
Research Article
Compressive Sensing Based Sampling and Reconstruction for
Wireless Sensor Array Network

Ming Yin, Kai Yu, and Zhi Wang

College of Control Science and Engineering, Zhejiang University, Hangzhou, China

Correspondence should be addressed to Zhi Wang; wangzhizju@gmail.com

Received 31 March 2016; Accepted 1 August 2016

Academic Editor: Cornel Ioana

Copyright © 2016 Ming Yin et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For low-power wireless systems, transmission data volume is a key property, which influences the energy cost and time delay of
transmission. In this paper, we introduce compressive sensing to propose a compressed sampling and collaborative reconstruction
framework, which enables real-time direction of arrival estimation for wireless sensor array network. In sampling part, random
compressed sampling and 1-bit sampling are utilized to reduce sample data volume while making little extra requirement for
hardware. In reconstruction part, collaborative reconstruction method is proposed by exploiting similar sparsity structure of
acoustic signal from nodes in the same array. Simulation results show that proposed framework can reach similar performances as
conventional DoA methods while requiring less than 15% of transmission bandwidth. Also the proposed framework is compared
with some data compression algorithms. While simulation results show framework’s superior performance, field experiment data
from a prototype system is presented to validate the results.

1. Introduction

The monitoring of noncooperative targets using spatially
distributed arrays has been one of the key problems in many
applications such as biological acoustic studies [1], gunshot
localization [2], and military target tracking [3]. Among all
array signal processing methods, direction of arrival (DoA)
estimation is an important one for source detection and
localization.

In traditional array systems, arrays are connected bywires
to a fusion center. In some other systems, like IAASNT [3],
sensors in the same array are connected to a local processor.
DoA estimation (or other array processing) is done there
and only results are transmitted wirelessly to a remote fusion
center. But the processors (like DSP) are usually too energy-
consuming as well as expensive. These two weaknesses make
large-scale wireless deployment and maintenance difficult.

With advances in wireless communication, a few pioneer
works [4, 5] deployed wireless nodes at spatially dispersed
locations to form arrays. Then the AML [4] localization
algorithmwas used to locate acoustic sources, which validates
the feasibility of wireless sensor array network (WSAN).

However the energy and data volume for transmission were
not considered.The large amount of raw sensor data needs to
be communicated via broadbandWi-Fi channels. Allen et al.
[6] proposed the VoxNet system, which uses 802.11b wireless
protocol to transmit data to the fusion center for processing.
Even some strategies are used to reduce data volume; the
lifetime is only about 8 hours.This huge energy consumption,
along with a rather long transmission delay, would largely
harm system performance. Aiming at longer independent
detection, low-power, lower-rate wireless protocol is indis-
pensable.Thusmanyworks focus on data reduction issue, like
[7].

In this work, we also consider a WSAN configuration.
Based on compressive sensing (CS) [8, 9], we propose a com-
pressed sampling and collaborative reconstruction frame-
work that can achieve obvious data reduction while keeping
similar DoA performance. Instead of transmitting all sensor
data to the fusion center, random sampling and deep quanti-
zation are performed to significantly reduce the amount
of data that needs to be transmitted via wireless channel.
Also, unlike traditional data compression algorithm, we place
major computation burden at the fusion center side, requiring
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Figure 1: Compressed sampling collaborative reconstruction framework.

little computation at individual sensor node. Thus, this
framework is very appealing to applications whose resources
(energy, transmission, cost, etc.) are limited.

Our framework leverages sparsity in both frequency and
space domain. We assume the acoustic signals of sources can
be modeled as a sum of few dominant harmonic frequencies.
As such, the time series at each sensor has a sparse spectral
representation including few dominant spectral lines. Fur-
thermore, sensors belonging to the same array often receive
signal with the same frequency components, with only a
phase shift due to time difference of arrival, because they
are different in distance to the source. Leveraging these two
sparsities with compressive sensing theory, we could reduce
the data volume to our best.

We employed two methods to exploit the frequency
sparsity in sampling the source signals: (1) random sampling
of the sensor data and (2) deep quantization of sampled
sensor data to the extent that only the sign bit is retained
[10, 11]. To exploit the space domain sparsity, we only
apply full reconstruction procedure on sampled data from
the reference sensor node. Then the recovered harmonic
frequencies’ structure will be used to reconstruct the sensor
data of remaining sensor nodes using easier methods like
least square approach with far fewer data samples than
those sampled on the reference node. The procedure of the
framework is depicted in Figure 1.

