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Analogues of the normal distribution in Euclidean space for orientations represented by Rodrigues
parameters are discussed. It is emphasized that different characterizations of the normal distribution
in Euclidean space lead to different distributions in other spaces, none of which is mathematically
superior to any other one. Particular analogues of the normal distribution are the Bingham
distribution on $4+ for the purposes of mathematical statistics, and the Brownian motion distribution
on $4+ in terms of probability theory and stochastic processes. It is reminded of the fact that a simple
analogue of the central limit theorem in Euclidean space does not exist for the hyperspheres Sp and
projective hyperplanes Hp- SP+.
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1. INTRODUCTION

Mathematical model distributions in the orientation space have recently been
discussed by Matthies et al. (1988). In particular, the authors discuss the family of
probability densities proportional to exp(x cos tb) labeled "standard Gaussian
function" (Matthies, 1980), and in some length the family of the "truly normal
distribution" given as infinite series expansion into characters of the irreducible
representations of the group SO(3) and C-coefficients. For the latter, the reader
is referred to a communication in Russian by Savelova (1985) who is given credit
for being the first to derive the C-coefficients of the "truly normal distribution".
The purpose of this short note is twofold. We would like to add some

references which might be more easily accessible to the majority of the readership
both in terms of language as well as mathematics. Furthermore, we would like to
show how the two families relate to general normal theory and that they are in
fact well known to mathematical statisticians and physicists for quite a while.
When discussing general normal, or synonymously, Gaussian theory it should

be remembered that besides the characterization by the central limit theorem of
probability theory there are many more characterization theorems for the normal
distribution in Euclidean space (cf. Kagan et al., 1973; Mardia, 1975). These
include characterizations in terms of moments, maximum likelihood, maximum
entropy, infinite divisibility, invariance under orthogonal transformations etc.
When James (1954) developed methods of normal multivariate analysis for the
orthogonal group O(p), p [, Stiefel and Grassmann manifolds he emphasized
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that much of the theory of normal multivariate analysis can be deduced from, or
is closely related to the fact that the distribution of a normal multivariate sample
is invariant under orthogonal transformations (James, 1954). With respect to
stochastic processes or statistical physics the normal distribution in Euclidean
space can be characterized in terms of random walk, Brownian motion, diffusion
processes etc.

2. THE VON MISES-FISHER-LANGEVIN DISTRIBUTION ON Sp

What has been labeled "Gaussian standard function" (Matthies, 1980) can be
written generally and without reference to the notion of orientations in texture
analysis as

fp(to; r) (Cp(/C))-lexp(/ cos to), 0-< to -< (1)
Interpreting the angle to as being defined by two unit vectors l, x Sp c P the
density (1) can be rewritten explicitly as p-variate probability density

f(x; r,/) Cp(r)-’exp(rltX) (2)
of polar directional data. According to Watson (1983) it is referred to as von
Mises (1918) for p 2, as Fisher (1953) for p 3, and as Langevin (1905) for any
p e J, where it has arisen in his statistical-mechanical discussion of magnetism.
The density (2) is rotationally symmetric with respect to its modal, or polar,
vector/ e SP; therefore, it is also called a central or zonal density.

Returning to the notion of rotations and orientations, and interpreting the
angle to, 0-< to -< z, as distance of orientations, the "Gaussian standard function"
has been identified as the special case of the general von Mises-Fisher matrix
distribution (Khatri and Mardia, 1977) on SO(3) when it is central (Schaeben,
1990), i.e. when it degenerates to the form (1). Maximum likelihood and
information theoretic characterizations of the general Langevin distribution have
been given by Mardia (1975). Thus, it is concluded that the Langevin distribution
is the hyperspherical analogue of the normal distribution in Euclidean space for
the purposes of mathematical statistics.

3. THE BINGHAM DISTRIBUTION ON SP+ =-Hp-1

When applying the Rodrigues parameters of an orientation (cf. Altmann, 1986) it
can be represented as a point on the upper fourdimensional hypersphere $4+.
According to the one-one map of a matrix element of SO(3) and a point on $4+
representing the same orientation, the corresponding one-one relation of the von
Mises-Fisher matrix distribution on SO(3) and the antipodally symmetric
Bingham distribution (Bingham, 1964; 1974) on S4 has explicitly been given
(Prentice, 1986) and discussed in the context of texture analysis (Schaeben, 1990).
If the von Mises-Fisher matrix distribution on SO(3) degenerates to the Langevin
distribution (1) of polar directions, then the Bingham distribution on $4+
degenerates to the rotationally symmetric Watson distribution (Bingham, 1964;
Watson, 1965) of axial directions on $4+. Characterizations of the Bingham
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distribution in terms of maximum likelihood and information theory can be found
in (Mardia, 1975). Thus, it is concluded that the Bingham distribution is the
analogue of the normal distribution in Euclidean space on SP+, or more
specifically on the p-1-dimensional projective hyperplane Hp-l, for the
purposes of mathematical statistics. Prentice (1986) emphasized that the Bingham
distribution provides distinct advantages as compared to the von Mises-Fisher
matrix distribution for statistical applications thus confirming that the repre-
sentation of orientations by Rodrigues parameters is suited best for statistical
purposes (Moran, 1975; Altmann, 1986).
We should be able to represent any density on a hypersphere or projective

