z,

sinT(2#-2a-+q) sinT(+q-2a)
KI(,y,T

sin T(- O) +

sin

2# {
{ 7)]+ O(1) [1- erp{ T({

7) + T(2/3 2a + 7)

-erP{T(-+T(7-+2ct)7- 2tr)} -erp{T(2/3-T(2/3__-7) 7)}} tr < 7 _< < , (2.13)

where the factor O(1) is independent of y.

Again for y_>x, we use the symmetry property (2.6) and the representation (2.10) of

Kl(r,y,T with the variables r,y replaced by
Now we write (2.4) as

r x2
J(r,T) / f(y) / f(y)

T) d!l

k 1 1-y

:JI(r,T)+J(r,T)- Zrk r(1/2+i,--io..)r(1/2-i,--io..) (O/Oo.k)M(r2, rl;iO.k
x

k

2

r iO’k)dY.X .I
r

(2.14)
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Using (2.13) in Jl, we obtain

Jl(z,T) w f(tanh r/) f r/
dr/ + j l(tanh r/) 2-2o-f+r/

]+r 20 dr f(tanh r/)
sin

2/--r/T(2/ r/)
dr/

-ezp{ T(f- r/)} dr/+ 0(1) f(tanh r/)

+/ f(tanh r/)
-ezp{ T(2/ 2a / r/)}

T(2/ 2a / r/) dr/

dr/

/ f(tanh r/)
-ezp( T( + r/- 2a)}

T(f + r/- 2) dr/

]-/ If(tanh r/)l 1-ezp{-T(2--r/)}T(29_ - r/) dr/ (2.15)

The conditions satisfied by f(z) imply that f(tanh r/)e L(tr,); hence, by virtue of Dirichlet’s

theorem, for T--,oo

and

/ f(tanh r/)
sin T(- r/)

dtl ](tanh o) + o(1)

--1/2 f(z-o)+o(1),

I f(tanh tl)
sin T(2/- 2a + r/)

dr/= o(1 ),

/ y(tanh r/)
sin T( + r 20)

+ r 2a dr o(1 ),

/ sin T(2/ r/)
dr/= o(1).

Moreover, if the integral of integration is divided into the subintervals (-,) and (a,-) and if

a sufficiently small positive (implying a sufficiently large T) is chosen, then we have

lY(tanh ’)1 dr/
ezp{ T( r/)}
T(- r/)

-6

1/ /<_ f(tanh r/) dr/ + f(tanh r/) dr/

O(T- 1)+ o(1) o(1) for T-.co,

I(t.-h .)
ezp{ T(2 2a + r/)}
T(2 2a + r/) /I ,,) d,,
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-ezp{ T({ + O- 2or)}
T( +- 2)

and

lf(tanh r#)l
1-ep{-T(2D--q)}

T(2fl- - r/)

Thus (2.15) to (2.17)leads to

Similarly,

Hence,

O(T o( for T-o,

d <-T i f(tanh

O(T o( for T--+oo,

d<T i If(tanh")ld

=O(T-1)=o(1) for

(tanh ,T)= 1/2 f(tanh -o) 1/2 f(z-o).lira
T

lira J2(tanh ,T)= 1/2 f(tanh +o)= 1/2 f(x +o).
T--,oo

lira J(,T) f( +o)+ f(-o)]- Z o’T-.oo
k

M(,2;iak)
"(O/Ok)M(z2,l;iak F(ak)"

(2.17)

(2.18)

(2.19)

Thus, at the points of continuity of f(z) we obtain (2.1). We note that (2.1) becomes

result in [5] when z -1 and z2 1.

It follows from the foregoing theorem that, at points of continuity of y(z), we have

(02/O,k-(--2,-zl iak)
F(ak)

k

where

R(z, z2; io-)o[(1/2+ir-ia)[(1/2-ir-ia)(O/O2)R--2-,-i;ia) F(a)da, (221)+’fit

x2

F(a)= --/ f(x)
R(Z, zl;ia) dx,_l<zl<x2<2 (2.22)

0 pia piaR(r,v;ia) pia_ 1/2 + ir(z) 3- 1/2 + it( V)- 1/2 + it( ) P 1/2 + ir(v)

and rak s,a, are real.

The integrand in (2.21) has singularities at a=ak(k is positive integers) which are simple

poles along the positive a-axis, where

0 R(Z, zl;iak O, > 0o-- ( )" (2.23)

To prove (2.21) we use the following asymptotic formulas for large

0 P-f/2 it(’)-- P (_)-#/2 O( i-l)],o- + r(1 + U) (1 =)(I 4- =) [1 4- l#

0 p-/2 i’r(-Z)- #.l (1)- "i2 [1 +O(Ip 1)],o,,: + r(1 + p) (1 + z)(1 z) (2.24)
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The proof of (2.21) is similar to the proof in the section 2, and we do not reproduce it. We note

that (2.21) becomes a result in [5] when
3. EXAMPLES.

We now give examples of expansions of some functions.

(1)
k (010o"k)M(z2, z 1; ik)

f(1 +)

2u[(12’i+ u) 7 M(z, z2; ia),,l,, +
+ r(1/2 + ,,.- ,,,) r(1/2- ,r- ,,,.)

[P-V(Zl)Ml(.l,.l;i P- v(.2) Ml(.2,.l;i)] d,

where
(-1 <z <x<z2<

MCz, y;i) eivaCz piva y)- Piva z) PiraCY),

Ml(Z,y;ia) ia iaPv- 1(z) PV( )- Pv- 1( t) P/va(y) and v 1/2 + it.

(2) P(z)= Eak r(1/2 + ir- iak)r(-ir- iak) M(z’z2;iak)

[( + .) e_ ()(,;i%)+ (u + i%)

P(z2)Ml(Z2’z2;ik)}]+ p2 +2
M(z, z2;i)
M(i2,/1;i@ [(v + p) P_ 1(2)M(/2,/1; i@ + (. + i.) {e(zl)

Ml(l,2;i F(2)Ml(2,l;i)}] d.

In M1 these results the conditiom under which the expsion theorem hold e satisfied.
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