Previously, various works combined sparse reconstruc-
tion and array signal processing. Malioutov et al. [12]
exploited the sparse distribution characteristic of sources
in the angle domain and formulated array processing as
a multiple measurement vector (MMV) problem. Baron et
al. [13] proposed the joint sparsity model which can be
used in sensor arrays. Also many works tried to introduce
compressive sensing intowireless sensor network localization

problem, like [14, 15]. However, the problem of data volume
for transmission was not solved. Here in our work, our
framework provides an acceptable solution to this problem
for low-power, low-cost WSAN systems. After successful
reconstruction of the array data at the fusion center, either
conventional DoAmethods such asMUSIC [16] or the sparse
representation based approach [12] may be applicable.

Although many differences exist, we compare our frame-
work with modern data compression algorithms to show our
data volume reduction ability, including the lossless weighted
LZW coding [17], lossy JPEG [18], and MPEG-1 [19]. Also a
prototype microphone array platform has been implemented
with off-the-shelf devices. Experiment results are presented
that convincingly validate our framework’s performance.The
main contributions of this paper can be summarized as
follows:

(a) A novel compressed sampling collaborative recon-
struction signal processing framework is proposed.

(b) Random compressed sampling and a newly emerged
1-bit compressed sampling method are employed.
Thus sampling data volume is reduced, significantly
cutting down the transmission burden.

(c) Leveraging the high correlation of acoustic signals
among array elements, a collaborative reconstruction
method, works for both random compressed sam-
pling and 1-bit compressive sensing and is presented
to drastically reduce computation cost and delay.

(d) Numerical simulation and prototype experiment
results are presented to validate the performance of
the framework.

This paper is organized as follows: backgrounds of
DoA estimation, compressive sensing, and 1-bit compressive
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sensing are simply reviewed in Section 2. Our framework
is presented in detail in Sections 3 and 4, about sampling
and reconstruction, respectively. Simulation and experiment
results are reported in Section 5 along with some analysis.
And conclusion is presented in Section 6.

2. Background

2.1. Array Processing for DoA. Assume there are𝑄 sources in
the sensing field. The 𝑞th source emits signal 𝑠𝑞(𝑡) consisting
of some harmonics:

𝑠𝑞 (𝑡) =

𝑅

∑
𝑟=1

𝑏
(𝑟)

𝑞
sin (2𝜋𝑓𝑟𝑡 + 𝜑

(𝑟)

𝑞
) + ]𝑞 (𝑡) , (1)

where 𝑏
(𝑟)

𝑞
and 𝜑(𝑟)

𝑞
are the magnitude and the phase of the

𝑟th harmonic at frequency 𝑓𝑟 and ]𝑞(𝑡) represents other less
prominent components. For convenience, one assumes that
each 𝑓𝑟 is an integral multiple of 𝑓𝑠/𝑁 (𝑓𝑟 = 𝑘𝑓𝑠/𝑁, 𝑘 ∈

0, 1, . . . , 𝑁 − 1).
The signal received at the 𝑗th sensor is the summation of

all signals from the 𝑄 sources. That is,

𝑥𝑗 (𝑡) =

𝑄

∑
𝑞=1

𝑠𝑞,0 (𝑡 − 𝜏𝑞,𝑗) + V𝑗 (𝑡) , (2)

where the reference sensor node receives 𝑠𝑞,0(𝑡) from the 𝑞th
acoustic source. 𝜏𝑞,𝑗 is the relative difference of propagation
delay of 𝑞th source’s signal from the reference node to the
𝑗th sensor. V𝑗 is the additive Gaussian white noise at the 𝑗th
sensor with zero-mean and variance 𝜎2.