hyperplane of some practical interest as a series expansion in terms of
orthonormal functions on the hypersphere, i.e. in spherical harmonics and related
functions (Watson, 1983).
The Langevin distribution (2) of polar directions on SPc Rp, p-> 3, may be

represented in terms of Fourier-Legendre series as

fp(tO, r) area-(Sp) Nk,p[l+p-2/2(r)/Ip-2/2(r)lPk,p(COS )
k=O

(3)

with the modified Bessel functions Iv(r), the Legendre polynomials Pk,p
k for Rp, and the number

of order

Nm.p (2m + p 2)
(m + p 3)!
mt(p -2)!

of linearly independent homogeneous spherical harmonics of degree rn in P,
p->3. The Legendre polynomials Pkp of order k for P span the space of
rotationally symmetric functions in’ 92(Sp), p->3; for p->3 they satisfy

(p 2)/2) (v)Ck(P)Pk,p(t)=C (t) where Ck (t) denotes the Gegenbauer function of
order k and with Ck(p) F(k +p 2)/(F(p 2)r(k + 1)) (Hartman & Watson,
1974).

4. THE BROWNIAN MOTION DISTRIBUTION ON Sp AND SP+--Hp-1

The Brownian motion distribution (cf. Perrin, 1928; Arnold, 1941; Yosida, 1949;
Roberts & Ursell, 1960) on Sp c P, p -> 3, is given by its Fourier-Legendre
series

fp(p, v) area-I(SP) Nk,pexp[-k(k + p -2)V]Pk,p(COS p),
k=O

0 --< p --< r (4)

(Hartman & Watson, 1974; Watson, 1983). In particular, this reads for p =4
when the hyperspherical angle p is related to the angle of rotation to of an
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orientation by 2p to (cf. Roberts & Winch, 1984)

k=O \ .,/

(2:)- (k + 1)exp[-k(k + 2)v]C cos
k0

(2)- (k + 1)exp[-k(k +  )vl
k=0

sin
2

The last equation is an application of the identity C (cos )= Uk(COS ) where
Uk(COS ) denotes the Chebyshev polynomial of the second kind.
Following an argument introduced by Arnold (1941) the Brownian motion

distribution on the projective hyperplan Hp-S P is given by

h (W,

area-l(Sp) NEk.p exp[-2k(2k + p 2)V]PEk,p(COS ) (5)
k=0

which reads for p 4 and 0 /2

h(, v) (4)- (2k + 1)exp[-2k(2k + 2)v]P,4 cos
m

k=0

(4)- (2k + 1)exp[-k(k + 1)4v]
o

sin
m
2

Applying a characterization of the normal distribution in terms of infinitely
divisible distributions, Savelova (1984) [in English] derived for SO(3) the central
orientation distribution depending on the orientation distance

f(tb, o)= (2k + 1)exp[-k(k + 1)o2]Dk(&)
k=0

(6)

in terms of generalized Legendre series expansion, or more specifically in terms
of series expansion into characters of the irreducible representations of the group
SO(3) with the Dirichlet kernel

f sin((2n / l)tb/2)
Dn(tb) 1 + 2 Z cos(ktb)= ---n(/2) tb, 2]:r

j Z (7)
k=l !l.2n + 1 & 2jr

which is obviously identical with the Brownian motion distribution h4 on $4+.
Thus, the Brownian motion distribution h4 on $4+ or equivalently the

distribution (6) derived by Savelova (1984) is the analogue of the normal
distribution in Euclidian space in terms of probabilistic arguments, i.e. in
probability theory (cf. Watson, 1983).
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Matthies et al. (1988) apply arguments of the central limit theorem in Euclidean
space to derive the distribution (6) in an oversimplified way. Then they relate it to
the. central limit theorem for SO(3) which they seem to imagine as a simple
analogue of the central limit theorem in Euclidean space. However, such an
analogue does in general not exist for arbitrary manifolds; a simple analogue of
the central limit theorem in Euclidean space for hyperspheres Sp c P, projective
hyperplanes Hp-1 cP, or for the group SO(p), p , would result in the
corresponding uniform distributions (Breitenberger, 1963; Roberts & Winch,
1984; Watson, 1991).

5. CONCLUSIONS

It should be obvious that there is no unique analogue for arbitrary spaces and
manifolds of the normal distribution in Euclidean space (Watson 1983) nor that
any analogue should generally be preferred as truly normal to any other one.
Interpretations of orientation densities in terms of mechanisms of texture
development related to an imaginary simple analogue of the central limit theorem
for SO(3), or S H3 respectively, may be misleading.
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