Figure 2 shows the arraymodel, inwhich e is the reference
orientation, 𝜌

𝑗
is sensor position for the 𝑗th sensor, and 𝜌

𝑡

is target (source) position. In this work, we assume that the
diameter of the sensor array is much smaller than the sensor-
to-target distance. That is,

max
0≤𝑚,𝑚󸀠≤𝑀−1

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑚

− 𝜌
󸀠

𝑚

󵄨󵄨󵄨󵄨󵄨
≪ min
0≤𝑗≤𝐽−1

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑡
− 𝜌
𝑗

󵄨󵄨󵄨󵄨󵄨
. (3)

As such, the acoustic wave emitted from the sources can
be regarded as plane wave. All sensors in the same array
should share the same incidence angle 𝜃 for signal from the
same source. It is easy to verify that the relative time delay of
the 𝑞th source between the 𝑗th sensor and the array centroid
is

𝜏𝑞,𝑗 =
1

𝑐
(𝑢𝑗 cos (𝜃𝑞) + 𝑦𝑗 sin (𝜃𝑞)) . (4)

If we represent x𝑗 = [𝑥𝑗(𝑡1), 𝑥𝑗(𝑡2), . . . , 𝑥𝑗(𝑡𝑁)]
𝑇 in the

discrete Fourier basis Ψ, the corresponding Fourier coeffi-
cients can be given by

x𝑗 = Ψ𝛼,

𝛼 = [𝑥𝑗 (𝑘1) , 𝑥𝑗 (𝑘2) , . . . , 𝑥𝑗 (𝑘𝑁)]
𝑇

,

𝑥𝑗 (𝑘) =

𝑄

∑
𝑞=1

𝑆𝑞,0𝑒
−𝑗(2𝜋𝑘/𝑁)𝜏

𝑞,𝑗 + 𝑉𝑗 (𝑘) .

(5)
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Figure 2: DoA estimation model for array.

Consider all the 𝐽 sensors, the array data spectrum x(𝑘) =

[𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝐽(𝑘)]
𝑇 at the 𝑘th frequency is given by

x (𝑘) =

𝑄

∑
𝑞=1

𝑆𝑞,0a (𝑘) + V (𝑘) , (6)

where a(𝑘) = [𝑒−𝑗2𝜋𝑘𝜏𝑞,1/𝑁, 𝑒−𝑗2𝜋𝑘𝜏𝑞,2/𝑁, . . . , 𝑒−𝑗2𝜋𝑘𝜏𝑞,𝐽/𝑁]
𝑇 is

defined as the steering vector corresponding to the 𝑞th sources
at the 𝑘th frequency.

With traditional high resolutionDoA spectral estimation,
the sample covariance matrix of array data spectrum x(𝑘) is
computed. That is,

R = x (𝑘) x (𝑘)
𝑇
=

𝑄

∑
𝑞=1

𝑆
2

𝑞,0
a (𝑘) a (𝑘)𝐻 + 𝑁𝜎

2I. (7)

Exploiting the low rank structure of the signal covariance
matrix R − 𝑁𝜎2𝐼, numerous DoA methods, such as ESPRIT
and MUSIC [16], have been proposed. Consider eigenvalue
decomposition of the matrix R:

R = U𝑆Σ𝑆U
𝐻

𝑆
+ U𝑁Σ𝑁U

𝐻

𝑁
, (8)

where Σ𝑆 and Σ𝑁 are diagonal matrices consisting of the
eigenvalues ofR such that the eigenvalues inΣ𝑆 are larger than
those in Σ𝑁. Equation (8) implies that the steering vectors
A(𝜃) must lie within the span of the signal subspaces U𝑆
and perpendicular to the noise subspace spanned by columns
of U𝑁. With the MUSIC method, the DoA of targets are
estimated as the peaks of the following function:

𝑃MUSIC (𝜃) =
1

a𝐻 (𝜃)U𝑁U𝐻𝑁a (𝜃)
. (9)

2.2. Compressive Sensing. Compressive sensing theory [8, 9]
states that a sparse signal may be randomly sampled at sub-
Nyquist rate and then be reconstructed perfectly. Denote 𝛼
to be a sparse vector representing the sparse signal, x =

Ψ𝛼 (x ∈ 𝑅𝑁) to be the original signal, and y = Φx to be the
observed signal. According to compressive sensing theory,
the observation matrix Φ can be chosen to be a Gaussian
random matrix or Bernoulli random matrix.
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Given y, the CS reconstruction problem is formulated as
a constrained optimization problem:

argmin ‖𝛼‖1 ,

s.t. 󵄩󵄩󵄩󵄩y −Φx󵄩󵄩󵄩󵄩 < 𝜂,
(10)

where 𝜂 is a preset threshold and ‖𝛼‖1 is the ℓ1 norm of 𝛼.
The above problem formulation leads to various CS recon-
struction algorithms, such as Compressive Sensing Matching
Pursuit (CoSaMP), OrthogonalMatching Pursuit (OMP), ℓ1-
magic [20], and Lasso.

2.3. 1-Bit Compressive Sensing. Unlike conventional CS, 1-bit
compressive sensing only keeps the sign bit of measurements
and discards themagnitude information [10]. Inmatrix form,

y = sign (Φx) . (11)
While traditional CS methods use equation constraint, 1-

bit CS reconstruction can be accomplished via optimization
problem with an inequality constraint:

ŷΦx ≥ 0, (12)
where ŷ = diag(y) and the inequality is applied for each
component of the vector. Thus, the 1-bit CS reconstruction
optimization problem can be expressed as follows:

argmin ‖𝛼‖1

s.t. YΦΨx ≥ 0,

‖𝛼‖2 = 1.

(13)

The ℓ1 norm is used as a cost function that enforces
the sparseness of 𝛼 under the sign constraints. Since the
amplitude information is discarded in 1-bit sampling, a unit
sphere constraint is introduced to avoid getting the obvious
wrong solution of 𝛼 = 0.

Several algorithms have been proposed to solve the 1-
bit CS reconstruction problem. These include 1-bit Lin-
ear Programming (1-bit LP), Matching Sign Pursuit (MSP)
algorithm, Binary Iterative Hard Thresholding (BIHT),
Restricted-Step Shrinkage (RSS), and Fixed Point Continu-
ation (FPC).

2.4.MultipleMeasurementVectors. Formultiple sparse signal
with the same sparse pattern, the multiple measurement
vectors (MMV) [21] formulation utilizes the joint sparse
in reconstruction procedure. The MMV problem can be
formulated as solving multiple underdetermined systems of
linear equations:

Y = ΦA, (14)
whereΦ is a full rank𝑀×𝑁matrix (𝑀 ≪ 𝑁) andY is𝑀×𝐿

observation matrix consisting of 𝐿 consecutive observations
of 𝐿 sparse vector represented byA. It is further assumed that
each column of the Amatrix has the same sparse structure.

Lots of algorithms have been proposed that exploit the
joint sparsity in different ways. These include Simultaneous
Orthogonal Matching Pursuit (SOMP), Reduce MMV and
Boost (ReMBo), ℓ1-svd [12], and Multiple FOCal Underde-
termined (M-FOCUSS) algorithms.

3. Compressed Sampling

In this section, we provide two sampling methods designed
for WSAN. We try to reduce the transmission data volume
for array signal, which brings energy consumption and
transmission delay issues. Compared with traditional data
compression methods, CS performs dimension reduction
with projection calculation. Further comparisons will be
provided in later sections.

3.1. Random Compressed Sampling. Random projection is
an important step in compressive sensing methods. But
random number generation and projection calculation are
required to perform random projection on nodes.These raise
energy consumption and hardware requirement. Inspired by
nonuniform sampling method, we combine the nonuniform
sampling process with CS framework and model it by a
measurement matrix. It is easy to implement and no extra
computation is needed on wireless nodes.

So the measurement matrix is designed as follows: the
𝑀 × 𝑁 measurement matrix Φ represents the measurement
process; each row has only one nonzero component 1 in the
(𝑚, 𝑡𝑚) position. Following this matrix, the ADC take the𝑚th
samples at 𝑡𝑚. A sequence u = {𝑢(1), 𝑢(2), . . . , 𝑢(𝑀)} is set
with 𝑢(1) = 1, and

𝑢 (𝑚) = 𝑢 (𝑚 − 1) + [𝜏𝑚] , 2 ≤ 𝑚 ≤ 𝑀, (15)

where 𝜏𝑚 ∈ 𝑁(𝑁/𝑀,𝑀2𝐾2/𝑁2) is the random sampling
interval between adjacent sample instances.Then the (𝑚, 𝑛)th
element of this proposed random samplingmatrix is given by

Φ (𝑚, 𝑛) =
{

{

{

1 1 ≤ 𝑛 = u (𝑚) ≤ 𝑁;

0 otherwise.
(16)

And thisΦ is used as the measurement matrix in the random
compressed sampling method. Although we call it random,
this matrix (or sampling sequence) could be predefined and
saved in nodes and fusion center. Nodes do not have to
generate random number themselves.

3.2. 1-Bit Compressed Sampling. 1-bit compressed sampling
has its obvious advantage in reducing data volume. On
condition that the sampling rate can be supported in sensor
node, 1-bit compressed samplingwill be an appealing solution
toWSANmonitoring applications. And there are twoways of
implementation on nodes.

(1) Hardware Implementation. Use random number gen-
erators and comparators on nodes. After random
projection of raw signal, a comparator to zero is
utilized to quantize the measurement. And, in fact,
this kind of comparators is extremely cheap and fast.

(2) Software Implementation. Perform randomprojection
in software.The ADC samples at the Nyquist rate and
only the signs of projected raw samples are kept. Such
method has been successfully used in 1-bit Sigma-
Delta converters, at the expense of very high sampling
rate [22].
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3.3. The Coherence of Compressed Sampling. To use CS-
based methods, the incoherence of measurement matrix and
sparsity matrix should be tested. Note that the structure ofΦ
and the product Φ ⋅ Ψ amount to selecting some rows from
the Discrete Fourier Transform (DFT) matrixΨ. Hence their
productΦ⋅Ψ is a partial Fourier transformmatrix (submatrix
of full DFT matrix). For the underlying random nonuniform
sampling, the selection of these 𝑀 rows is determined by
u. Applying the Welch bound inequality [23], when u is
randomly selected from {1, 2, . . . , 𝑁}, 𝜇 satisfies

𝜇 (ΦΨ) ≤ √
𝑁 − 𝑀

(𝑁 − 1)𝑀
. (17)

For 1-bit CS, binary 𝜀-stable embedding (B𝜀SE) is proposed to
characterize 1-bit CS system [24], and robust reconstruction
is guaranteed when𝑀 > 𝐶𝜀𝐾 log𝑁.

4. Collaborative Reconstruction

Conventional CS methods guarantee stable signal recovery
with the prior information of sparsity. However, the sparsity
is not the only prior information that helps to recover signal
in this sensor array case. For spatially neighboring nodes in
the same array, they receive highly correlated signals. The
correlations are displayed in their similarity in spectrum,
although different in phase shift. (They share the same sup-
port in frequency domain.)Thus independent reconstruction
of individual sensor signal seems redundant.

4.1. Reconstruction for Random Compressed Sampling. Simi-
lar to the MMV formulation, the compressed measurements
of all 𝐽 sensors can be formulated as

Y = ΦX = ΦΨA, (18)

where Y = [y1, y2, . . . , y𝐽], X = [x1, x2, . . . , x𝐽], and
A = [𝛼1,𝛼2, . . . ,𝛼𝐽]. Note that each x𝑗 is a summation
of different delay versions of sources signal; 𝛼𝑗 has the
same sparse pattern. Based on such joint sparsity, the signal
reconstruction problem can be described as

argmin
A

‖d‖1

s.t. ‖Y −ΦΨA‖2 ≤ 𝜎,

d (𝑛) =

𝐽

∑
𝑗=1

𝛼
2

𝑗
(𝑛) .

(19)

Under this joint reconstruction model, the theoretical mea-
surement number of random compressed sampling is 𝐿𝐾 +

log(𝑁/𝐾) [25] while the normal CS requires 𝑐𝐽𝐾 log(𝑁/𝐾)

[8]. The computational complexity of the above joint recon-
struction is O(𝐽3𝑁3) [21]; it sacrifices the real-time perfor-
mance of signal reconstruction.

To solve this issue, we propose a collaborative signal
reconstruction method. The main idea of this proposed
framework is to choose one reference sensor node and

reconstruct its signal. Then the support (nonzeros index of
a sparse vector) of the reconstructed signal can be utilized to
prune the CS problem to a least square problem.

We defineΩ = supp(𝛼̂) to be the support of reference sig-
nal. Based on the known supportΩ, the joint reconstruction
formulation can be simplified to

Y = ΘΩAΩ, (20)

where ΘΩ and AΩ are the submatrices of Θ and A with
column and row indexΩ.

It is obvious thatΘΩ andAΩ are𝑀×𝑇 and𝑇×𝐽matrices
(𝑇 = |Ω|). In such case, the traditional ill-determined
optimization problem is equivalent to solving equations with
𝑀 measurement and 𝑇 unknown variable. When 𝑀 > 𝑇, it
has a least squares solution:

AΩ = (Θ
𝑇

Ω
ΘΩ)
−1

Θ
𝑇

Ω
Y. (21)

In conclusion, when given the support of signal, the
signal reconstruction problem is simplified to a least square
problem, which means we only need 𝑇 measurements to
solve it. The pseudocode of collaborative reconstruction is
presented as follows. (ℓ1-magic [20] is used as an example.)

Algorithm 1 (collaborative reconstruction algorithm).

Input

Compressed sampling matrixΦ;
Measurements y𝑗 (𝑗 = 1, 2, . . . , 𝐽).

Output

K-sparse approximation 𝛼𝑗 (𝑗 = 1, 2, . . . , 𝐽).

(1) Solve 𝛼1 by ℓ1-magic algorithm:

argmin 󵄩󵄩󵄩󵄩𝛼1
󵄩󵄩󵄩󵄩1

s.t. y1 = ΦΨ𝛼1.
(22)

(2) Estimate the support of 𝛼1:

supp (𝛼1) = {𝑛 | 𝛼1 (𝑛) > 𝜀} . (23)

(3) Obtain the pruned reconstruction matrix:

ΘΩ ←󳨀 (Θ, supp (𝛼1)) . (24)

(4) Analytical solution of a least square problem:

𝛼𝑗 = (Θ
𝑇

Ω
ΘΩ)
−1

Θ
𝑇

Ω
y𝑗 (𝑗 = 2, 3, . . . , 𝐽) . (25)

4.2. Collaborative Reconstruction for 1-Bit Sampling. For 1-bit
compressed sampling, whose measurements are the sign of
projection for the original signal, the nonlinearity between
the original signal and the measurements makes it hard to
find an analytical solution. However, the obtained support
can still help to simplify and boost the reconstruction process.



6 Mathematical Problems in Engineering

Similar to the reconstruction for random compressed
sampling, the 1-bit reconstruction problem can be modeled
as

min
𝑁

∑
𝑖=1

𝑢𝑖

s.t. − 𝑢𝑖 ≤ 𝛼𝑖 ≤ 𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑁,

𝑦𝑖 (𝜃
𝑇

𝑖
𝛼) ≥ 0, 𝑖 = 1, 2, . . . ,𝑀,

𝑀

∑
𝑖=1

𝑦𝑖 (𝜃
𝑇

𝑖
𝛼) ≥ 𝑀, 𝑖 = 1, 2, . . . ,𝑀,

𝛼𝑖 = 0, 𝑖 ∉ supp (𝛼0) ,

(26)

where 𝜃 is the 𝑖th column ofΘ.
For both sampling methods above, collaborative recon-

struction algorithm simplifies the redundant reconstruction
dictionary with the help of signal support. It avoids the
redundancy in traditional CS signal reconstruction. There-
fore, this algorithm can greatly reduce the computational
complexity and increase the success rate of reconstruction
while requiring less information. These merits have great
value in achieving low-power, real-time wireless sensing
systems.

5. Performance Evaluation

In this section, extensive simulations are carried out to
compare the proposed framework with traditional array
processing and CS approaches. Consider the modern data
compression approach and the wireless channel that has
transmission error; our framework is compared with some
local data compression approach under different transmis-
sion error cases. Finally, a hardware prototype is developed
to validate the practical application of the framework through
outdoor experiments.

5.1. Experiment and Simulation Settings. Theoretically, our
framework works for any array formation when it satisfies
the array spacing requirements. Here, a uniform linear array
with 6 nodes and a −90∘ to 90∘ target space is chosen for both
simulation and experiment. Considering that the acoustic
signals of cars, trucks, or helicopters are usually dominated
by a few harmonics, the source signal is assumed to be
summation of harmonics at 500Hz, 600Hz, 700Hz, and
800Hz. Accordingly, a 0.2m spacing is adopted to satisfy the
half-wavelength requirements of array.

We choose the widely accepted MUSIC [16] algorithm
for DoA estimation. The dimension of original signal (also
reconstructed signal) in a snapshot is assumed to be 128, and
the system sampling rate is set to be 2048Hz. For expres-
sion simplicity in this section, we denote RCS as random
compressed sampling, 1bS as 1-bit compressed sampling, and
CoR as collaborative reconstruction.The joint reconstruction
method mentioned in Section 4 is used as benchmark while
evaluating the proposed CoR method, denoted as JoR. To
have fair comparison, we formulate the random compressed

Table 1: Measurement number settings for reconstruction.

Method Samples
Raw signal 128 for all nodes
RCSJoR 32 for all nodes
RCSCoR 64 for ref node, 16 for others
1bSCoR 178 bits for ref node, 64 bits for others

sampling based approach as an SOCP problem and 1-bit CS
base approach as an LP optimization. Both SOCP and LP are
solved by Sedumi toolbox [26].

The first problem of CS in real application is the number
of random measurements. Although some theoretic bounds
have been proposed, it is still not clear how many samples
will bring maximum benefit. Here the SNR of reconstructed
signal is chosen as criteria.The SNR of raw signal is 10 dB and
the reconstructed signals are comparedwith uncontaminated
signal to obtain the same SNR. Figure 3 shows the relationship
between the reconstructed SNR and the corresponding mea-
surements 𝑀. Table 1 shows the number of measurements
necessary for a method to reach original 10 dB SNR.

As we can see here, CS-based methods obviously reduce
the data volume, while our RCSCoR and 1bSCoR methods
further reduce the number ofmeasurements for nonreference
nodes.

5.2. DoA Estimation Comparison. Figure 4 displays the DoA
estimation result of three CS-based approaches using above
empirical measurements numbers, and the RS (raw signal)
denotes array processing with raw data, used as bench-
mark. First, we use settings from Table 1 for all methods.
Results indicate that all methods present spatial spectrum
clear enough to tell the source direction. RS has the best
performance. For compressed sampling methods, reduction
in sample amount caused information loss; therefore they all
present worse performance but still clear directions.

Further numerical simulations are performed to statisti-
cally show the performances of these CS-based frameworks
for DoA estimation purpose. The root mean square error
(RMSE) and success detection rate of 500 independent trials
are used as performance metrics. Here, if a DoA estimation
result falls in±10

∘ range of true value, it is viewed as a success.
From the results in Figure 5, we could tell that using

full raw signal simply provides the best performances. That
makes sense for no information loss introduced. Therefore,
the RS results may be considered as true value or benchmark
of estimation performances. Other three CS-based methods
are inferior to the RS approach, but still in a tolerable range.
Among these three CS-based approaches, RCSJoR outper-
forms RCSCoR and 1bSCoR. This is because the RCSJoR
approach is based on a joint optimization while others rely
on the sparsity of single sensor.

In the above tests, we used settings from Table 1. These
settings come from SNR analysis of reconstructed signal.The
difference of theseCS-based approaches inRMSE and success
rate indicates that the criterion of reconstructed SNR may
not be the most suitable one. Here, in Figure 6, the RMSE of
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Figure 3: Comparison of measurement number 𝑀.
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Figure 4: MUSIC results under SNR 5 dB (a) and 20 dB (b).

DoA is chosen as criteria that evaluate differentmeasurement
number 𝑀. To be fair, three times the RMSE value of RS
approach is used as performance degradation threshold for
each method and each SNR level (presented by dotted lines
with corresponding color in Figure 6). This threshold may
not be optimum but should provide credible results. Based
on such threshold, we choose settings that could guarantee
most SNR cases for each method. Then we have 𝑀 = 21 for
RCSCoR, 𝑀 = 15 for RCSJoR, and 𝑀 = 120 for 1bSCoR.

These settings are for nonreference nodes. Reference nodes
still use Table 1 setting.

5.3. Compression Comparison. CS-based methods could also
be considered as special-purpose lossy compressionmethods.
Ignoring algorithm complexity problem, other local data
compression approaches can also reduce the data volume
before wireless transmission. So here, we compare the per-
formance of CS-based methods with local data compression
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Figure 6: DoA performance of three methods against 𝑀.

Table 2: Compression ratio of all methods.

Method RCSCoR RCSJoR 1bSCoR LZW JPEG MPEG-1
Ratio 4.544 8.533 15.794 1.184 3.103 1.871

methods. Three typical data compression methods are con-
sidered: the lossless weighted LZW coding [17], lossy JPEG
[18], and MPEG audio coding layer 1 [19].

Referring to the technical manual of STM32 series MCU,
the validated package load is 100 bytes and the PER (Package
Error Rate) is 1% with package of 20 bytes. Based on the
provided parameter, the BER (Bit Error Rate) is set to be
6.28 × 10

−5, 1.26 × 10−4, 3.21 × 10−4, and 6.58 × 10−4

(corresponding to PER of 1%, 2%, 5%, and 10%, resp.). Here,
we use the 𝑀 values mentioned in previous section, namely,
21 for RCSCoR, 15 for RCSJoR, and 120 bits for 1bSCoR. For
methods other than 1bS, we normally use 16-bit quantization
in following computation.

Figure 7 shows DoA success rate of different BERs,
and RMSE are presented as error bars. Obviously, CS-based
methods display robust property under all the BERs, while
not all existing compression methods can. The LZW has an
obvious performance decline when the BER increases; the
JPEG compression algorithm is heavily affected by the BERs;
only MPEG-1 displays a strong error tolerant capability, but
not better than CS-based approaches.This is because the CS-
based approaches focus on the sparse structure of data and
the error of transmission can be regarded as noise and hence
eliminated through reconstruction algorithms.

Table 2 lists the compression ratio of CS-based and
traditional data compression approaches. The compression
ratio for CS-based approaches is much high than that of the
conventional compression approaches. Here, LZW has the
smallest compression ratio; this may be because the repeata-
bility of data is not good enough and extra data volume is
occupied to construct coding dictionary. For different cases,
CS-based methods could work with different parameter
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Figure 7: DoA comparison under different BERs.



10 Mathematical Problems in Engineering

Sound level meter

Microphone
array

Multichannel
recorder

Amplifier

Figure 8: Prototype system in experiments.
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Figure 9: Experiment setting.

settings. This flexibility offers them better adaptability for
various cases.

5.4. Field Experiment. To validate the proposed framework,
an acoustic sensor array prototype system is developed to
conduct some field experiments. As shown in Figure 8, this
prototype mainly consists of a uniformly spaced linear array
with six omnidirectional microphones and a multichannel
recorder. Spacing between adjacent microphones is 0.2m.
Figure 9 shows the experiment setting. One source is placed
at direction 60.2

∘, few metres away. The sampling frequency
is 2048Hz and the DoA is estimated every 3 snapshots (each
snapshot with 128 samples).

Figure 10 shows the spatial spectrum of CS-based
approaches and also RS as benchmark. The DoA results are
57.9
∘ for 1bSCoR, 58.1∘ for RCSCoR, 58.1∘ for RCSJoR, and

58.25∘ for RS. This result shows that our framework could
work well on real off-the-shelf devices.

5.5. Performance Summary. Till now, with simulation and
experiment results, we can reach the following conclusions.
(a) The proposed framework could significantly reduce sam-
ple data volume with a little performance loss; (b) RCSCoR
could work with extremely simple nodes while 1bSCoR
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Figure 10: MUSIC results of prototype system.

provide best DoA performance with least data. Which to use
depends on the systems requirements.

6. Conclusion

In this paper, we propose a compressed sampling and collab-
orative reconstruction framework. By exploiting the sparse
property of source signal, random compressed sampling
and 1-bit sampling require much less array data while still
providing acceptable performance. By exploiting the high
correlation among array signals, collaborative reconstruction
effectively reconstructs array signal as well as further reduc-
ing the number of samples required for nonreference nodes.

Different methods have different advantages. RCSCoR
method could work well with simple devices, and 1bSCoR
provides the highest compression ratio. Both numerical sim-
ulation and experiments on off-the-shelf device are presented
to validate the usefulness of the proposed framework. Con-
sidering the convenience of implementation on hardware,
this framework would be an excellent choice on low-cost,
low-power wireless sensor array network.
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